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C O R O N A V I R U S

Air pollution impacts of COVID-19–related  
containment measures
Guillaume P. Chossière1, Haofeng Xu1, Yash Dixit1, Stewart Isaacs1, Sebastian D. Eastham1,2, 
Florian Allroggen1,2, Raymond L. Speth1,2, Steven R. H. Barrett1,2,3*

Responses to the COVID-19 outbreak resulted in one of the largest short-term decreases in anthropogenic emissions 
in modern history. To date, there has been no comprehensive assessment of the impact of lockdowns on air quality 
and human health. Using global satellite observations and ground measurements from 36 countries in Europe, 
North America, and East Asia, we find that lockdowns led to reductions in NO2 concentrations globally, resulting 
in ~32,000 avoided premature mortalities, including ~21,000 in China. However, we do not find corresponding 
reductions in PM2.5 and ozone globally. Using satellite measurements, we show that the disconnect between NO2 and 
ozone changes stems from local chemical regimes. The COVID-related lockdowns demonstrate the need for targeted 
air quality policies to reduce the global burden of air pollution, especially related to secondary pollutants.

INTRODUCTION
In an effort to reduce the spread of coronavirus disease 2019 
(COVID-19), governments around the world imposed restrictions 
on both social life and economic activity. By the end of March 2020, 
76% of the global population lived in countries with stay-at-home 
orders; workplace closures were in place across countries that collectively 
generated 99% of global gross domestic product (GDP) in 2018; and 
92% of the global population lived in countries with school closures 
(1, 2). The result was an unprecedented reduction in economic activity, 
as measured by industrial production [−27% year-on-year (YOY) 
in April 2020 in the Euro area (3); −15% YOY in April 2020 for the 
United States (4)] and by production of services [−12% YOY in 
March 2020 in China (5)]. Furthermore, mobility declined abruptly 
both for long-distance air travel [−94% YOY in global air transport 
revenue passenger kilometers in April 2020 (6)] and for surface trans-
portation [−74% in public transit in major cities (7) and 40 to 80% 
reductions in car usage (8)].

These changes in economic activity reduced energy use and an-
thropogenic emissions (9, 10). Le Quéré et al. (11) found that global 
daily anthropogenic CO2 emissions declined by 17% in early April 2020 
compared to average year-2019 levels, largely due to reductions in sur-
face transportation emissions (−36% in daily CO2 emissions in early 
2020 compared to year-2019 mean levels). In addition, satellite data 
suggested reductions in emissions of air pollutants such as nitrogen 
oxides (NOx) [e.g., up to 40% reduction in observed nitrogen dioxide 
(NO2) concentrations in China (10)].

Reductions in emissions of primary pollutants such as NO2 are 
expected to also yield reductions in ambient concentrations of sec-
ondary pollutants such as fine particulate matter (PM2.5) and ozone. 
Investigations into this effect have shown inconsistent results. In 
Europe, the European Space Agency (ESA) reported that, of these 
pollutants, only NO2 concentrations substantially decreased (12). 
Wang et al. (13) used air quality modeling in China and found de-
creases in PM2.5 in January and February 2020. Using monitor data 

for January and March 2020, Shi and Brasseur (14) found decreases 
in NO2 and PM2.5 in China. Elsewhere, Chauhan and Singh (15) re-
ported decreases in PM2.5 in nine cities around the world between 
January and March 2020, while Berman and Ebisu (16) found 
statistically significant decreases in NO2 and PM2.5 in the United 
States between January and April. However, these studies were 
focused on the regional effects of lockdown measures on pollu-
tion concentrations. They were not able to compare the varying 
impacts of lockdown measures on air quality across countries on a 
consistent basis.

The epidemiological literature has established that changes in 
concentrations of ozone and PM2.5 affect mortality rates (17–22). In 
addition, several studies have shown that increased exposure to NO2 
can itself result in negative health outcomes, independent of local 
concentrations of other pollutants (23–25). The relationships between 
exposure to pollution and mortality identified by these studies are 
routinely used to estimate the negative health impacts of human activity 
(26–29). For example, long-term exposure to ozone and PM2.5 resulting 
from human activity is estimated to cause ~3.8 million premature mor-
talities each year (30). For COVID-19–related lockdowns, Giani et al. (31) 
estimated that ~24,000 premature deaths were avoided in China 
because of reductions in PM2.5 concentrations in February and 
March and ~2200 in Europe between February and May. In the me-
dium term, Liu et al. (32) suggested that between 99,000 and 147,000 
premature mortalities in 76 countries could be avoided due to the 
lockdown measures between January and July. Chen et al. (33) esti-
mated that the lockdown measures in China resulted in ~8900 
avoided mortalities from NO2 reductions and  ~3200 from PM2.5 
reductions from 23 January to 14 March. However, most existing 
studies neglected confounding factors such as interannual trends 
and seasonal variation. In countries that have seen rapid declines in 
emissions over the past years, such as China (34), ignoring these 
factors may lead to an overestimate of the air quality benefits of 
lockdown measures. In particular, it is unclear whether variations 
between the pollution and health outcomes in each country are the 
result of regional atmospheric conditions, lockdown stringency, or 
the method used to estimate what a “no-COVID” 2020 would have 
looked like. In addition, existing studies largely focus on local changes 
and, while valuable, do not allow a global comparison of changes in 
emissions and impacts across countries.
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This study produces the first consistent, global estimate of the 
short-term air quality and human health impacts of the lockdown 
measures implemented in response to the COVID-19 pandemic. 
We develop an approach using air quality monitoring data to eval-
uate the short-term impact of COVID-related lockdowns on popu-
lation exposure to air pollution and suggest possible explanations 
for the observed trends. Our approach consists of three steps: We 
first test the impact of the stringency of lockdown restrictions on 
regional air quality; we then model a counterfactual case in the ab-
sence of lockdowns and calculate resulting changes in air pollutant 
levels; and last, we quantify the change in air pollution–related pre-
mature mortality in each region.

