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ABSTRACT The latent reservoir of HIV-1 is a major barrier for viral eradication. Potent
HIV-1 broadly neutralizing antibodies (bNabs) have been used to prevent and treat HIV-1
infections in animal models and clinical trials. Combination of bNabs and latency-reversing
agents (LRAs) is considered a promising approach for HIV-1 eradication. PCR-based assays
that can rapidly and specifically measure singly spliced HIV-1 vpu/env mRNA are needed
to evaluate the induction of the viral envelope production at the transcription level and
bNab-mediated reservoir clearance. Here, we reported a PCR-based method to accurately
quantify the production of intracellular HIV-1 vpu/env mRNA. With the vpu/env assay, we
determined the LRA combinations that could effectively induce vpu/env mRNA production
in CD41 T cells from antiretroviral therapy (ART)-treated individuals. None of the tested
LRAs were effective alone. A comparison between the quantitative viral outgrowth assay
(Q-VOA) and the vpu/env assay showed that vpu/env mRNA production was closely associ-
ated with the reactivation of replication-competent HIV-1, suggesting that vpu/env mRNA
was mainly produced by intact viruses. Finally, antibody-mediated killing in HIV-1-infected
humanized mice demonstrated that the vpu/env assay could be used to measure the
reduction of infected cells in tissues and was more accurate than the commonly used
gag-based PCR assay, which measures unspliced viral genomic RNA. In conclusion, the
vpu/env assay allows convenient and accurate assessment of HIV-1 latency reversal and
bNab-mediated therapeutic strategies.

IMPORTANCE HIV-1 persists in individuals on antiretroviral therapy (ART) due to the
long-lived cellular reservoirs that contain dormant viruses. Recent discoveries of HIV-
1-specific broadly neutralizing antibodies (bNabs) targeting HIV-1 Env protein
rekindled the interest in antibody-mediated elimination of latent HIV-1. Latency-
reversing agents (LRAs) together with HIV-1 bNabs is a possible strategy to clear re-
sidual viral reservoirs, which makes the evaluation of HIV-1 Env expression upon LRA
treatment critical. We developed a PCR-based assay to quantify the production of in-
tracellular HIV-1 vpu/env mRNA. Using patient CD41 T cells, we found that induction
of HIV-1 vpu/env mRNA required a combination of different LRAs. Using in vitro, ex
vivo, and humanized mouse models, we showed that the vpu/env assay could be
used to measure antibody efficacy in clearing HIV-1 infection. These results suggest
that the vpu/env assay can accurately evaluate HIV-1 reactivation and bNab-based
therapeutic interventions.
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Despite antiretroviral therapy (ART), HIV-1 persists in a small pool of latently infected
resting memory CD41 T cells (1–5). The “shock and kill” approach to purging the

latent HIV-1 reservoirs involves pharmacologic reactivation of latent HIV-1 (6). Next,
induction of virus-specific host immune responses is required to eliminate infected
cells in which HIV-1 gene transcription has been induced by latency reversal agents
(LRAs) (7). Antibodies targeting HIV-1 envelope (Env) protein can mediate killing of
HIV-1-infected cells through antibody effector functions, such as antibody-dependent
cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). In
the past 10 years, a variety of bNabs have been isolated from a small subset of HIV-1-
positive individuals. bNabs can act against a wide spectrum of viruses by targeting
conserved regions on the HIV-1 envelope trimer (8). Recent discoveries of HIV-1-spe-
cific bNabs rekindled interest in antibody therapy for HIV-1 prevention as well as for
elimination of HIV-1 latent reservoirs. In several phase-I clinical trials, passive adminis-
tration of a single bNab that included 3BNC117, VRC01, or 10-1074 delayed viral
rebound to a level comparable to that in the analytical treatment interruption trials
(9–13). bNab infusion accelerated clearance of HIV-1-infected cells via an Fc receptor-
dependent mechanism but was not sufficient to clear viral reservoirs (13). Combination
therapy with two bNabs that included 3BNC117 and 10-1074 maintained viral suppres-
sion after ART discontinuation in patients who did not have preexisting 3BNC117- or
10-1074-resistant viruses (14). Since bNabs cannot target transcriptionally silent HIV-1,
LRA and bNab combination for the killing of HIV-1 latently infected cells may be a
promising strategy for viral eradication.

