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Montpellier, France; 46Service de Cardiologie, CHU Tenon, Paris, France; 47Service de Cardiologie, Hôpital Cardiologique, Lille, France; 48Service de Cardiologie, Centre
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Aims Our objective was to better understand the genetic bases of dilated cardiomyopathy (DCM), a leading cause of sys-
tolic heart failure.

...................................................................................................................................................................................................
Methods
and results

We conducted the largest genome-wide association study performed so far in DCM, with 2719 cases and 4440
controls in the discovery population. We identified and replicated two new DCM-associated loci on chromosome
3p25.1 [lead single-nucleotide polymorphism (SNP) rs62232870, P = 8.7 � 10-11 and 7.7 � 10-4 in the discovery
and replication steps, respectively] and chromosome 22q11.23 (lead SNP rs7284877, P = 3.3 � 10-8 and 1.4 � 10-3

in the discovery and replication steps, respectively), while confirming two previously identified DCM loci on chro-
mosomes 10 and 1, BAG3 and HSPB7. A genetic risk score constructed from the number of risk alleles at these
four DCM loci revealed a 3-fold increased risk of DCM for individuals with 8 risk alleles compared to individuals
with 5 risk alleles (median of the referral population). In silico annotation and functional 4C-sequencing analyses on
iPSC-derived cardiomyocytes identify SLC6A6 as the most likely DCM gene at the 3p25.1 locus. This gene encodes
a taurine transporter whose involvement in myocardial dysfunction and DCM is supported by numerous observa-
tions in humans and animals. At the 22q11.23 locus, in silico and data mining annotations, and to a lesser extent
functional analysis, strongly suggest SMARCB1 as the candidate culprit gene.

...................................................................................................................................................................................................
Conclusion This study provides a better understanding of the genetic architecture of DCM and sheds light on novel biological

pathways underlying heart failure.
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Introduction

Dilated cardiomyopathy (DCM) is a heart muscle disease character-
ized by left ventricular dilatation and systolic dysfunction in the ab-
sence of abnormal loading conditions or coronary artery disease.1,2 It
is a major cause of systolic heart failure, the leading indication for
heart transplantation, and therefore a major public health problem
due to the important cardiovascular morbidity and mortality.1,2

Understanding of the genetic basis of DCM has improved in recent
years with a role for both rare and common variants resulting in a
complex genetic architecture of the disease.3,4 More than 50 genes5

with rare pathogenic mutations have been reported as causing DCM,
mainly inherited as dominant with variable penetrance. Several large-
scale association studies in sporadic cases have been performed to
identify common DCM-associated alleles including several genome-
wide association studies (GWAS).3,6,7 Altogether, these genetic
investigations have so far robustly identified two loci presenting com-
mon susceptibility alleles: a locus on chromosome 1, encompassing

multiple candidate genes in high linkage disequilibrium (LD), including
ZBZTB17/MIZ-1 and HSPB77,8; and a second on chromosome 10
whose culprit gene, BAG3, is also involved in familial forms of
DCM.7,9 An exome-wide association study also suggested the exist-
ence of six potential additional DCM loci.7 Here, we report the
results of an imputed GWAS for sporadic DCM with main findings
replication in two independent case-control cohorts. In silico annota-
tion and functional analyses were performed to identify the best can-
didate culprit genes at identified loci.

Methods

Population and sample collection
A full description of the studied populations is reported in
Supplementary material online, Cohort description; Table S1. Briefly,
2719 sporadic DCM patients and 4440 controls from five populations of
European ancestry (France, Germany, USA, Italy, and UK) were included

Graphical Abstract

Step 1: Through the largest genome-wide association study performed so far in dilated cardiomyopathy, we identified and replicated two new loci on
chromosome 3p25.1 and 22q11.23. Step 2: Combined in silico and functional analyses at the associated loci revealed the best culprit gene at each locus:
SLC6A6 (chromosome 3) and SMARCB1 (chromosome 22). The discovery of these two new players shed light on novel biological pathways and putative
new therapeutic targets.

...................................................................................................................................................................................................
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in the discovery GWAS. Two European replication cohorts totalling 584
DCM cases and 963 controls were also available. Sporadic DCM was
diagnosed according to standard criteria2,4 by reduced ejection fraction
and enlarged left ventricular end-diastolic volume/diameter in the ab-
sence of any obvious pathology. The study protocol was approved by
local ethics committees, complied with the Declaration of Helsinki, and
all patients signed informed consent.