Impacts of lockdown stringency on regional air quality
In the first step, we test statistically whether lockdown restrictions 
correlate with a change in regional levels of air pollutants (NO2, 
PM2.5, and ozone). To capture geographical differences within large 
countries, the regions considered in this study are defined by the 
first-level administrative boundaries (i.e., states, prefectures, and 
provinces) of the United States, China, South Korea, Japan, France, 
Italy, Spain, Germany, and the United Kingdom. Other regions are 
included at the country level (see Materials and Methods). We col-
lect hourly air quality measurement data from ground stations in 
36 countries from 1 January 2016 to 6 July 2020 (35–39) and tropo-
spheric NO2 column measurements from the ESA SENTINEL-5 
satellite (40) from 1 May 2018 to 17 June 2020. The satellite-based 
dataset allows us to include countries where ground monitor data 
are not available and provides a second set of results in regions where 
ground monitor data are available. Surface-level NO2 concentrations 
are estimated from column measurements using two different methods 
for robustness (see Materials and Methods). This dataset of air quality 
measurements is combined with population density data provided 
by the Center for International Earth Science Information Network 
(41) to quantify population-weighted average exposure in each re-
gion before and during the lockdown restrictions.

These air quality measurements are combined with the indicator 
of the stringency of lockdown measures developed by Hale et al. (1), 
which measures the stringency of the lockdown restrictions in each 
country on a scale from 0 to 100. The stringency indicator is set to 0 
before the implementation of lockdown restrictions. For the United 
States, where the lockdown restrictions were implemented at the 
state level, we develop a similar, state-level stringency index (see 
Materials and Methods). We test the hypothesis that lockdown pol-
icies (as measured by the stringency index) led to reduced pollution 
exposure in each region using an auto-regressive, integrated, mov-
ing average (ARIMA) time-series model with the stringency index 
as an exogenous variable. The model is fitted to the full (pre- and 
post-restrictions) dataset to calculate, for each region, the coeffi-
cient associated with the stringency index along with its associated 
P value and 95% confidence interval (CI).

Changes in regional air quality associated during 
the lockdown period
In the second step, we train and validate a second ARIMA time-series 
model on pre-lockdown measurements and use it to estimate regional 
air pollution in a hypothetical case with no lockdown restrictions. 
This second model is applied to calculate counterfactual concentra-
tions of NO2, PM2.5, and ozone in each region, i.e., the concentra-
tions of pollutants that would have been expected had there been no 

lockdown restrictions. This model captures expected seasonal and 
weekly patterns, thereby producing estimates of counterfactual lev-
els of air pollution (see Materials and Methods and the Supplemen-
tary Materials for validation). To estimate differences in pollutant 
levels between the areas covered by ground monitors and the rest of 
the region, we interpolate measured values at monitor locations to 
cover the entire region. Similar to previous studies (42–44), the spa-
tial interpolation is performed using ordinary kriging.

The difference between the results from this second ARIMA model 
(counterfactual) and air quality measurements during the lockdown 
restrictions allows us to estimate the impact of lockdown restrictions 
on regional air quality. Monte Carlo simulation is used to quantify 
the uncertainty associated with the prediction of the counterfactual 
in each region. On the basis of the comparison of the changes in 
regional air quality among the different pollutants (NO2, PM2.5, and 
ozone), we offer initial insights into the atmospheric mechanisms at 
play and their relevance to air quality policy.

Change in air pollution–related premature mortality
In the third step, concentration-response functions (CRFs) adapted 
from the epidemiological literature (22, 45, 46) are used to relate the 
difference between actual and counterfactual population exposure 
to the resulting health impacts from short-term exposure to NO2, 
PM2.5, and ozone between the first day of application of lockdown 
measures in each region and the last day of study (6 July 2020). 
Uncertainty in the parameters of the CRFs is included in the Monte 
Carlo simulation.

RESULTS AND DISCUSSION
This section is organized as follows: We start by presenting the 
results of our first and second steps regarding the impacts of lock-
down stringency on air pollution in each region. We then present 
our premature mortalities estimates (third step) in each region.

Regional air quality during the lockdown period
This section first presents the impacts of lockdown stringency on air 
pollution in each region (first step) and the changes in air pollution 
compared to the counterfactual (second step) for each pollutant 
(NO2, PM2.5, and ozone) individually, followed by a multispecies  
analysis.

Decreases in NO2 exposure obtained from ground monitor data 
coincide with the tightening of the COVID-19 lockdowns as mea-
sured by the stringency index in 213 of the 252 regions considered, 
accounting for 93% of the population in the countries considered 
(see Fig. 1 and table S1 for the full results by region). These impacts 
are statistically significant at the 5% level in 120 of these regions, 
accounting for 70% of the population. This means that, in these re-
gions, the null hypothesis, that there were no changes in levels of 
ambient air pollution due to the increase in the stringency index, 
can be rejected with 95% confidence.