The efficacy of LRA and bNab combination therapy is determined by how effectively
LRAs could induce HIV-1 Env expression and whether the infused bNabs can target the Env
of patient viral isolates. Sensitivity of patient viruses to the chosen bNabs can be measured
by in vitro neutralization assays. It is important to quantify HIV-1 Env production induced by
LRAs. Although flow cytometry-based measurement of HIV-1 Env expression on the target
cell surface is the most accurate method to predict killing efficiency, it is not practical to
measure surface HIV-1 Env because of the rarity of latently infected cells and the variability
of Env epitopes in patients. PCR-based assays are sensitive and accurate for the measure-
ment of HIV-1 DNA and RNA. Quantitative PCR assays targeting conserved regions of
unspliced HIV-1 RNA within gag or pol have been the standard methods to measure LRA-
induced cell-associated HIV-1 RNA (15–18). However, the vast majority of HIV-1 proviruses
(.95%) in patients under ART are defective, and a significant fraction of the defective viruses
carries either entire or truncated gag/pol (19–21). The two major limitations of the gag- or
pol-based PCR assay are that (i) it detects some defective viruses that can be transcribed de-
spite carrying lethal mutations or deletions, and (ii) it only detects unspliced viral genomic
RNA, which may not be well correlated with the production of spliced viral mRNAs (22). In
some studies, spliced HIV-1 tat/rev and envmRNA was measured to evaluate HIV-1 transcrip-
tion and LRA efficacy (23–25). HIV-1 Vpu and Env are expressed from the same bicistronic
mRNA (26). To produce HIV-1 Env protein, induction of HIV-1 multiply spliced tat/rev mRNA
and singly spliced HIV-1 vpu/env mRNA are required. Expression of HIV-1 Env protein
requires leaky scanning of bicistronic vpu/env mRNA, thereby allowing ribosomes access to
the downstream env open reading frame (27). Another advantage for detecting vpu/env
transcripts is that they are more likely produced from intact proviruses, but not from defec-
tive proviruses, because more than 90% of the defective HIV-1 proviruses in patients carry
deletions or splice site mutations in the vpu/env open reading frame (ORF) (20, 21, 28). Here,
we report a quantitative PCR-based assay to specifically measure singly spliced HIV-1 vpu/
env mRNA. This vpu/env assay can be used to evaluate the production of HIV-1 Env at the
transcriptional level and evaluate bNab-mediated killing of infected cells in which HIV-1 la-
tency is reversed by LRAs.

RESULTS
Measurement of singly spliced HIV-1 vpu/env transcripts. HIV-1 Vpu and Env are

expressed from the same bicistronic mRNA, and HIV-1 vpu/env mRNA utilizes the major
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splicing donor site (MSD) and A4 or A5 splicing acceptor site (29). To design primers and
probes for the detection of HIV-1 vpu/env mRNA, the 59 primer should be located upstream
of the MSD, while the 39 primer should be downstream of the A5 splicing acceptor site to
account for all the vpu/env splicing variants (Fig. 1A). The length between 59 primer and the
env start codon is about 310 to 350 bp, which is much larger than the ideal size of a

}

FIG 1 Sensitivity and specificity of the vpu/env assay. (A) The singly spliced HIV-1 vpu/env mRNA. Position of
primers (blue arrow) and probe (red arrow) of the vpu/env assay. (B) Evaluation and comparison of vpu/env-
specific primers. CD41 T cells were infected by 10 HIV-1 clade B isolates (1–10) and viruses isolated from six HIV-
1-positive patients (11–16). Total RNA was used for vpu/env mRNA detection. Each of the six 39 primers was
paired with the same 59 primer and probe. Threshold cycle (CT) numbers are shown. Open symbols and
horizontal lines represent no detection and the median CT values, respectively. (C) Assay sensitivity. Serially
diluted vpu/env, gag, and tat/rev standard DNA were measured separately in duplicate by quantitative PCR
(qPCR). (D) Assay specificity. Serially diluted pNL4-3 was used as the template for qPCR. Open squares,
undetected. (E and F) Detection of intracellular HIV-1 mRNA. Intracellular HIV-1 mRNA in serially diluted infected
cells. Productively (E) or latently (F) infected primary CD41 T cells were serially diluted in uninfected CD41 T cells.
For latent infection, cells were then treated with phorbol myristate acetate (PMA)-ionomycin for 24 h. HIV-1 vpu/
env and gag mRNA were measured by reverse transcription-quantitative PCR (RT-qPCR).
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quantitative PCR (qPCR) amplicon (70 to 200 bp); qPCR efficiency would be low if the 39
primer is in the env ORF. Therefore, we placed the 39 primer within conserved regions of the
vpu ORF, based on the HIV Sequence Compendium 2018 (www.hiv.lanl.gov), and designed
six primer/probe sets to measure vpu/env mRNA (Table 1). Ten clade B HIV-1 isolates (NIH
AIDS Reagent Program) and six viral isolates from HIV-1-positive individuals were used for
assay optimization. HIV-1 gag- or tat/rev-based PCRs were used as controls. qPCR results
showed that vpu/envmRNA was detected in all samples using the no. 4 primer set (Fig. 1B).
HIV-1 gag and tat/rev mRNA were also detected in all samples (Fig. 1B). Therefore, the no. 4
primer set was selected for the following studies. Next, standard plasmids containing the
vpu/env, gag, or tat/rev PCR fragments were measured separately with corresponding
primer/probe sets to confirm the assay sensitivity (Fig. 1C). The 95% confidence intervals for
the slope of each assay are 23.637 to 23.482 (vpu/env), 23.526 to 23.188 (gag), and
23.487 to 23.176 (tat/rev). The vpu/env assay only targets singly spliced vpu/env RNA
transcripts, but not unspliced viral genomic RNA or proviral DNA. As predicted, no signal
could be detected by the vpu/env assay, even with the presence of 1 � 107 copies of
HIV-1 genomic DNA (Fig. 1D). Together, these results demonstrated that the vpu/env
assay had great sensitivity and specificity for the spliced vpu/env RNA, but not for vi-
ral genomic RNA or proviral DNA.

