Skip to main content
. 2021 May 20;23(5):e27806. doi: 10.2196/27806

Table 2.

Forecasting performance for each model in the validation set for the 15 countries.

Country (total populationa) and methods Mean errorb Root mean square errorb Mean absolute errorb Mean percentage errorb Mean absolute percentage errorb
United States (N=329,466,283)

ARIMAc –183,472.5153 229,501.345 183,888.691 –0.9538265 0.9562102

FNNd –197,967.69975 251,014.19 201,574.807 –1.027988 1.048648

MLPe 34,016.71589 45,932.609 35,569.561 0.1774821 0.1862749

LSTMf –17,670.38 41,667.98 g 31,092.06 –0.09409045 0.1664009
Canada (N=37,855,702)

ARIMA –3786.81463 4953.7659 3786.8146 –0.6828342 0.6828342

FNN –1902.8218773 3146.8161 2133.5721 –0.3503041 0.3898707

MLP –6056.7104430 7294.1933 6056.7104 –1.094643 1.094643

LSTM 306.1702 2272.551 1501.248 0.04896196 0.2723075
Mexico (N=127,792,286)

ARIMA –3776.6237 6281.987 4841.2544 0.3501243 1.2391347

FNN –15,894.200241 19,622.066 16,156.1290 –1.145524 1.165534

MLP –3551.381635 6534.119 5455.281 –0.2517612 0.3969063

LSTM –1137.118 2883.836 2334.178 –0.08386455 0.1716616
Brazil (N=212,559,409)

ARIMA –52,913.8661 69,053.95 54,328.55 –0.7032164 0.7228866

FNN –168,251.54394 204,577.061 168,251.544 –2.240681 2.240681

MLP –28,723.33938 43,395.965 31,117.856 –0.3797225 0.412664

LSTM –2746.457 16,085.02 14,347.73 –0.03768765 0.1931052
Argentina (N=45,195,777)

ARIMA 10,240.495912 12,832.6035 10,240.4959 0.6433934 0.6433934

FNN 22,285.962404 26,555.128 22,285.9624 1.402042 1.402042

MLP 10,914.143275 13,689.5539 10,929.6874 0.6857769 0.6867919

LSTM 1253.045 3920.961 3202.607 0.07803485 0.2024643
Chile (N=19,116,209)

ARIMA 1823.55216 1992.35 1823.5522 0.3048502 0.3048502

FNN 8171.7723060 9157.9881 8171.7723 1.363951 1.363951

MLP 2169.702307 2435.4540 2169.7023 0.3622628 0.3622628

LSTM 595.9308 790.8397 648.5224 0.1001373 0.1090634
United Kingdom (N=67,886,004)

ARIMA 40,161.7481 55,436.735 41,580.2155 1.7053944 1.776331

FNN –17,129.950943 23,936.144 17,129.951 –0.7304511 0.7304511

MLP 81,031.84 102,155.3238 81,031.841 3.482155 3.482155

LSTM 15,560.98 17,735.29 15,560.98 0.6832804 0.6832804
France (N=65,273,512)

ARIMA 1807.5070 8181.384 6633.665 0.07287266 0.2565254

FNN 61,075.99023 67,684.575 61,075.990 2.340844 2.340844

MLP 9601.594851 11,456.382 10,239.308 0.3726648 0.3969022

LSTM 6262.693 9254.264 7784.804 0.241549 0.3000627
Greece (N=10,423,056)

ARIMA 5423.2143 6072.0773 5423.2143 4.003338 4.003338

FNN –21.8694361 561.98452 400.61927 –0.01977488 0.2937978

MLP –1145.165405 1341.1596 1145.1654 –0.844399 0.844399

LSTM –512.1191 565.7909 512.1191 –0.3821559 0.3821559
Taiwan (N=23,816,775)

ARIMA –15.97434477 17.288501 15.97434 –2.0379969 2.037997

FNN –6.571007146 7.379679 6.571007 –0.84606232 0.8460623

MLP –9.485179 12.925238 9.9162023 –1.2005706 1.257011

LSTM –2.059649 3.322996 2.978151 –0.3227033 0.3820354
Thailand (N=69,799,978)

ARIMA 1471.082153 1620.87009 1471.082153 23.7842238 23.784224

FNN 1463.109910 1611.239573 1463.109910 23.659524 23.659524

MLP 1517.21984066 1674.585004 1517.219841 24.5165025 24.516502

LSTM 173.2286 308.695 202.2714 2.950519 3.435209
South Korea (N=51,269,183)

ARIMA –260.265311 317.53169 265.29603 –0.4540395 0.4641688

FNN –75.7162332 181.29894 154.2065 –0.1226205 0.2708482

MLP –1138.0352476 1419.83911 1145.57606 –1.963196 1.978379

LSTM 323.9709 342.9156 323.9709 0.5978793 0.5978793
India (N=1,380,004,385)

ARIMA 19,113.77834 21,947.375 19,113.778 0.1874688 0.1874688

FNN –10,156.962689 13,612.018 10,156.963 –0.09945817 0.09948717

MLP 20,964.3576266 24,556.936 20,964.358 0.2055718 0.20055718

LSTM –13,037.64 14,480.91 13,037.64 –0.128178 0.1281378
Australia (N=25,459,700)

ARIMA 26.9606020 30.40208 26.96060 0.09542063 0.09542063

FNN 187.8959192 205.6998 187.89592 0.6634038 0.6637038

MLP –15.69085695 76.48186 62.261210 –0.05478576 0.2197826

LSTM 5.898776 14.39023 11.91991 0.02086999 0.04212132
Egypt (N=102,334,403)

ARIMA 2392.285714 3239.04732 2392.28571 1.7844594 1.784459

FNN 1944.5586880 2641.98168 1944.55869 1.45017 1.45017

MLP 669.96030638 936.05245 669.96031 0.4988667 0.4988667

LSTM 437.0412 500.6487 438.0092 0.3304228 0.3311979

aTotal population in 2020.

bFive commonly used measures for evaluation of forecasting include mean error, root mean square error (RMSE), mean absolute error (MAE), mean percentage error, and mean absolute percentage error (MAPE), according to the records of the latest 14 days in 2020. The RMSE, MAE, and MAPE are always positive values.

cARIMA: autoregressive integrated moving average.

dFNN: feedforward neural network.

eMLP: multilayer perceptron.

fLSTM: long short-term memory.

gThe values for best performances in each country are italicized.