In light of these results, we calculate the average difference be-
tween the observed NO2 exposure and the modeled counterfactual 
during the lockdown period in each region (second step of our anal-
ysis, using the second ARIMA model). The reductions are largest in 
China, where the population-weighted changes in NO2 concentra-
tion average −16 g m−3 (95% CI, −26 to −7.2 g m−3), or a −53% 
(95% CI, −83 to −23%) change compared to the counterfactual case. 
The average NO2 concentrations between the start of the local lockdown 
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and 6 July 2020 change by −25% (95% CI, −46 to −5.0%) in South 
Korea, −24% (−47 to −0.96%) in Europe, −8.6% (95% CI, −25 to 
−7.0%) in Japan, and −4.3% (95% CI, −14 to +5%) in the United 
States. These results are confirmed with satellite-based data: We 
find that 222 of the 252 regions analyzed with the ground monitor 
method show decreases in NO2 levels in response to tighter lock-
down measures (including 179 that have decreases with all three 
methods). In addition, the same result is found for 92 of 222 countries 
not covered by ground monitor data. The largest changes in NO2 levels 
in countries not covered by monitor data are in Peru (−59%; 95% 
CI, −90 to −14%), Lebanon (−35%; 95% CI, −44 to −25%), and Singapore 
(−23%; 95% CI, −74 to 28%) (fig. S8 and table S1).

In 163 of 252 regions, covering 69% of the population, ground 
monitor data suggest that PM2.5 concentrations decreased with higher 
lockdown stringency. The effect is statistically significant at the 5% 
level in 77 of these regions based on our statistical test. In China, the 
resulting changes in PM2.5 concentrations amount to −36% (95% 
CI, −69 to −2.4%) compared to the values expected in the counter-
factual. In Japan, the relative change in PM2.5 levels during the period 
of study is −17% (95% CI, −24 to −10%), while South Korea experi-
enced a −16% (95% CI, −42 to −9.7%) change in PM2.5. In contrast, 
in Europe and the United States, we find that ambient levels of 
PM2.5 did not change with tighter lockdown restrictions: We find 
a +8.5% (95% CI, −85 to +88%) change in PM2.5 in Europe during 

the period of study, and a +1.4% (95% CI, −21 to +24%) change in 
the United States. Only 7 of 106 regions in Europe (2% of the 
European population) and four states in the United States (11% of the 
U.S. population) have statistically significant changes in PM2.5 con-
centration at the 5% level (fig. S3 and table S1).

For ozone, 146 of the 252 regions globally—accounting for 46% 
of the population analyzed—show decreases in concentration in re-
sponse to the lockdown measures. In 45 of these regions, decreases 
in population-weighted average ozone concentrations are statisti-
cally significant at the 5% level. Changes are largest in South Korea 
(−28%; 95% CI, −43 to −13% compared to the counterfactual) and 
Japan (−5.4%; 95% CI, −12 to +1.0% change). Results in the United 
States, China, and Europe show no statistically significant change in 
ozone: the United States has a −0.82% (95% CI, −5.6 to +4.0%) change 
in ozone concentrations, and China and Europe have changes of 
+0.45% (95% CI, −25 to +24%) and −3.1% (95% CI, −17 to +9.4%), 
respectively.

We analyze the correlation between changes in secondary air 
pollutants (ozone and PM2.5) and NO2 using ground monitoring 
data to provide further insight into where trends align between spe-
cies and where these trends break. We find that 140 of 252 regions 
(and 65% of the population) have decreases in PM2.5 and NO2 after 
the lockdown measures are implemented (see fig. S12) and 123 in 
both NO2 and ozone (43% of the population). Eighty-three of 

Fig. 1. Changes in population-weighted, regionally averaged NO2 concentration per unit lockdown policy stringency index based on ground monitor data. Coun-
tries in dark gray are not included in the analysis due to the unavailability of monitor data. Hatched regions lack data on more than 10% of the days from 1 January 2016 to 6 
July 2020 and are excluded from the results. In dotted regions, changes in population exposure to NO2 with stringency are not statistically significant at the 5% level.
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252 regions (and 32% of the population), 48 of which are in Japan 
and South Korea, have decreases in all three pollutants attributable 
to lockdown measures. Among the 38 regions where the changes in 
both NO2 and PM2.5 are statistically significant at the 5% level, the 
ratio of the change in PM2.5 to the change in NO2 varies by a factor 
of 7. However, 88 regions have decreases in NO2 and increases in 
ozone. This potentially suggests a counterintuitive atmospheric re-
sponse to changes in NO2 in some regions.

We explore possible pathways explaining the local increases in 
ozone by collecting additional, satellite-based data to characterize 
the chemical regime of each region based on pre-shutdown condi-
tions using the ratio between satellite-derived column measurements 
of formaldehyde (HCHO) and NO2 (see Materials and Methods; 
Fig. 2A). Globally, we find that 94% of the regions under consider-
ation are in a “transition” regime with HCHO-to-NO2 ratios be-
tween 1 and 4 (47–50). Past research has found that, in the transition 
regime, decreases in NO2 can result in either an increase or a de-
crease in ozone. We find that the probability of having a reduction 
in ozone in a given region as a result of an NO2 decrease varies 

approximately linearly with HCHO/NO2 (Fig.  2B), suggesting a 
well-characterized gradual transition. These results are consistent 
with a negligible net ozone benefit of the NO2 reductions globally 
and provide, for each region, a first estimate of the changes in vola-
tile organic compounds (VOCs) that would be needed for NO2 re-
ductions to translate into decreases in ozone (figs. S5 and S6). This 
is the most general characterization to date of the relationship of 
satellite-observed HCHO and NO2 columns with surface ozone. 
Details about each region and region-specific ozone isopleths are 
presented in figs. S5 and S6.

