Table 3.
Performance data on artificial intelligence algorithms used for computer-aided diagnosis for early esophageal cancer
References | Deep learning model? | Model | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Accuracy (%) |
---|---|---|---|---|---|---|---|
Zhang et al. [28]* | No | Supervised learning via CNN. 218,000 patches generated from 218 endoscopic images | 73.41 | 83.54 | 72.09 | 84.44 | 79.38 |
Mendel et al. [29] | Yes | Deep CNN with a residual net (ResNet) architecture | 94 | 88 | – | – | – |
Ebigbo et al. [30] | Yes | Deep CNN with a residual net (ResNet) architecture | 97 (WLE) 94 (NBI) | 88 (WLE) 80 (NBI) | – | – | – |
Ebigbo et al. [30] | Yes | Deep CNN with a residual net (ResNet) architecture | 92 | 100 | – | – | – |
Everson et al. [31] | Yes | Deep CNN | 89.3 | 98 | – | – | 93.7 |
Guo et al. [32]* | NA | NA | 97.8 | 76.2 | – | – | – |
Horie et al. [33]* | – | Deep CNN | – | – | 54 | – | 98 |
Cai et al. [34] | Yes | CNN | 97.8 | 85.4 | 86.4 | 97.6 | 91.4 |
de Groof et al. [26] | No | Supervised learning technique | 95 | 85 | 87.2 | – | 91.7 |
Ghatwary et al. [35] | Yes | Regional-based convolutional neural network (R-CNN), Fast R-CNN, Faster R-CNN and Single Shot MultiBox Detector (SSD) | 96 | 92 | – | – | – |
Horie et al. [36] | Yes | Deep CNN (Single Shot MultiBox Detector) | 98 | 79 | 39 | 95 | 98 |
Liu et al. [37] | Yes | CNN | 77.58 | – | 78.06 | – | – |
Shiroma et al. [38]* | Yes | CNN | 70 | – | 42.1 | – | 80 |
Struyvenberg et al. [39]* | Yes | CNN | 88 | 78 | – | – | 84 |
Tang et al. [40]* | Yes | CNN | 97 | 94 | – | – | 97 |
de Groof et al. [25] | Yes | ResNet U-net | 93 | 83 | – | – | 88 |
Ebigbo et al. [41] | Yes | Encoder–decoder artificial neural network | 83.7 | 100 | – | – | 89.9 |
Guo et al. [42] | Yes | Detection neural network | 98.04 | 95.03 | – | – | – |
Ohmori et al. [43] | Yes | CNN | 100 (NME-NBI) 90 (WLE) | 63(NME-NBI) 76(WLE) | 63(NME-NBI) 70(WLE) | 100(NME-NBI 93(WLE) | 77(NME-NBI) 81 (WLE) |
de Groof et al. [24] | Yes | Custom-made, fully residual, hybrid ResNet/U-Net model | 91 | 89 | – | – | 90 |
Hashimoto et al.[44] | Yes | CNN: inception-ResNet-v2 algorithm | 96.4 | 94.2 | 89.2 | – | 95.4 |
Iwagami et al. [45] | Yes | CNN: single shot multiBox detector | 94 | 42 | 58 | 90 | 66 |
Conference abstracts. WLE; White light endoscopy, NBI; narrow-band imaging, NME; non-magnified endoscopy