Skip to main content
. 2021 Jan 20;2(1):137–151. doi: 10.1093/ehjdh/ztab003

Table 2.

Comparison of models for prevalent CVD detection

Training and testing sample
Validation sample
Input Model (coefficients) Deviance Deviance ratio Number of predictors ROC AUC (95% CI) P-value Deviance Deviance ratio ROC AUC (95% CI) P-value
Clinical + VCG Adaptive lasso, penalized 0.616 0.108 17 0.737 (0.709–0.765) 0.267 0.669 0.101 0.740 (0.683–0.796) 0.928/0.014a
Lasso, penalized 0.618 0.106 22 0.737 (0.709–0.764) 0.669 0.102 0.740 (0.683–0.796)
Elastic net, penalized 0.618 0.106 23 0.737 (0.710–0.765) 0.670 0.103 0.741 (0.684–0.798)
Ridge, penalized 0.617 0.107 43 0.739 (0.712–0.767) 0.668 0.104 0.743 (0.686–0.800)
Logistic regression 0.608 0.120 42 0.748 (0.721–0.776) 0.670 0.100 0.737 (0.681–0.792)
Plugin lasso, postselection 0.640 0.073 2 0.707 (0.678–0.737) 0.0008 0.696 0.065 0.687 (0.625–0.749) 0.394
CNN 0.778 (0.746–0.809) 0.008 0.660 (0.597–0.722)
Random Forests 0.512 (0–493–0.530) <0.0001
Clinical + VCG + ECG Adaptive lasso, penalized 0.555 0.197 47 0.800 (0.775–0.825) <0.0001b 0.670 0.100 0.732 (0.671–0.792) 0.732b
Lasso, penalized 0.578 0.163 54 0.786 (0.760–0.812) <0.0001b 0.665 0.107 0.736 (0.676–0.795) 0.821b
Elastic net, penalized 0.576 0.167 79 0.792 (0.767–0.818) <0.0001b 0.664 0.108 0.742 (0.683–0.800) 0.959b
Plugin lasso, postselection 0.618 0.106 5 0.733 (0.705–0.761) 0.0002b 0.695 0.067 0.676 (0.613–0.738) 0.440b
CNN 0.664 (0.631–0.697) <0.0001b 0.549 (0.478–0.620) 0.020b
a

In comparison to the convolutional neural network (CNN) and plugin-based lasso models.

b

In comparison to corresponding VCG model.