Change in air pollution–related premature mortality
Aggregating across pollutants based on monitor data, we find that 
changes in pollutant concentrations associated with COVID lock-
downs up to 6 July 2020 resulted in −95,000 (95% CI, −160,000 to 
−29,000) premature mortalities from NO2, PM2.5, and ozone expo-
sure during the lockdown period. Statistically significant changes in 
air pollution at the 5% level contribute to −67,000 (95% CI, −115,000 
to +19,000) of the total premature mortalities. For comparison, the 
global death toll of COVID-19 as of 6 July 2020 was 544,000 (51). 
Changes in NO2 exposure account for −31,000 (95% CI, 65,000 
to −2300) premature mortalities, while changes in PM2.5 expo-
sure account for −64,000 premature mortalities (95% CI, −95,000 
to −32,000) and changes in ozone exposure for 300 additional pre-
mature mortalities globally (95% CI, −190 to 800). China accounts 
for 79% of the estimated decrease in total premature mortalities, 
including 65% of the reductions in NO2 mortalities, and 85% of 
the reductions in PM2.5 mortalities. For Europe, we estimate a total 
change of −6600 premature mortalities (95% CI, −13,000 to +380) 
from reduced exposure to NO2 and −6100 premature mortalities 
(95% CI, −9100 to +3100) from changes in PM2.5. If different CRFs 
are used (see Materials and Methods), we find average mortal-
ity estimates of −43,000 (95% CI, −62,000 to −25,000) for PM2.5 
and −51,000 (95% CI, −62,000 to −40,000) for NO2 (see Mate-
rials and Methods). When using cause-specific CRFs, we find that 
changes in ambient levels of NO2 resulted in −2800 (95% CI, 
−11,000 to +6000) premature mortalities from respiratory diseases 
and −10,000 (95% CI, −41,000 to +21,000) from cardiovascular dis-
eases. Ambient changes in PM2.5 are found to result in −10,000 
(95% CI, −14,000 to −7000) premature mortalities from respiratory 
diseases and −38,000 (95% CI, −50,000 to −25,000) from cardiovas-
cular diseases. Overall, using cause-specific CRFs results in a total 
of −60,000 (95% CI, −116,000 to −4200) premature mortalities, 
compared to −95,000 with the all-cause CRFs, with 75% of avoided 
premature mortalities being from cardiovascular diseases and 25% 
from respiratory diseases.

Reductions in air pollution–related premature mortalities per 
capita represent less than 2.8% (95% CI, 0.56 to 5.1%) of the deaths 
per capita from COVID-19 in the United States (51) and 6.4% (95% 
CI, 1.0 to 12%) in Europe, but are between 2.3 and 16 times greater 
than the reported number of COVID-19 deaths per capita in Asia 
(Fig. 3).

In East Asia, where lockdown measures yielded a reduction in 
both primary and secondary air pollution, reductions in premature 
mortalities due to COVID-19–related lockdown measures correlate 
with the average stringency over the period since lockdown mea-
sures were implemented in that region. The Pearson correlation 
coefficient (r2) between the average stringency over the period of 
study and the avoided air quality–related premature mortalities 

Fig. 2. Changes in ozone as a function of the HCHO-to-NO2 ratio. (A) Changes 
in ozone by region as a function of the HCHO-to-NO2 ratio. Circles, squares, and 
triangles represent European regions, Chinese provinces, and U.S. states, respec-
tively, where NO2 decreases are found to be statistically significant. (B) Cumulative 
share of the regions in the “extended transition regime” (1 < HCHO/NO2 < 4) with a 
decrease in ozone as a function of the HCHO-to-NO2 ratio based on pre-lockdown 
conditions. We find a gradual transition regime between a HCHO-to-NO2 ratio of 1 
and 4. The blue line can be interpreted as the probability that a region at a given 
HCHO-to-NO2 ratio will experience a decrease in ozone given a decrease in NO2. 
Not all regions with reduced NO2 due to the lockdown have reduced ozone, as 
HCHO levels also vary (figs. S5 and S6).
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per capita in China, South Korea, and Japan is 0.993. In contrast, when 
considering European countries and the United States, where changes 
in air pollution have mostly affected primary air pollution, the r2 
coefficient is only 0.009. While the results may reflect differences in 
the implementation of the lockdown measures between regions, 
they also stem from the fact that NO2 decreases have not translated 
into reductions in PM2.5 and ozone in Europe and the United States. 
In addition, the lockdown measures have resulted in different spa-
tial patterns of emission reductions and air pollution in each region 
of the globe, thereby affecting population exposure in different 
ways. This includes effects due to different population distributions, 
background atmospheric composition, population comorbidities, and 
transboundary pollution exchange resulting in coupling between 
countries (26, 52). In Europe, the European Environment Agency 
also suggests that decreases in PM2.5 levels are expected but may be 
delayed due to the application of agricultural fertilizers during the 
period of study (12).

Globally, the daily average short-term co-benefit of lockdown mea-
sures on air quality–related premature mortality is less than 10% of 
daily air quality–related mortality in the regions considered (Europe, 
the United States, China, South Korea, and Japan) (30), although 
our estimate does not account for changes in long-term health im-
pacts. All three methods used in this study suggest a limited impact 
of COVID-19–related lockdown measures on global air quality, al-
though changes are more pronounced in some regions in East Asia. 
In other regions, decreases in emissions have led to decreases in NO2, 
but this has not translated into significant changes in secondary air 
pollution, which is generally associated with the largest human health 
impacts (30). In regions outside of South Korea, we find that the 
prevailing VOC-to-NOx ratios are consistent with the absence of strong 
ozone responses to decreases in NO2 emissions.