Genotyping, genotype calling, and

imputation
Descriptions of genotyping arrays, QC filtering, and imputation methods
are available in Supplementary material online, Supplementary Methods;
Table S2.

Association analysis
Detailed procedure is given in Supplementary material online, Methods.
To summarize, association of imputed single-nucleotide polymorphisms
(SNPs) with DCM was investigated using a logistic regression model
adjusted for sex and genome-wide genotype-derived principal compo-
nents under the assumption of additive allele effects. A statistical thresh-
old of 5 � 10-8 was used to declare genome-wide significance. To reveal
potential multiple independent hits at the discovered loci, a conditional
analysis was performed. When more than one significant SNP was found,
subsequent haplotype analyses were conducted.

Replication of the findings was assessed with the same statistical meth-
odologies in both replication cohorts, adopting one-tailed hypothesis and
applying a Bonferroni correction procedure. After checking for the het-
erogeneity across studies, the replication cohorts’ results were meta-
analysed, alone, and combined with the discovery results. Sensitivity anal-
yses were performed to assess the robustness of the main findings
according to several factors including sex and clinical characteristics of
patients (Supplementary material online, Methods).

At each replicated associated locus, a regional association plot was
performed using LocusZoom (http://locuszoom.sph.umich.edu/).

Genetic risk score analysis
The genetic risk score (GRS) was built upon SNPs associated with DCM
and replicated in the current study. Association of the GRS with DCM
risk was tested using logistic regression analysis (Supplementary material
online, Methods).

Genetic heritability
The LD score regression approach10 was used to estimate the genome-
wide genetic heritability underlying DCM and to calculate the genetic cor-
relation between DCM and several cardiovascular and other traits capi-
talizing on the GWAS results available at the LD Hub (http://ldsc.
broadinstitute.org/ldhub/).

Candidate culprit gene selection strategy
For each identified and replicated locus, a fine-mapping strategy (fully
described in Supplementary material online, Methods) was deployed
using in silico and experimental data to select the best candidates
(Supplementary material online, Figure S1).

Cis-regulation features at associated single-nucleotide

polymorphisms

DCM-associated SNPs [P-value <_5 � 10-8 and/or in high LD (r2 > 0.7)
with the lead SNP] defined the associated ‘LD block’. Overlaps of LD
blocks with DNA regulatory elements were checked by visualizing on the
UCSC Genome Browser, human assembly hg19 (http://genome.ucsc.

edu/; last accessed date: december 2020), the ENCODE3 DNase hyper-
sensitivity sites (HS) and transcription factor (TF) chromatin immunopre-
cipitation sequencing (ChIP-seq) tracks produced on 125 and 130 cell
lines, respectively. To detect left ventricle (LV)-specific putative regula-
tory regions, we enriched those tracks with H3K27ac, H3K4me1, and
H3K4me3 histone marks of ENCODE LV samples (GSM908951,
GSM910575, GSM910580), looked at ORegAnno predicted regulatory
elements and checked sequence conservation in several vertebrates.

Topologically associating domains and intra-topologically

associating domain chromatin interactions

Using LV topologically associating domains (TADs),11 and preferential
chromatin interaction measured via promoter chromatin Hi-C (PCHi-C)
on iPSC-derived cardiomyocytes (iPSC-CM),12 we identified the candi-
date genes encompassed in TAD overlapping LD blocks. TAD bounda-
ries were confirmed by in-house circular chromatin conformation
capture (4C)-sequencing data (Supplementary material online, Figure S2,
Table S17, Methods).

Biological insights into candidate genes

Cardiac expression level of each candidate was evaluated from RNA-seq
data of the Genotype-Tissue Expression (GTEx) project database22
(https://www.gtexportal.org/home; last accessed date: december 2020)
and LV DCM explants produced by Heinig et al.13 The latter study also
provided differential expression data between 97 DCM patients and 108
healthy donors. Genes displaying interesting expression features were
scrutinized in publicly available resources for gene annotation and
functions.