Next, we sought to determine whether this assay could detect vpu/env mRNA in
samples with low frequencies of HIV-1-infected cells. CD41 T cells infected with the
HIV-1 reporter virus NL4-3-DEnv-EGFP were serially diluted with uninfected cells. In sam-
ples containing 1 HIV-1-infected cell out of 1 million total cells, about 100 copies of intra-
cellular vpu/env mRNA were detected, which was 10-fold lower than the unspliced viral
genomic RNA detected by the gag assay (Fig. 1E). Reactivation of latent HIV-1 by LRA is
the first step of the “shock and kill” strategy (30–32). To test if the vpu/env assay can detect
reactivated viruses, we generated latently infected cells in vitro using a previous described
reporter virus (33). Cells containing known percentages of latent HIV-1 were serially diluted
into uninfected CD41 T cells to achieve the low frequency of latently infected cells. After
latency reversal by phorbol myristate acetate (PMA)-ionomycin, vpu/env mRNA could be
detected in samples containing as little as a single latent HIV-1 in 1 million cells (Fig. 1F).
Taken together, these experiments demonstrate that the vpu/env assay is highly specific
and sensitive and is capable of capturing low levels of vpu/envmRNA production after viral
latency reversal.

Abundance of vpu/env mRNA correlates with expression of Env protein. Next,
we determined whether the vpu/env assay measuring vpu/env transcripts can be used

TABLE 1 List of probes and primers for vpu/env RT-qPCR

Probe or primer
purpose

Probe or primer
type Sequence (59–39)a

gag qPCR Probe VIC-CTATCCCATTCTGCAGCTTCCTCATTGATG-TAMRA
Forward primer ACATCAAGCAGCCATGCAAAT
Reverse primer TCTGGCCT GGTGCAATAGG

tat/rev qPCR Probe VIC-TTCCTTCGGGCCTGTCGGGTCCC-TAMRA
Forward primer CTTAGGCATCTCCTATGGCAGGAA
Reverse primer GGATCTGTCTCTGTCTCTCTCTCCACC

vpu/env qPCR Probe FAM- CGCACRGCAAGAGGCGAGGG-MGB
Forward primer AGCTCTCTCGACGCAGGACTC
R1 reverse primer TACTACTYACTGCTTTGRTAGA
R2 reverse primer CATYACATGTACTACTYACTGCTTTG
R3 reverse primer GCATYACATGTACTACTYACTGCTTT
R4 reverse primer AAAGGTTGCATTACATGTACTACTTACTGCTTT
R5 reverse primer GCTACTACTAATGCTACTATTGCTAATAT
R6 reverse primer GCTAATATTTGTAAAGGTTGCATTACATGTACTAC

aTAMRA, 6-carboxytetramethylrhodamine; FAM, 6-carboxyfluorescein. The underlined probe and primer were
chosen for the vpu/env assay.
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to evaluate the production of HIV-1 Env protein, especially on the surface of infected
cells. CD41 T cells were infected with NL4-3-DEnv-EGFP in which env was disrupted by
inserted egfp. Thus, enhanced green fluorescent protein (EGFP) expression mirrored
total Env protein level. We found that both vpu/env and gag mRNA correlated well
with EGFP expression and were detectable even in cells without EGFP expression (Fig.
2A and C), suggesting some discordance between viral gene transcription and EGFP
expression. To further determine the correlation between vpu/env mRNA level and sur-
face expression of Env protein, we infected CD41 T cells with NL4-3-Env(Ba-L)-Dnef-
EGFP, which encoded Env of HIV-1Ba-L and contained an EGFP coding gene inserted in
nef. We used bNab PGT121 and anti-human IgG-Fc antibodies sequentially to detect
cell surface Env protein. Green fluorescent protein-positive (GFP1) cells were purified
to exclude uninfected cells coated with free GP120 because of its shedding from
infected cells. The abundance of vpu/env but not gag transcripts correlated very well
with cell surface Env expression (Fig. 2B and D). These results demonstrated that the
vpu/env assay can be used to quantitatively measure the change of cell surface HIV-1
Env protein.
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FIG 2 Correlation between HIV-1 vpu/env mRNA level and Env protein level. (A) Sorting strategy for Env-
GFPBright, Env-GFPdim, and Env-GFP2 cells. Activated CD41 T cells were infected with NL4-3DEnv-EGFP. Env-
GFPBright, Env-GFPdim, and Env-GFP2 cells were sorted based on green fluorescent protein (GFP) intensity on day
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followed with anti-human IgG Fc antibodies. (C and D) Cell-associated vpu/env or gag mRNA was measured by
qPCR. P values were calculated by one-way analysis of variance (ANOVA) with Tukey’s test. *, P, 0.05; **,
P, 0.01; ***, P, 0.001; ****, P, 0.0001.
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Detection of vpu/env mRNA in LRA-treated CD4+ T cells from patients on ART.
The gag assay that detects unspliced HIV-1 genomic RNA is the most commonly used
method to evaluate HIV-1 latency reversal (15, 34). We performed gag, vpu/env, and
tat/rev assays to compare the levels of unspliced, singly spliced, and multiply spliced
HIV-1 transcripts in unstimulated CD41 T cells from 44 patients on ART. The unspliced
viral genomic RNA (gag) was detectable in 38/44 samples, much more frequently than
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0.5 million patient CD41 T cells. (B to G) Reactivation of latent HIV-1 by latency-reversing agents (LRAs) or LRA
combinations. Patient CD41 T cells were treated with different LRAs or combination for 18 to 24h. Virus
reactivation was determined by quantitative measurement of indicated HIV-1 transcripts. Total RNA from 0.5 million
patient CD41 T cells was used for the gag, vpu/env, or tat/rev qPCR assays. Copies of viral transcripts (B to D) and
fold induction (E to G) in each treatment group are shown. P values were calculated by one-way ANOVA with
Tukey’s test. *, P, 0.05; **, P, 0.01. (H) Correlation between copies of gag and vpu/env transcripts after latency
reversal. Values in panels B and D were used. r and P values were determined by Spearman correlation. DMSO,
dimethyl sulfoxide; B, bryostatin-1; J, JQ1; R, romidepsin; P/I, PMA plus ionomycin; open symbols, undetectable.