Similar to previous examples where broad reductions of activity 
or emissions in certain sectors have not led to substantial changes in 

population exposure to air pollution (53, 54), the COVID-19 lock-
downs highlight the need for targeted air quality policies to maxi-
mize public health benefits at a reasonable economic cost. In 
particular, accounting for the prevailing chemical regime is key to 
reducing ozone levels, and our results provide a worst-case bound 
and the probability of an ozone benefit from regional NO2 reduc-
tions, which are available globally. Recent examples of successful air 
quality policies include the 2013 Air Pollution Action Plan in China 
(34, 55) or the Regional Greenhouse Gas Initiative in the United States 
(56). In addition, the observations collected during this shutdown 
offer an unprecedented opportunity to further improve our under-
standing of atmospheric chemistry, and from there to better pre-
dict the effect of future, structured measures to improve air quality 
globally.

MATERIALS AND METHODS
Impacts of lockdown stringency on regional air quality
Ground monitor measurements
We retrieve hourly ground measurements of PM2.5, ozone, and NO2 
from 1 January 2016 to 7 July 2020 from the national environmental 
monitoring agencies of the United States, the People’s Republic of 
China, Japan, the Republic of Korea, and the European Union (35–39). 
Retrieved values are filtered to exclude negative values as well as 
invalid measurements where applicable and processed to produce 
daily average PM2.5 and NO2 concentrations and daily maximum 
8-hour ozone concentration (MDA8) at each monitor location. The 
regions covered are defined by the first-level administrative bound-
aries (i.e., states, prefectures, and constituent countries) of the United 
States, China, South Korea, Japan, France, Italy, Spain, Germany, 
and the United Kingdom. In addition, we include other member 
countries of the European Union, Norway, and Switzerland at the 
national level.

From daily pollutant concentrations at each monitor location, 
we compute the daily population-weighted average concentration 
in each region and for each pollutant. The population count is taken 
from the Center for International Earth Science Information Network 
(41) at a resolution of 1/24° (0.04°, about 5 km). In cases where several 
monitors belong to the same grid cell, we average their measure-
ments. To test the statistical significance of changes in concentration 
due to lockdown measures for each pollutant and region, we perform 
the spatial integration of monitor data only at monitor locations. This 
avoids the introduction of interpolated values in the signal. The value 
of the average concentration, Cr, d, poll, of a pollutant, poll, in region, 
r, for day, d, is computed with the following formula

   C  r,d,poll   =   
 ∑ i,j∈ℐ×J      p  i,j    c  i,j,d,poll    ───────────  

 ∑ i,j∈ℐ×J    p  i,j   
    (1)

where I×J is the set of indices within region r where the popula-
tion grid contains a monitor, pi, j is the population at location i,j, 
and ci, j, d, poll is the daily concentration of the pollutant derived from 
hourly measurements at monitor location i,j.
Satellite measurements
We use high-resolution satellite data from the Tropospheric Moni-
toring Instrument (TROPOMI) onboard the ESA’s Sentinel-5 Pre-
cursor (S5P) satellite (launched October 2017, data available from 
April 2018) to obtain global measurements of tropospheric NO2 ver-
tical column densities (VCDs). The satellite has a Sun-synchronous 

Fig. 3. Mortality rate per million people due to COVID-19 (gray) and air quality 
improvements due to COVID-19–related lockdown measures (blue). All pollutants 
(PM2.5, NO2, and ozone) are included.
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orbit with a local overpass time of around 13:30 with daily global 
full-surface coverage (57). The TROPOMI nadir-viewing short-
wave spectrometer has a spatial resolution of 3.5 km × 7 km (3.5 km × 
5.5 km since August 2019) in the ultraviolet–near-infrared spectrum 
(405 to 465 nm), which is used for NO2 measurements. Its resolu-
tion is higher than that of similar previous instruments such as OMI 
and GOME-2. TROPOMI’s ability to resolve individual emissions 
sources and plumes has been demonstrated in regional validation 
studies of the Canadian Oil Sands (58), Helsinki (59), and South 
Korea (60), which verified TROPOMI’s performance against ground- 
based spectroscopy, ground-based monitors, and integrated air 
quality models.

We use the level 2 product (“S5P_L2__NO2”) of tropospheric 
NO2 VCD. TROPOMI’s NO2 retrieval method, developed by the 
Royal Netherlands Meteorological Institute, uses a differential opti-
cal absorption spectroscopy method to determine the NO2 slant 
column density, which is then converted to a tropospheric VCD 
using a data-assimilated chemistry transport model (TM5-MP). A 
quality band (“qa_value”) is provided for each pixel, ranging from 0 
(poor) to 1 (best); we use a pixel selection criterion of qa_value > 
0.75, which removes scenes covered by snow/ice, errors, and prob-
lematic retrievals. Satellite data are regridded to a 0.25° × 0.25° grid 
by averaging measurements within a grid cell. The average daily 
coverage between 30 April 2018 and 17 June 2020 is 67.9% by pop-
ulation (daily min. 8.5%, max. 80.8%) and 56.0% by area (daily min. 
23.8%, max. 61.4%).

To model the relationship between tropospheric VCD, Ctrop, and 
ground-level concentration, Cg, we use two independent linear 
models for robustness: The first one makes use of the ground 
monitor measurements presented earlier, and the second one makes 
use of modeled data.