Annotation of associated single-nucleotide

polymorphisms

LD block-associated SNPs were annotated using Annovar software and
bioinformatics prediction of effects.14,15 Various in silico resources were
interrogated to identify potential regulatory SNPs by checking their asso-
ciation with expression and splicing level [e and s quantitative trait loci
(QTL)] in cardiac and skeletal muscle tissues (GTEx) and with blood
DNA methylation levels (mQTL).16

GnomAD mutation tolerance score

The observed/expected (o/e) metric of GnomAD (https://GnomAD.
broadinstitute.org/; last accessed date: december 2020) was used to
evaluate the tolerance of candidate genes to loss of function and missense
mutations. An o/e confidence interval score upper limit <0.35 for LoF
and a Z-score of >3 for missense were indicative of a strong intolerance,
as indicated at GnomAD.

Results

Main statistical findings
A total of 9 152 885 SNPs (8 945 131 autosomal and 207 754 on X
chromosome) were tested for association with DCM in 2651 cases
and 4329 controls. Results of the discovery GWAS are summarized
in Figure 1, Supplementary material online, Figure S3, and Table 1. Five
loci reached genome-wide significance. Two were already known,
BAG3 (P = 4.7 � 10-14, rs61869036) and HSPB7 (P = 2.12 � 10-13,
rs10927886). BAG3 rs61869036 was in complete LD with the nonsy-
nonymous rs2234962 reported to associate with DCM7 and that was
used thereafter as BAG3 lead SNP (P = 5.6 � 10-14). Three new loci
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were identified on chr3p25.1 (rs62232870, P = 8.7 � 10-11) down-
stream LSM3, chr16p13.3 (PKD1 rs2519236, P = 3.0 � 10-8) and
chr22q11.23 (SMARCB1 rs7284877, P = 3.3 � 10-8). Regional associ-
ation plots are shown in Supplementary material online, Figures S4–
S8. Conditional GWAS adjusted for the five lead SNPs did not reveal
any new genome-wide association signal (Supplementary material
online, Figures S9 and S10).

At chr3p25.1, a second SNP, rs4684185, in negative LD with
rs62232870 (r2 = 0.12, D0 = -0.95), showed a high statistical associ-
ation (P = 8.4 � 10-9). After adjustment on the lead SNP, a residual
signal remained (P = 5� 10-4) suggesting a more complex association
pattern (Supplementary material online, Results; Supplementary ma-
terial online, Table S3).

Replication analyses did not confirm PKD1 rs148248535 (P = 0.11)
but confirmed the associations observed at chr3p25.1 (P = 7.70 �
10-4 and P = 6.0 � 10-3 for rs6223870 and rs4684185, respectively)
and at chr22q11.23 (P = 1.40� 10-3 for rs7284877) (Table 1).

In a combined meta-analysis of the discovery and replication find-
ings, the resulting odds ratios for DCM were 1.36 [1.25–1.48]
(P = 5.3� 10-13) and 1.27 [1.18–1.37] (P = 4.8� 10-10) for chr3p25.1
rs6223870 and rs4684185, respectively, and 1.33 [1.22–1.46] (P = 5.0
� 10-10) for chr22q11.23 SMARCB1 rs7284877, with no evidence for
heterogeneity across studies (Table 1). The results were also robustly
confirmed by stratified analyses on phenotypic and population sub-
groups (Supplementary material online, Tables S4–S6). GWASs strati-
fied by sex did not reveal any new additional signal (Supplementary
material online, Results; Supplementary material online, Figures S11
and S12).

Genetic risk score analysis
Unweighted and weighted GRS, summarized in Figure 2 and
Supplementary material online, Table S7, presented similar results.
Briefly, the unweighted GRS showed a 3-fold increased risk of DCM
for subjects with 8 risk alleles (3.34 [1.87–6.00]) and a 5-fold

decreased for those having only one risk allele (0.21 [0.06–0.77]) as
compared with individuals with 5 risk alleles (median of the referral
population) (Figure 2A and Supplementary material online, Table S7A).
Weighted GRS (continuous scale, Figure 2B and Supplementary ma-
terial online, Table S7B; quintile distribution, Supplementary material
online, Figure S13) presents similar results. A similar pattern was
observed in the replication cohort (Supplementary material online,
Results; Supplementary material online, Table S7). A significant associ-
ation of the score was also detected in the subgroup of patients with
left ventricular end-diastolic diameter (n = 2187; odds ratio 1.53
[1.05–2.23]) and a borderline one with prognosis (cardiac death/
heart transplant) during follow-up (n = 503; odds ratio 1.23 [0.98–
1.56]).