Gao et al. Journal of Virology

June 2021 Volume 95 Issue 11 e02124-20 jvi.asm.org 6

https://jvi.asm.org


vpu/env (1/44) and tat/rev mRNA (10/39) (Fig. 3A). Unspliced HIV-1 genomic RNA can
be produced by defective but transcriptionally active HIV-1 that does not trigger cell
death or immune recognition. It may also be derived from chimeric host-HIV-1 tran-
scripts because the virus integrates into actively transcribed host genes (35, 36). To
evaluate the induction of vpu/env mRNA, patient CD41 T cells were treated with various
LRAs for less than 24h. Bryostatin-1 or romidepsin alone can induce unspliced HIV-1 RNA
(18, 37). In our study, induction of gag mRNA (fold change, .1) by single LRAs, as well as
by LRA combinations, was observed in most individuals (Fig. 3B and E). The magnitude of
increase in tat/rev mRNA was comparable to that of gag mRNA in different LRA groups
(Fig. 3C and F). In contrast, significant induction of vpu/envmRNA was only achieved when
(i) a combination of bryostatin-1, JQ1, and romidepsin or (ii) PMA-ionomycin was used
(Fig. 3D and G). The induction of gag and vpu/env mRNA was positively correlated in the
PMA-ionomycin and the triple LRA combination groups (Fig. 3H). In the LRA experiments,
patient CD41 T cells were treated for less than 24h, and no significant cytotoxicity was
observed in single LRA groups (Fig. 4), which excluded the possibility that the lack of
detection of HIV-1 transcripts by single LRAs was due to cytotoxicity. Single LRAs had poor
induction of vpu/env mRNA in most samples, indicating the presence of multiple blocks in
HIV-1 transcription in latently infected cells, such as sequestration of essential transcription
factors like nuclear factor of activated T cells (NFAT) and NF-κB in the cytoplasm, transcrip-
tional interference by the upstream portion of the host gene, DNA methylation, histone
deacetylation, and restrictive chromatin structures (38–41).

Induction of vpu/envmRNA is correlated with reactivation of replication-competent
latent HIV-1. PCR-based measurement of HIV-1 transcripts relies on detecting a small
region of the viral genome and does not distinguish intact and defective proviruses.
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Interestingly, a recent study demonstrated that the majority of the defective HIV-1 pro-
viruses carried mutations or deletions that abolished the production of singly spliced
vpu/env transcripts (21). It is possible that the vpu/env assay preferentially detects viral
transcripts from replication-competent viruses. To evaluate if this assay can measure
reactivation of replication-competent viruses, we determined the frequency of latent HIV-1
after virus reactivation by the standard quantitative viral outgrowth assay (Q-VOA) and the
vpu/env assay (Fig. 5A). The infectious units per million CD41 T cells (IUPM) determined by
the vpu/env assay (median, 0.45; range, 0.07 to 3.33) were positively correlated with the val-
ues determined by the Q-VOA (median, 0.86; range, 0.07 to 7.84) (Fig. 5B and C). In contrast,
the IUPM values determined by gag-based qPCR were much higher (median IUPM,7.80;
range, 2.18 to 22.54) (Fig. 5B and D), primarily due to viral transcripts produced by replica-
tion-defective viruses. Our results demonstrated that the spliced vpu/env mRNA is a better
surrogate than the full-length viral genomic RNA to evaluate the reactivation of replication-
competent latent HIV-1. Since we could not exclude the possibility that the vpu/env assay
detected transcripts from defective proviruses, it is helpful to monitor the exponential
increase in vpu/env transcripts from the same wells over time. Nonetheless, the vpu/env
assay can accurately predict IUPM values on day 7, making it a rapid assay to determine the
size of HIV-1 reservoirs.