In the first model, the relationship between these two quantities 
is as follows

   C  x  i  , y  j  , day  k    g   =  K  x  i  , y  j    0   +  K  x  i  , y  j    1    C  x  i  , y  j  , day  k    trop    (2)

where K0 and K1 are empirically derived constants that we find for 
each grid cell. We derive K0 and K1 for grid cells where ground 
monitor measurements are available (mean 2587 grid cells, daily 
min. 922, daily max. 2882) by performing a least squares regression 
between historical ground monitor measurements and satellite 
measurements from the years 2018 and 2019 (2020 data are not in-
cluded). We constrain the slope K1 to be nonnegative; where a neg-
ative value of K1 results from the regression, it is set to zero and K0 
is the mean of the historical ground monitor measurements. Maps 
of K0 and K1 as well as the coefficient of determination of the regres-
sion can be found in fig. S1. To obtain a relationship between tropo-
spheric VCD and ground-level concentration for locations where 
monitor data are not available, inverse distance weighting is used to 
interpolate values of K0 and K1 between monitor locations.

In addition to the previous approach, we also use the GEOS 
Composition Forecast (GEOS-CF) system as an alternate method 
to estimate ground NO2 from satellite data of tropospheric NO2 
VCD. The GEOS-CF system combines the GEOS weather analysis 
and forecasting system with the state-of-the-science GEOS-Chem 
chemistry module (61–63) to provide detailed chemical forecast of 
a wide range of air pollutants including ozone, carbon monoxide, 
nitrogen oxides, and fine particulate matter (PM2.5). Specifically, we 
use data of NO2 concentrations from 2019 at a spatial resolution of 

0.25° × 0.25°. The chemical forecast provides both the VCD and the 
ground concentration at the satellite local overpass time of 13:30, 
allowing us to estimate a relationship between the two. This method 
does not rely on ground monitor measurements and provides an 
independent assessment of population exposure. It also has the ad-
vantage of providing global coverage without the need for interpo-
lation and in areas where ground monitor data are not available.

We use a linear model (similar to that of the satellite-monitor 
method) to estimate the ground concentration, Cg, from tropo-
spheric VCD

   C  x  i  , y  j  , day  k    g   =  K  x  i  , y  j  , month  l    2   +  K  x  i  , y  j  , month  l    3    C  x  i  , y  j  , day  k    trop    (3)

where K2 and K3 are empirically derived constants that we find for 
each grid cell and for each month of the year and Ctrop is the satellite 
NO2 VCD measurement. K2 and K3 are determined by least squares 
regression between historical data of ground concentration from 
the chemical forecast and tropospheric VCD from the chemical 
forecast for each month. The monthly regression allows this model 
to capture intra-annual variations in the relationship between tro-
pospheric VCD and ground concentration. Maps of K2 and K3 as 
well as the coefficient of determination of the regression for the 
month of April can be found in fig. S2.
Stringency index
To measure the effect of lockdown measures on changes in eco-
nomic activity and pollutant emissions in each country, we use the 
indicator of the stringency of lockdown measures developed by 
Hale et al. (1). This index ranging from 0 to 100 tracks governments’ 
responses to the COVID-19 crisis in 150 countries over time, at a 
daily resolution, and takes into account several measures that affect 
economic activity. For each date, Hale et al. (1) aggregate country- 
specific data regarding containment and closure measures (namely, 
school closings, workplace closings, cancellation of public events, 
restrictions on gathering size, closing of public transport, stay-at- 
home requirements, restrictions on internal movement, and restric-
tions on international travel). These dimensions are each coded 
onto a numeric scale and then normalized and averaged to produce 
a single value by country and by day. We use this index to represent 
numerically the different lockdown measures that were implement-
ed in China, South Korea, Japan, and every country in the European 
Union along with Switzerland, Norway, and Iceland.

In the United States, because lockdown measures were decided 
at the state level (64), we develop a similar lockdown index at the 
state level by tracking school closures, declaration of a state of emer-
gency, closing of nonessential businesses, stay-at-home orders, re-
strictions on internal movement at the state level, and restriction on 
international travel at the federal level over time. We then apply the 
same method as Hale et al. (1), standardize, and average the index 
for each day and each state.
Significance testing
To relate any changes in observed PM2.5, ozone, and NO2 concen-
trations to COVID-19–related lockdown measures, we perform a 
regression of daily, population-weighted, average concentration in 
each region obtained with the methods described above against the 
stringency index described above for each region under study. This 
regression features ARIMA errors and is implemented using the 
Python package pmdarima (65). The degree of differencing d and the 
order (p,q) of the ARIMA error are chosen to minimize the Akaike 
information criterion (AIC) (66). We model the time dependence 
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of regional daily population-weighted concentration yt with Fourier 
terms, following Hyndman (67). This captures the seasonality of re-
gional exposure to air pollution. Overall, the regression for a given 
region can be expressed as

    y  t   = a +   ∑ 
k=1

  
K

    (      k   sin (     2kt ─ m   )   +    k   cos (     2kt ─ m   )   )   +   S  t   +  N  t     (4)

where St is the value of the shutdown index in the region at time t 
and Nt the ARIMA(p,d,q) term verifies the relationship

  (1 −    1   B − … −    p    B   p  )  N  t   = (1 +    1   B + … +    q    B   q  )    t    (5)

with B the backshift operator defined as follows

  ∀ n ∈ ℕ,  B   n   N  t   =  N  t−n    (6)

and t a white noise series. The seasonality factor m is set to 365 and 
K is set to 100 to capture not only annual variations but also higher- 
frequency periodic variations. Although the ARIMA model does 
not lend itself to a simple decomposition between seasonal and 
trend component, our formulation represents seasonality with the 
Fourier terms, while the auto-regressive part of the model (the 
combination of N terms) captures the influence of previous days’ 
air pollution level on the current level and the moving average part 
(the  terms) accounts for past prediction errors.