Heritability
The estimated genome-wide DCM heritability was 31± 8.4%.
Genetic correlations between DCM and various cardiometabolic
and lipid phenotypes were tested but did not reveal striking correla-
tions (Supplementary material online, Table S8).

Candidate culprit gene selection strategy
at chr3p25.1
As shown in Figure 3A, the top SNP, rs62232870, is located at the
edge of an active enhancer region, distal to LSM3, as evidenced by
H3K27ac and H3K4me3 LV histone marks. Those marks are absent
in the seven ENCODE non-cardiomyocyte cell lines suggesting a car-
diac tissue-specific expression. Vertebrates’ interspecies sequence
conservation, predicted regulatory elements, DNAseI HS, and TF-
binding sites support the regulatory activity of this region.

The rs62232870 associated LD block covers �50 kbp
[chr3:14 257 356–14 307 016] overlapping with the partially inde-
pendent rs4684185 associated LD block (Supplementary material
online, Figure S5 and Supplementary material online, Table S9) where
ENCODE H3K27ac and H3K4me1 marks and enhancers reported

Figure 1 Manhattan plot summarizing the results of the discovery genome-wide association study.
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by Leung et al.11 are predicted (Figure 3). It is located in a predicted
TAD spanning [chr3:14 160 000–14 680 000] (Figure 4A) that encom-
passes six genes (CHCHD4, TMEM43, XPC, LSM3, SLC6A6, and GRIP2)
(Supplementary material online, Table S10). Using PCHi-C in iPSC-
CM, H3K27ac/H3K4me1 enhancer marks inside the LD block specif-
ically interact with the SLC6A6 and GRIP2 promoters (Figure 4A).

The in-house 4C-seq results show significant interactions
(P < 10-8) between the associated region bait and intra-TAD regional
promoters/enhancers, confirming TAD boundaries. The highest

interaction signals localized on the SLC6A6 promoter and intragenic
enhancer and on the XPC/LSM3 promoter region (Figure 4A,
P < 10-50; Supplementary material online, Table S11).

Each positional candidate gene (Supplementary material online,
Table S10) is expressed in the LV and atrial appendage: TMEM43,
CHCHD4, LSM3, SLC6A6, XPC, and GRIP2 (from the most to the least
expressed). Moreover, XPC (P = 8.3 � 10-15) and SLC6A6 (P = 6.9 �
10-6) LV expressions were significantly increased in DCM patients
compared to healthy donors (Supplementary material online, Table

....................................................................................................................................................................................................................

Table 1 Main association findings of the dilated cardiomyopathy genome-wide association study results

rs62232870a rs4684185b rs148248535b,c rs7284877b

Chromosome 3 3 16 22

Position (GRCh37.p13) 14257709 14272914 2183449 24155111

Locus LSM3 LSM3 PKD1 SMARCB1

Risk allele A C T C

Discovery

RAFd 0.23 0.70 0.82 0.81

Imputation r2 0.96 0.99 0.89 0.99

Allelic OR [95% CI] 1.36 [1.24–1.49] 1.28 [1.17–1.40] 1.35 [1.21–1.50] 1.32 [1.20–1.46]

P 8.7 � 10-11 8.4 � 10-9 3.0 � 10-8 3.3 � 10-8

Replication

Dutch study

RAFd 0.22 0.70 0.84 0.79

Imputation r2 0.95 0.99 0.92 0.99

Allelic OR [95% CI] 1.54 [1.00–2.35] 1.45 [1.03–2.04] 1.21 [0.77–1.90] 1.75 [1.44–2.68]

Pe 0.024 0.017 0.199 4 � 10-3

German study

RAFd 0.22 0.71 0.84 0.82

Imputation r2 NAj NAj NAj NAj

Allelic OR [95% CI] 1.36 [1.08–1.71] 1.19 [0.96–1.46] 1.13 [0.88–1.46] 1.26 [0.99–1.61]

Pe 5.6 � 10-3 0.046 0.172 0.031

Sub meta-analysis

Allelic OR [95% CI] 1.38 [1.13–1.69] 1.26 [1.05–1.51] 1.16 [0.91–1.47] 1.39 [1.12–1.72]