Antibody-mediated killing of infected cell can be measured by the vpu/env assay.
Antibodies suppress HIV-1 infection by neutralization of cell-free viruses and killing of
virus-infected cells through ADCC and ADCP (42). Antibody-mediated killing of
infected cells relies on the expression of HIV-1 Env on the target cells, which are vpu/
env mRNA1 cells. We hypothesize that vpu/env mRNA measurement could be used to
evaluate antibody efficacy against persistent HIV-1 reservoirs. To test this hypothesis,
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seeded by serial dilutions and stimulated with anti-CD3/CD28 for 3 days. After costimulation, PHA-stimulated
CD82 PBMCs from healthy donors were added to support viral outgrowth. At day 7, half of the cells were
harvested for HIV-1 mRNA measurement. The remaining cells were cultured for another 11 to 14days before p24
enzyme-linked immunosorbent assay (ELISA). (B) Infectious units per million CD41 T cells (IUPM) measurement by
different assays. HIV-1 infection was determined by p24 ELISA and the vpu/env or gag assay. IUPM was calculated
by the frequency of p241 or HIV-1 mRNA1 wells, as previously described (44). P values were calculated by one-
way ANOVA with Tukey’s test. *, P, 0.05. (C and D) Correlation of p24 ELISA and the PCR-based assays. r and P
values were determined by Spearman correlation. Open symbols indicate undetectable.
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we used a recombinant HIV-1 reporter virus (HIVivoHA) expressing a murine heat-sta-
ble antigen (HSA) bearing a hemagglutinin (HA) tag (43). Anti-HA antibodies can trig-
ger antibody-dependent killing by binding to the HA on the surface of infected cells.
We infected CD8-depleted healthy donor peripheral blood mononuclear cells (PBMCs)
with the reporter virus in the presence or absence of anti-HA antibodies. Anti-HA anti-
bodies cleared HIVivoHA- infected cells (Fig. 6A and B). To confirm that the cell killing
was Fc-dependent, a modified anti-HA antibody with mutations that abrogate Fc re-
ceptor binding (anti-HA:GRLR) was generated, which failed to clear infected cells (Fig.
6A and B). In this culture system, we used CD8-depleted PBMCs that contained both
NK cells and monocytes. We further confirmed that both NK cells and monocytes could
mediate Fc-dependent cell killing through ADCC and ADCP, respectively (Fig. 6C).
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Having confirmed clearance of infected cells by flow cytometry, we performed the
same in vitro antibody killing assay shown in Fig. 6A and measured intracellular viral
mRNA by the vpu/env and gag assays. We observed significant decreases of HIV-1
mRNA upon anti-HA antibody treatment by both vpu/env and gag assays (Fig. 6D).
While defective viruses do not accumulate during short-term in vitro infection, HIV-1
proviruses in patient samples are predominantly defective and produce mutated or
truncated viral transcripts upon latency reversal. Antibodies cannot clear the vast ma-
jority of HIV-1 RNA1 cells in patients who do not have an intact vpu/env ORF.
Therefore, it is important to assess whether the vpu/env assay could accurately quantify
the clearance of vpu/env mRNA1 cells by antibodies without being affected by the
overwhelming presence of the defective viruses. When antibody-treated or control
HIVivoHA-infected cells were spiked into patient CD41 T cells (,5 infected cells in 1
million patient cells) to mimic the frequency of reactivable intact HIV-1 in patients, the
gag assay was not able to sense the antibody effect, because the mutant viral tran-
scripts from patient CD41 T cells vastly outnumbered the ones produced by HIVivoHA-
infected cells. In contrast, the reduction of infected cells by antibodies was detectable
by the vpu/env assay (Fig. 6E). Our results suggest that the vpu/env assay is more sensi-
tive and accurate to denote the reduction of HIV-1-infected cells from patients.

Assessment of HIV-1 bNab efficacy by the vpu/env assay in humanized mice.
The gag assay is commonly used to quantify cell-free plasma HIV-1 levels and cell-asso-
ciated viral RNA in patients and experimental animals. However, defective HIV-1 rapidly
accumulates during acute infection in patients (20, 21) and humanized mice (44, 45).
Passive administration of a single HIV-1-specific bNab in humanized mice resulted in a
small and transient reduction in viremia (45). Treatment with bNab combinations led
to prolonged viral suppression in viremic mice and delayed viral rebound from avire-
mic mice (45, 46). To evaluate whether the vpu/env assay could be more sensitive and
accurate in quantifying HIV-1 in experimental animals under bNab therapy, we infected
humanized MISTRG-6-15 mice with HIV-1Ba-L and then treated the mice with a combi-
nation of two HIV-1 bNabs, PGT121 and N6 (Fig. 7A). Antibody therapy started at day
15 postinfection, when plasma viral load peaked. The levels of plasma HIV-1 RNA had
an average decrease of 23.3-fold in bNab-treated mice (Fig. 7B). To determine bNab ef-
ficacy in tissues, cell-associated viral RNA was quantified by the vpu/env and gag
assays. A significant reduction of vpu/env mRNA was observed in lymphoid tissues
(spleen and lymph node) and nonlymphoid tissues (liver and lung), while gag mRNA
was modestly reduced in some tissues (Fig. 7C and D). This discrepancy is probably
attributed to the accumulation of defective HIV-1 proviruses in tissues, which could
not be cleared by bNabs. The results from bNab-treated humanized mice suggest that
the vpu/env assay can more accurately quantify cell-associated HIV-1 RNA and evaluate
antibody efficacy in vivo, when specimens contain defective HIV-1.