For any region and pollutant where the P value of the  co-
efficient is below 0.05, we conclude that the correlation between the 
imposed lockdown measures and the change in population expo-
sure is statistically significant at the 5% level. The coefficient  is 
reported in our results as the change in exposure to air pollution per 
unit lockdown stringency index.
Calculating changes in air pollution relative to a  
counterfactual scenario
Counterfactual pollutant levels.  To predict regional population- 
weighted, average concentrations in the counterfactual case (i.e., in 
the absence of lockdown measures) between the first day the lock-
down measures were in place and the last day of study (6 July 2020), 
we generate a time series of daily pollutants’ concentrations be-
tween 1 January 2016 until the last day before lockdown measures 
were implemented by integrating spatially interpolated monitor- 
derived values over each region. The spatial interpolation makes use 
of ordinary kriging [following previous studies (42–44)]. On the 
basis of results from a grid search cross-validation comparing 
ordinary and universal kriging with linear, spherical, Gaussian, and 
power variogram models, we use ordinary kriging with a spherical 
variogram model in all regions. The parameters are selected for each 
country using 10-fold cross-validation leaving 10% of the monitor- 
derived values out of the training set. Interpolated daily concentra-
tions are then weighted by population and averaged regionally to 
produce the time series. Therefore, the value of the average concen-
tration in any given region on any given day is calculated from 
Eq. 1, with I ×J the set of all indices within the region. To evaluate 
the sensitivity of the mortality results to the spatial interpolation, we 
replicate the generation of the regional time series using the 2.5th 
and 97.5th percentiles of the spatially interpolated values and find 
that our overall mortality results vary by 3%.

Last, the time series of the average concentration in each region 
is prepared for regression by removing any negative values, 0 values, 

and values above 500 g m−3 and linearly interpolating missing val-
ues along the time dimension. Leading and trailing missing values 
are excluded altogether. Furthermore, any time series with more 
than 10% missing values before interpolation is excluded from fur-
ther analysis.

An ARIMA model is then trained on the time series described 
above and truncated on the last day before lockdown measures were 
implemented. Similar to the first part of this study, we forecast daily 
exposure using historical data and previous forecasted values to gen-
erate predictions. Overall, the regional average concentration of a 
pollutant is given by

    y  t   = a +   ∑ 
k=1

  
K

    (      k   sin (     2kt ─ m   )   +    k   cos (     2kt ─ m   )   )   +  N  t     (7)

where

   N  t   =    1    N  t−1   +    2    N  t−2   + … +    p    N  t−p   +    t   +    1      t−1   + … +    q      t−q     (8)

Similar to the significance testing step, we set m to 365 and K 
to 100 to account for medium- and long-term temporal effects. The 
ARIMA term Nt captures the short-term variations, and the order 
of the auto-regressive and moving average parts, p and q, respec-
tively, are chosen to minimize the AIC. Last, t is a white noise se-
ries whose squares the fitting step minimizes.

To validate the model, we train the predictive model for the 
counterfactual in each region with data from 1 January 2016 through 
the day of 2019 corresponding to the last day before lockdown mea-
sures were in place in the region in 2020 and validated over the cor-
responding period of 2019 (first day of lockdown through 6 July for 
the ground monitor method and 17 June for the satellite methods). 
We validate the predicted monthly average concentration of each 
pollutant in the region against the measured values for 2019 using 
the coefficient r2 and the average relative root mean square error. 
Validation results by region are included in table S1.

Calculating changes in pollutant levels relative to the counterfactual 
scenario. For each region, we predict the mean value of the daily 
population-weighted average concentration, as well as the 95% CI. 
The daily difference between actual and counterfactual concentra-
tions (and the associated 95% CIs) is used to calculate the changes 
in pollutant levels relative to the counterfactual scenario. This dif-
ference is also used as input to the concentration response functions 
used to derive the air quality–related health impacts of the lock-
down measures. The uncertainty associated with the prediction of 
the counterfactual is included in a Monte Carlo simulation that also 
includes uncertainty in the spatial interpolation and uncertainty in 
the premature mortality calculation (see below).

Estimated changes in air pollutant concentrations in each region 
lead to changes in air quality–related premature mortalities. On the 
basis of the comparison between actual regional average concentra-
tion of PM2.5, NO2, and ozone derived using the methods described 
in the sections below, we calculate daily changes in population ex-
posure due to lockdown measures in each region. Population density 
and count are taken from the Center for International Earth Science 
Information Network (41) at a resolution of 0.04° (approximate-
ly 5 km).

Change in air pollution–related premature mortality. We calcu-
late the response of daily all-cause mortality to changes in population 
exposure to PM2.5, NO2, and ozone by adapting CRFs from the 
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epidemiological literature. For each of these species, we adopt a log- 
linear CRF relating increases in the risk of all-cause mortality to 
changes in population exposure. For NO2, we use the results of He 
et al. (45) who find a 0.57% (95% CI, −0.04 to 1.18%) increase in 
all-cause mortality per 10 g m−3 increase in the average NO2 con-
centration over the past 7 days. We also quantify premature mortality 
from cardiovascular and respiratory mortality using the estimates 
from He et al. (45) [0.25% (95% CI, −0.66 to 1.18%) and 0.45% 
(−0.96 to 1.89%) increases in cardiovascular and respiratory mor-
tality, respectively, per 10 g m−3 increase in the average NO2 con-
centration over the past 7 days].