Pf 7.7 10-4 6 � 10-3 0.11 1.4 � 10-3

Qg 0.30 0.87 0.05 0.85

I2h 0 0 0 0

Phet
i 0.58 0.35 0.81 0.36

Combined discovery þ replication

Allelic OR [95% CI] 1.36 [1.25–1.48] 1.27 [1.18–1.37] 1.31 [1.19–1.45] 1.33 [1.22–1.46]

Pf 5.3 � 10-13 4.8 � 10-10 3.4 � 10-8 5.0 � 10-10

Qg 0.33 0.89 1.33 1.82

I2h 0 0 0 0

Phet
i 0.85 0.64 0.51 0.40

CI, confidence interval; OR, odds ratio.
aThe minor allele is the risk allele.
bThe major allele is the risk allele.
cFor German replication, association analysis was done with rs35786 serving as a proxy for rs148248535 (r2 = 0.97).
dRisk allele frequency.
eOne-sided P-value.
fTwo-sided combined P-value derived from a fixed effect meta-analysis of the discovery and replication results.
gCochrane’s Q estimates heterogeneity across studies.
hI2 index describes the magnitude of the heterogeneity.
iP-value of the heterogeneity test across studies.
jNot applicable.
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S12A), while LSM3 expression was significantly decreased (P = 7.6 �
10-8).

The rs62232870-associated LD block was screened for eQTL,
sQTL, and mQTL. rs62232870 is not an eQTL for nearby genes but
other SNPs in the LD block were significantly associated with SLC6A6
expression in atrial appendage (highest signal, rs62231957, P = 1.9 �
10-5) (Supplementary material online, Table S13 and Supplementary

material online, Figure S14). No sQTL was present, but all the SNPs
strongly associate with the methylation level of SLC6A6 CpGs
(cg08926287, P < 10-28) and less significantly in three other genes
(TMEM43, CHCHD4, XPC; 10-23 < P < 10-8). Interestingly, the partially
independent rs4684185-associated LD block correlates even more
strongly with the same mQTLs (cg08926287, P < 10-72 for SLC6A6)
(Supplementary material online, Table S14).

Figure 2 (A) Unweighted Genetic Risk Score for the 6,980 individuals of the discovery cohort and associated OR taking score 5

(presence of 5 risk alleles) as reference. (B) Weighted* Genetic Risk Score for the 6,980 individuals of the discovery cohort and

associated OR taking the score 1.6 as reference.
*Score of each SNP weighted by the beta value of this SNP in the sub meta-analysis of the two replication cohorts.
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..In addition, gene tolerance to mutation based on GnomAD met-
rics only pinpoints SLC6A6 as a strongly evolutionarily constrained
gene upon the candidates (Supplementary material online, Table S15).

Combining all the data available (Supplementary material online,
Table S14 and Supplementary material online, Figure S16), SLC6A6
appeared as the strongest culprit gene at this locus.

Candidate culprit gene selection strategy
at chr22q11.23 locus
The LD block extends over 70 kbp from the 50 region of MMP11 and
CHCHD10 to the 50 region of DERL3 including SMARCB1 where the
lead SNP maps to [chr22:24 110 180–24 182 174] (Supplementary
material online, Figure S8 and Supplementary material online, Table
S9). This region contained H3K27ac, H3K4me1, and H3K4me3 LV
marks witnessing the presence of cardiac active promoters and
enhancers and numerous other features (interspecies conservation,
regulatory elements, DNAseI HS, and TF-binding sites) support its
regulatory role (Figure 3B).

The LD block is located at the edge of two cardiomyocyte-
predicted TADs covering 1.2 Mb [chr22:23 480 001–24 680 000]
(Figure 4B) and the 21 genes covered by those TADs were consid-
ered as positional candidates (Supplementary material online, Table
S10). Published PCHi-C showed a dense pattern of chromatin inter-
action linking the LD block with promoters inside the TAD: ZNF70,
CHCHD10, MMP11, SMARCB1, DERL3, and SLC2A11 confirming the
regulatory role of the region. In-house CM 4C-seq confirmed strong
interactions with enhancer elements located close by (Figure 4B),

especially with SMARCB1 and DERL3 (Supplementary material online,
Table S16; P < 10-50).