DISCUSSION

The combination of LRAs and bNabs is considered a promising approach to reduce
or eliminate latent HIV-1 in patients on suppressive ART (31, 47). To evaluate the effi-
cacy of latency reversal and bNab-mediated killing, a quantitative method for HIV-1
Env expression is needed. HIV-1 mRNA is often measured by reverse transcription-
quantitative PCR (RT-qPCR) using gag or pol-specific primers (15–18). However, these
methods only detect unspliced HIV-1 mRNA. The unspliced viral mRNA in patient CD41

T cells is detectable by the gag assay without LRA treatment. It is likely from three dif-
ference sources, namely chimeric HIV-1/host transcripts, defective but transcriptionally
active viruses, or sporadic reactivation of latent HIV-1. The vast majority of HIV-1 provi-
ruses (.95%) in patients under ART are defective and are not able to cause viral
rebound (19–21). The vpu/env assay can disregard the vast majority of the transcripts
from defective proviruses, because the majority of the HIV-1 proviruses in patients
carry deletions or splice site mutations in vpu and env (15–18). We acknowledge that
the vpu/env assay can detect defective viruses which have intact Vpu and functional
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MSD and A4 or A5 splicing acceptor sites. Such defective viruses are probably rare and
do not affect the quantification of replication-competent viruses by the vpu/env assay
(Fig. 5). It is important to compare the vpu/env assay with other latent HIV-1 quantifica-
tion methods, including an alternative version of Q-VOA using RT-PCR as the readout
(48), tat/rev-induced limiting dilution assay (TILDA) (24), and intact proviral DNA assay
(IPDA) (21). Although the vpu/env assay cannot replace the gag assay to measure cell-
free HIV-1, it is a better assay to quantify cell-associated HIV-1 RNA for in vivo studies
due to the presence of defective viruses (Fig. 6 and 7). In conclusion, we developed
and validated a PCR-based assay to measure HIV-1 vpu/env mRNA. The vpu/env assay is
sensitive and highly specific for HIV-1 vpu/env mRNA. It can serve as an alternative to
existing assays to quantify cell-associated HIV-1 RNA. This assay is better suited for the
evaluation of LRAs and bNab-based HIV-1 cure strategies.

MATERIALS ANDMETHODS
Plasmids, antibodies, and viruses. The following reagents were obtained through the NIH AIDS

Reagent Program, Division of AIDS, NIAID, NIH: N6 heavy chain- and light chain-expressing plasmids (no.
12967 and 12966, from J. Huang and M. Connors), pNL4-3 (no. 114, from M. Martin), pNL4-3DEnv-
enhanced green fluorescent protein (EGFP) (no. 11100, from H. Zhang, Y. Zhou, and R. Siliciano), HIV-1Ba-L
(no. 510, from S. Gartner, M. Popovic, and R. Gallo), and 10 HIV-1 clade B isolates (no. 11412). HA antibody
heavy chain- and light chain- expressing plasmids, as well as pHIVivoHA, were kindly provided by Michel
Nussenzweig. Codon-optimized PGT121 heavy chain- and light chain-expressing plasmids were kindly pro-
vided by Dennis Burton. PGT12, N6, and anti-HA antibodies were produced by transfecting the FreeStyle
293-F cells (Thermo Fisher). pNL4-3-D6-drEGFP and the packaging vector pC-Help were kindly provided by
Robert Siliciano. HIVivoHA and NL4-3-Env(Ba-L)-Dnef-EGFP were prepared by transfecting HEK293T with
pHIVivoHA and pNL4-3-Env(Ba-L)-Dnef-EGFP. NL4-3DEnv-EGFP was prepared with viral vector and NL4-3
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envelope-expressing plasmid. NL4-3-D6-drEGFP was prepared with viral vector, NL4-3 envelope-expressing
plasmid, and pC-Help. For animal infection, HIV-1Ba-L was prepared from phytohemagglutinin (PHA)-stimu-
lated CD8-depeleted PBMCs from healthy donors. Concentrated viral stocks were prepared using the Lenti-X
concentrator (TaKaRa).

Flow cytometry analysis. Antibodies, which included mouse CD45 (clone 30-F11), human CD45
(clone HI30), human CD3 (clone HIT3a), human CD4 (clone OKT4), human CD8 (clones HIT8a and RPA-
T8), human CD14 (clone M5E2), human NKp46 (clone 9E2), and human IgG Fc (clone QA19A42), were
purchased from BioLegend. Anti-HA antibody (clone GG8-1F3.3.1) was purchased from Miltenyi Biotec.
Anti-HIV-1 p24 (lone KC57-RD1) was purchased from Beckman Coulter, and anti-HIV-1 p24 (clone KC57-
FITC) was obtained from the NIH AIDS Reagent Program. For intracellular staining, cells were fixed with
Cytofix/Cytoperm (BD Biosciences). Annexin V and 7-aminoactinomycin D (7-AAD) viability staining solu-
tion (BioLegend) were used for the detection of dead and apoptotic cells.

Human subjects. HIV-1-positive adult patients were recruited by the Infectious Diseases Clinic at
Barnes-Jewish Hospital. Both male and female patients were included. All patients were on ART and had
maintained undetectable plasma HIV-1 RNA levels (,20 copies per ml) for at least 6months prior to
blood collection. This study was approved by Washington University School of Medicine Internal Review
Board. All study participants were provided with written informed consent. To obtain PBMCs for in vitro
studies, anonymous peripheral blood samples were acquired from the Mississippi Valley Regional Blood
Center as waste cellular products. Human PBMCs or purified CD41 T cells were cultured in RPMI 1640
medium containing 10% fetal bovine serum at 37°C and 5% CO2. CD4