For PM2.5, Atkinson et  al. (46) report a 1.04% increase in all-
cause mortality (95% CI, 0.52 to 1.56%) for every 10 g m−3 increase 
in same-day PM2.5. In a similar fashion to the NO2 case, we quantify 
cardiovascular and respiratory premature mortality as well [0.84% 
(95% CI, 0.41 to 1.28%) and 1.51% (95% CI, 1.01 to 2.01%) increases in 
cardiovascular and respiratory mortality, respectively, per 10 g m−3 
increase in same-day PM2.5]. We use the same CRFs for PM2.5 and NO2 
in all regions under study.

For ozone, we use country-specific results from Vicedo-Cabrera 
et al. (22) where applicable (for European countries that are not 
included in their results, we apply the European average; for other 
countries with no information, we apply the global average). Changes 
in relative risk for all-cause mortality range from 0.06% (95% CI, −0.08 
to 0.19%) in Spain to 0.35% (95% CI, 0.24 to 0.46%) in the United 
Kingdom per 10 g m−3 increase in same-day maximum 8-hour ozone.

We also perform a CRF sensitivity analysis for each species un-
der study using parameters derived from Chen et al. (23) for NO2, 
who find a 0.9% (95% CI, 0.7 to 1.1%) increase in all-cause mor-
tality per 10 g m−3 in 2-day NO2, from Bell et al. (68) for O3, who 
report a 0.52% (95% CI, 0.27 to 0.77%) increase in daily all-cause mor-
tality per 10 ppb (parts per billion) increase in the previous week’s 
ozone, and from Brook et al. (69), who find a 0.7% (95% CI, 0.4 
to 1.0%) increase in all-cause mortality per 10 g m−3 increase in 
same-day PM2.5.

Average annual incidence rates of all-cause mortality as well as 
low and high estimates (interpreted as the 95% CI and fitted with a nor-
mal distribution) are taken from the World Health Organization Global 
Burden of Disease 2017 study (70) and divided by 365 to produce daily 
incidence of all-cause mortality. We take incidence rates at the finest 
resolution available for each country. As a result, incidence rates are re-
gion specific in the United States and Japan, and country-specific else-
where. Overall, the change in daily mortality M is computed using

  M =  p  aff    I  0     I ─  I  0      (9)

where I is the change in incidence rate due to the lockdown mea-
sures, paff is the affected population, and I0 is the incidence rate at 
the baseline (counterfactual) concentration of pollutant. By defini-
tion, the last ratio can be expressed as

    I ─  I  0     =    RR  actual   −  RR  0    ─  RR  0      (10)

where RR0 is the relative risk at the counterfactual concentration of 
pollutant and RRactual is the relative risk at the actual (measured) 
concentration of pollutant. Furthermore, a Taylor expansion of the 
above numerator yields

   RR  actual   −  RR  0   =    (     ∂ RR ─ ∂     )    
=   0  

   + O(    2 )  (11)

where  is the concentration of pollutant.
Given that we assume that the relative risk has a log-linear shape

  RR = exp()  (12)

and neglecting second- and higher-order terms

     RR  actual   −  RR  0    ─  RR  0     =   (13)

where

   =   
ln( RR  epi  ) ─ 
    epi  

    (14)

which is calculated from the parameters reported in the corre-
sponding epidemiological study (22, 46, 47). Combining Eqs. 9 to 
11, we obtain

  M =  p  aff    I  0     (15)

Daily estimates of premature mortalities due to changes in 
pollutants’ concentration in each region between the first day of 
lockdown measures and the last day of study (7 July 2020 in the case of 
monitor data) are then added to produce our final mortality estimates. 
Uncertainty in the CRF’s  parameter is estimated from the reported 
CI for the relative risk in the original epidemiological study and pro-
pagated to our results using a Monte Carlo simulation with 10,000 
samples. Total calculated changes in mortality in each region are 
compared to the number of deaths due to COVID-19 as reported by 
the Johns Hopkins University COVID-19 Data Repository (51).

Characterization of the ozone regime
Satellite-derived ozone isopleths
To explain the observed changes in ozone concentrations and the dif-
ferences that we find between regions, we derive daily tropospheric 
column measurements of HCHO above monitor locations from the 
TROPOMI instrument for dates from 1 May 2018 to 17 June 2020, 
in addition to NO2 column measurements.

For each region, we aggregate these measurements into 15 
NO2 and 15 HCHO bins and we average the corresponding 
monitor-derived maximum daily 8-hour ozone. We use these bins 
to construct the isopleths presented in fig. S5. Satellite OMI and, 
more recently, TROPOMI products have been used extensively in 
the literature (47–50) to predict changes in surface-level ozone 
concentrations in Europe, the United States, and East Asia. Pre-
vious studies found that HCHO/NO2 ratios below 1 are indicative 
of a NOx-saturated regime, where decreases in HCHO and NO2 
levels may result in increases in ozone. HCHO/NO2 ratios above 
2 (48) or, depending on the region, 4 (47, 50) are indicative of a 
NOx-limited regime where decreases in NO2 and HCHO levels lead 
to decreases in ozone. Ratios in between are characteristic of a tran-
sition regime.
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In addition, we estimate, for each region, the average columns 
HCHO and NO2 between the first day of lockdown in the region 
of interest and 17 June 2020 (Fig. 2). We also calculate the average 
satellite-derived column HCHO and NO2 during the same period 
in 2018 and 2019. The difference between the 2018–2019 average 
and 2020 is indicative of the expected ozone change and helps ex-
plain the results described in the main paper (fig. S5).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/21/eabe1178/DC1
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