Skip to main content
. 2021 May 7;8:647424. doi: 10.3389/fmolb.2021.647424

TABLE 2.

Performance metrics of adenoviral infection prediction models. RBF, Radial Basis Function; AUC, Area Under the Curve; MCC, Matthew’s Correlation Coefficient.

Host taxa level Classifier Sensitivity Specificity Accuracy F-score MCC AUC
Genus SVM (kernel = “rbf,” gamma = “auto”) 0.92 ± 0.009 0.86 ± 0.047 0.92 ± 0.009 0.96 ± 0.005 0.39 ± 0.035 0.89 ± 0.023
MLP (activation = “tanh,” hidden layer=(16,4)) 0.95 ± 0.009 0.73 ± 0.064 0.94 ± 0.009 0.97 ± 0.005 0.40 ± 0.045 0.84 ± 0.031
Random forest (number of trees = 50, criterion = “entropy,” max_depth = 16) 0.96 ± 0.006 0.70 ± 0.071 0.95 ± 0.006 0.98 ± 0.003 0.42 ± 0.043 0.83 ± 0.035
Family SVM (kernel = “rbf,” gamma = “auto”) 0.91 ± 0.009 0.84 ± 0.057 0.91 ± 0.008 0.95 ± 0.005 0.36 ± 0.031 0.88 ± 0.027
MLP (activation = “tanh,” hidden layer=(16,4)) 0.94 ± 0.012 0.72 ± 0.064 0.94 ± 0.011 0.97 ± 0.006 0.37 ± 0.048 0.83 ± 0.031
Random forest (number of trees = 50, criterion = “entropy”, max_depth = 16) 0.95 ± 0.007 0.66 ± 0.068 0.95 ± 0.007 0.97 ± 0.004 0.38 ± 0.043 0.81 ± 0.033
Order SVM (kernel = “rbf,” gamma = “auto”) 0.91 ± 0.009 0.82 ± 0.057 0.90 ± 0.009 0.95 ± 0.005 0.34 ± 0.028 0.86 ± 0.027
MLP (activation = “tanh,” hidden layer=(16,4)) 0.94 ± 0.011 0.70 ± 0.075 0.94 ± 0.011 0.97 ± 0.006 0.37 ± 0.051 0.82 ± 0.038
Random forest (number of trees = 50, criterion = “entropy,” max_depth = 16) 0.95 ± 0.007 0.66 ± 0.070 0.95 ± 0.007 0.97 ± 0.004 0.37 ± 0.040 0.81 ± 0.034
Class SVM (kernel = “rbf,” gamma = “auto”) 0.88 ± 0.011 0.82 ± 0.061 0.88 ± 0.010 0.93 ± 0.006 0.30 ± 0.028 0.85 ± 0.029
MLP (activation = “tanh,” hidden layer=(16,4)) 0.94 ± 0.010 0.68 ± 0.067 0.93 ± 0.010 0.97 ± 0.005 0.35 ± 0.043 0.81 ± 0.032
Random forest (number of trees = 50, criterion = “entropy,” max_depth = 16) 0.95 ± 0.007 0.63 ± 0.071 0.94 ± 0.007 0.97 ± 0.004 0.35 ± 0.043 0.79 ± 0.035
None SVM (kernel = “rbf,” gamma = “auto”) 0.88 ± 0.011 0.83 ± 0.064 0.88 ± 0.010 0.93 ± 0.006 0.30 ± 0.029 0.86 ± 0.030
MLP (activation = “tanh,” hidden layer=(16,4)) 0.94 ± 0.009 0.68 ± 0.079 0.93 ± 0.008 0.96 ± 0.005 0.34 ± 0.043 0.81 ± 0.038
Random forest (number of trees = 50, criterion = “entropy,” max_depth = 16) 0.95 ± 0.007 0.63 ± 0.072 0.94 ± 0.007 0.97 ± 0.004 0.35 ± 0.041 0.79 ± 0.035

Bolded value indicates the implementation of the SVM algorithm yielded the best performance in terms of sensitivity for infection prediction for our particular dataset for all the experiments.