Table 2.
Training and testing sample |
Validation sample |
|||||||||
---|---|---|---|---|---|---|---|---|---|---|
Input | Model (coefficients) | Deviance | Deviance ratio | Number of predictors | ROC AUC (95% CI) | P-value | Deviance | Deviance ratio | ROC AUC (95% CI) | P-value |
Clinical + VCG | Adaptive lasso, penalized | 0.616 | 0.108 | 17 | 0.737 (0.709–0.765) | 0.267 | 0.669 | 0.101 | 0.740 (0.683–0.796) | 0.928/0.014a |
Lasso, penalized | 0.618 | 0.106 | 22 | 0.737 (0.709–0.764) | 0.669 | 0.102 | 0.740 (0.683–0.796) | |||
Elastic net, penalized | 0.618 | 0.106 | 23 | 0.737 (0.710–0.765) | 0.670 | 0.103 | 0.741 (0.684–0.798) | |||
Ridge, penalized | 0.617 | 0.107 | 43 | 0.739 (0.712–0.767) | 0.668 | 0.104 | 0.743 (0.686–0.800) | |||
Logistic regression | 0.608 | 0.120 | 42 | 0.748 (0.721–0.776) | 0.670 | 0.100 | 0.737 (0.681–0.792) | |||
Plugin lasso, postselection | 0.640 | 0.073 | 2 | 0.707 (0.678–0.737) | 0.0008 | 0.696 | 0.065 | 0.687 (0.625–0.749) | 0.394 | |
CNN | — | — | — | 0.778 (0.746–0.809) | 0.008 | — | — | 0.660 (0.597–0.722) | ||
Random Forests | — | — | — | — | — | — | — | 0.512 (0–493–0.530) | <0.0001 | |
Clinical + VCG + ECG | Adaptive lasso, penalized | 0.555 | 0.197 | 47 | 0.800 (0.775–0.825) | <0.0001b | 0.670 | 0.100 | 0.732 (0.671–0.792) | 0.732b |
Lasso, penalized | 0.578 | 0.163 | 54 | 0.786 (0.760–0.812) | <0.0001b | 0.665 | 0.107 | 0.736 (0.676–0.795) | 0.821b | |
Elastic net, penalized | 0.576 | 0.167 | 79 | 0.792 (0.767–0.818) | <0.0001b | 0.664 | 0.108 | 0.742 (0.683–0.800) | 0.959b | |
Plugin lasso, postselection | 0.618 | 0.106 | 5 | 0.733 (0.705–0.761) | 0.0002b | 0.695 | 0.067 | 0.676 (0.613–0.738) | 0.440b | |
CNN | — | — | — | 0.664 (0.631–0.697) | <0.0001b | — | — | 0.549 (0.478–0.620) | 0.020b |
In comparison to the convolutional neural network (CNN) and plugin-based lasso models.
In comparison to corresponding VCG model.