1 T cells were isolated using the
EasySep human CD41 T-cell isolation kit (Stemcell Technologies).

In vitro HIV-1 infection. CD41 T cells from healthy donors were stimulated with anti-CD3 antibody
at 1mg/ml21 (BioLegend), anti-CD28 antibody at 1mg/ml (BioLegend), and 20 ng/ml IL-2 (BioLegend) for
3 days. Activated CD41 T cells were infected with 10 clade B HIV-1 isolates and six clinical isolates, with
NL4-3DEnv-EGFP. Then cells were cultured with 20 ng/ml interleukin 2 (IL-2) for 2 to 3 days. To generate
latently infected cells, activated CD41 T cells were infected with NL4-3-D6-drEGFP and cultured with
2 ng/ml IL-2 for 2weeks. Then, GFP-negative (GFP2) cells were sorted and reactivated by 50 ng/ml PMA
(Sigma) plus 1mM ionomycin (Sigma) for 24 h.

Latency reversal agents and in vitro treatment. Patient blood CD41 T cells were treated in the pres-
ence of 10mM T-20 (AIDS Reagent Program no. 9409) and 5mM raltegravir (AIDS Reagent Program no.
11680) with latency-reversing agents (LRAs) at the following concentrations: 10nM bryostatin-1 (Sigma),
1mM JQ1 (Selleck), 40nM romidepsin (Sigma), and 50ng/ml PMA (Sigma) plus 1mM ionomycin (Sigma), or
with medium alone plus dimethyl sulfoxide (DMSO) for all single and combination treatments. The concen-
trations of LRAs were chosen based on a previously published in vitro study (18). No fewer than 2.5 million
cells were used in each group of cells. Because of variable yields of CD41 T cells, a few agents were not
tested in all individuals. After 18 to 24 h of LRA treatment, cells of each groups were harvested and lysed
with 0.6ml of TRIzol reagent (Invitrogen) for the quantification of HIV-1 RNA transcripts.

Measurement of cell-associated HIV-1 RNA. To quantify cell-associated HIV-1 RNA, total cellular
RNA was isolated using the Direct-zol RNA Miniprep Plus kit (Zymo Research), which incorporates a
DNase I digestion step to eliminate cellular DNA. First-strand cDNA was synthesized using SuperScript III
reverse transcriptase (Invitrogen) according to the manufacturer’s procedures. Real-time PCR was per-
formed using TaqMan Universal PCR master mix (Applied Biosystems) on an ABI QuantStudio3 real-time
PCR machine. The qPCR conditions are listed in Table 2. To quantify HIV-1 RNA in infected cells in vitro,
each qPCR mixture contained cDNA generated from 0.5 million total CD41 T cells. To measure latency
reversal in patient samples, each PCR mixture contained cDNA generated from 0.5 million patient CD41

T cells. The detection limit for the qPCR assays is 5 copies of HIV-1 RNA per million cells. Primers and
probes used for HIV-1 gag and tat/rev mRNA measurement were described previously (15, 23). Probes
and primers are listed in Table 1. Reverse primer 4R was chosen in this study.

Generation of qPCR standard. To generate a DNA standard for qPCR assays, primary CD41 T cells
were infected with HIVNL4-3. Total cellular RNA was extracted for reverse transcription. The cDNA frag-
ments amplified by gag-, vpu/env-, or tat/rev-specific PCR primers were introduced into a TOPO-TA clon-
ing plasmid (Thermo Fisher). The TOPO-TA cloning plasmids containing the PCR fragment were used as
a qPCR standard.

TABLE 2 qPCR conditions

qPCR component or condition

Concn

Cycle length No. of cyclesStock Final
TaqMan Universal PCR master mix 2� 1�
Forward primer 10mM 500 nM
Reverse primer 10mM 500 nM
Probe 2.5mM 125 nM
Cycle temperature
95°C 2min
95°C 2 s 40
60°C 20 s 40

Gao et al. Journal of Virology

June 2021 Volume 95 Issue 11 e02124-20 jvi.asm.org 12

https://jvi.asm.org


Quantitative viral outgrowth assay. Q-VOA was adapted as previously described (49). On day 0,
CD41 T cells from HIV-1-positive individuals on suppressive ART were isolated and plated at 1.0� 106,
0.5� 106, and 0.2� 106 cells/well before stimulation with anti-CD3/CD28 antibodies for 3days. CD8-depleted
PHA-stimulated PBMCs from healthy donors were added at day 0 and day 7 after costimulation. Briefly,
CD81 T cells were depleted using MojoSort human CD8 nanobeads (BioLegend) and subsequently stimu-
lated with 20ng/ml IL-2 (BioLegend) and 17mg/ml PHA-L (Sigma) for 72h. At day 7, half of the cells were
harvested for quantification of HIV-1 gag and vpu/env mRNA. The remaining cells were cultured for another
11 to 14days before collecting culture supernatant for HIV-1 p24 ELISA (XpressBio).

Correlation analysis of vpu/env transcripts and Env expression in HIV-1-infected cells. Activated
primary CD41 T cells were infected with NL4-3DEnv-EGFP and cultured with 20 ng/ml IL-2 for 3 days.
Env-GFPBright, Env-GFPdim, and Env-GFP2 cells were sorted based on GFP intensity. To isolate cells with
surface Env expression, activated primary CD41 T cells were infected with NL4-3-Env(Ba-L)-Dnef-EGFP
and cultured with 20 ng/ml IL-2 for 3 days. Infected cells were incubated with PGT121 (10mg/ml) for 30
min at 4°C and washed twice with phosphate-buffered saline (PBS). Cells were then incubated with anti-
human IgG Fc antibody for 20 min at 4°C. IgG-FcBright, IgG-Fcdim, and GFP2 cells were purified by FACS.
Cell-associated HIV-1 RNA was quantitated by the gag and vpu/env assays.

Antibody-mediated killing assay with or without patient CD4+ T cells. CD8-depleted healthy do-
nor PBMCs were plated in 48-well plates (0.3 to 0.5 million cells per well) and then infected with
HIVivoHA at 1,200 � g at room temperature for 2 h. Cells were then washed twice with PBS to remove
cell-free viruses and cultured in fresh medium containing 20 ng/ml IL-2 and 3mg/ml anti-HA or anti-HA-
GRLR antibodies. At day 4 postinfection, the percentage of HA1 Gag1 cells in CD31 CD82 T cells of each
group were measured by flow cytometry. To quantify residual HIV-1 RNA, total cellular RNA was isolated
from antibody-treated or control groups. Cell-associated HIV-1 RNA was measured by the gag and vpu/
env assays.

To measure ADCC, human blood NK cells were purified using the EasySep human NK cell isolation
kit (catalog no. 17955; Stemcell Technologies). HIVivo-HA-infected primary CD41 T cells were cocultured
with autologous NK cells (1:1 effector to target ratio) for 6 h. Anti-HA or anti-HA-GRLR antibodies were
provided at 3mg/ml. The frequency of HA1 Gag1 7-AAD2 cells in CD31 CD82 T cells was measured by
flow cytometry.

To measure ADCP, blood monocytes were isolated using the MojoSort human CD14 selection kit
(catalog no. 480026; BioLegend) and stimulated with 50 ng/ml macrophage colony-stimulating factor
(M-CSF, catalog no. 574806; BioLegend) and 50 ng/ml granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF, catalog no. 572904; BioLegend) for 6 days. At day 6, the differentiated macrophages were
treated with Accutase (catalog no. 423201; BioLegend) and replated at 0.25 to 0.5 million cells/well in a
48-well non-tissue-culture-treated plate and rested overnight before coculture with HIVivo-HA-infected
autologous CD41 T cells at a 1:1 effector to target ratio. Nonadherent cells were collected from the cul-
ture medium at 6 h post coculture. The percentage of remaining infected cells (CD142 CD31 CD82 HA1)
was determined by flow cytometry.

To test whether the vpu/env assay could be accurate when samples contained a large amount of de-
fective HIV-1 transcripts, CD8-depleted healthy donor PBMCs were cultured and infected with HIVivoHA
with or without antibody treatment as described above. At day 4 postinfection, infected cell cultures
(contained ,5% HA1 Gag1 cells) were diluted with untreated CD41 T cells of HIV-1 patients on ART at a
ratio of 1 to 10,000. After dilution, the frequency of HA1 Gag1 cells was reduced to less than 5 per mil-
lion. The dilution was performed right before RNA extraction to avoid T-cell alloreactivity. After RNA
extraction and reverse transcription, cell-associated HIV-1 RNA was quantitated by the gag and vpu/env
assays.

Generation of humanized MISTRG-6-15 mice. All animal experiments were approved by the
Institutional Animal Care and Use Committee of the Washington University School of Medicine. The
immunodeficient mouse strain named MISTRG-6-15 was generated by Regeneron Pharmaceuticals and
the Richard Flavell laboratory at Yale University. The MISTRG-6-15 mouse carries knock-ins of human M-
CSF, GM-CSF, IL-3, SIRPA, thrombopoietin (THPO), IL-6, and IL-15 coding genes on a BALB/c-Rag22/2

Il2rgnull background (50–52). To generate humanized mice, human cord blood CD341 cells were isolated
using the EasySep CD34 positive selection kit II (Stemcell Technologies). Newborn mice (1 to 3 days old)
were engrafted with 20,000 cord blood CD341 cells by intrahepatic injection. Reconstitution of human
CD451 cells in blood was determined 9weeks postengraftment.

HIV-1 infection, antibody treatment, and viral RNA quantification in humanized mice. At
10weeks postengraftment, the MISTRG-6-15 mice were infected with HIV-1Ba-L (10 ng p24 per mouse) by
retro-orbital injection. HIV-1 bNabs PGT121 and N6 were injected intraperitoneally at a dose of 500mg
per mouse (;20 mg/kg) twice at day 15 and day 18 postinfection. To quantify plasma HIV-1 RNA, blood
samples were collected by retro-orbital or submandibular bleeding and processed using Quick-RNA viral
kits (Zymo Research) for extraction of viral RNA. After reverse transcription using SuperScript III reverse
transcriptase (Thermo Fisher), HIV-1 gag qPCR was used to quantify plasma HIV-1 RNA levels. To quantify
HIV-1 infection in the tissues, tissue RNA was extracted using Direct-zol RNA kits (Zymo Research). Both
HIV-1 gag and vpu/env RT-qPCR assays were used to quantify tissue HIV-1 RNA.

Statistical analysis. Statistical analyses were performed using Prism 9 (GraphPad). The methods for
statistical analysis are included in the figure legends.
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