The most highly expressed gene was CHCHD10, followed by
GSTT1, DDT, SMARCB1, CABIN1, and SLC2A11, the other 15 genes
being very weakly or not expressed. Differential expression was
observed for CHCHD10 and, to a lesser extent, for DDT and
SMARCB1 (Supplementary material online, Table S12B).

Supplementary material online, Table S13 presents the significant
eSNPs in cardiac and skeletal muscle tissues. Among the six cardiac-
expressed genes, only SMARCB1 expression was influenced by SNPs
within the LD block (Supplementary material online, Figure S15). No
sQTL was present, but all SNPs in the LD block associated with
methylation level variation (mQTL) of nearby genes (Supplementary
material online, Table S14) (strongest signals, SMARCB1-cg08219923
and DERL3-cg25907215, P < 10-200).

Finally, GnomAD mutation tolerance score only suggested
SMARCB1 and BCR as genes under evolutionary constraints
(Supplementary material online, Table S15).

Combining all the data available (Supplementary material online,
Table S14 and Supplementary material online, Figure S17), SMARCB1
appears to be the strongest candidate at chr22q11.23 locus.

Discussion

By adopting a GWAS strategy performed in the largest DCM popula-
tion assembled so far, we identified and replicated two new suscepti-
bility loci while confirming two previously reported ones, HSPB7 and

Figure 3 Maps of regulatory DNA features for chromosome 3p25.1 (A) and 22q11.23 (B) linkage disequilibrium blocks. All single-nucleotide poly-
morphisms with an association P-value of <5 � 10-8 and/or in linkage disequilibrium (r2 >_ 0.7) with the lead single-nucleotide polymorphisms
(rs62232870 in red; rs4684185 in dark blue; rs7284877 in dark green) are indicated. Single-nucleotide polymorphisms in linkage disequilibrium with
the lead single-nucleotide polymorphisms are coloured orange, light blue, and light green. Features associated with regulatory sequence elements are
aligned under the associated single-nucleotide polymorphisms track: histone ChIP-seq signals in human left ventricle, OregAnno regulatory element
score, vertebrates’ species conservation, DNaseI hypersensitivity, and ChiP-seq signal for chromatin-interacting proteins linked to transcription activ-
ity. Vertical blue lines highlight single-nucleotide polymorphisms with a Regulomedb prediction score below 4 (Supplementary material online,).
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..BAG3. Interestingly, some SNPs in the two new loci we identified as
associated with DCM were recently associated with cardiac structure
and function in the general population (with a normal average ejec-
tion fraction) (UK Biobank study).17 These authors also constructed
polygenic risk scores and observed that some of these scores were
associated with incident DCM cases (n = 388). The association with
incident DCM was based on polygenic scores as a whole, therefore
providing no association between single SNP/loci and DCM in this
study.17

The first novel locus maps to chr3p25.1. The LD block extends
over six genes two of which, TMEM43 and SLC6A6, are expressed in
the heart and have been suspected to be involved in human cardiac
disorders. Two SNPs at that locus, rs73028849 and rs11710541,
were associated with left ventricular imaging in a general population
(not in heart failure/DCM).17 Rare pathogenic variants in TMEM43
have been reported in arrhythmogenic right ventricular cardiomyop-
athy18 and a homozygous missense mutation in SLC6A6 was
described in a family with hypokinetic cardiomyopathy and retinal de-
generation.19 Several evidences pinpointed SLC6A6 as the culprit
gene (Supplementary material online, Figure S16). DCM-associated
SNPs in this LD block were significantly associated with SLC6A6 ex-
pression in atrial appendage and methylation. They also specifically
interact with SLC6A6 regulatory elements through chromatin

interaction analysis. Remarkably, the GnomAD mutation tolerance
score also suggests that SLC6A6 is the best candidate among the
genes of the locus. SLC6A6 encodes a taurine transporter whose ex-
pression and activity regulates taurine, an amino acid with cyto-
protective effects especially in the heart.20 Taurine deficiency was
observed in several mammalian species with DCM and in a family
with hypokinetic cardiomyopathy, while its supplementation in the
same models and patients was associated with left ventricular func-
tion normalization.19,21,22 Accordingly, mice knockout for SLC6A6 ex-
hibit taurine level depletion and present DCM.23 Interestingly, GTEx
LV transcriptomic data show that the haplotype containing
rs62232870-A risk allele is associated with the lowest SLC6A6 ex-
pression. A link between SLC6A6 depletion and impaired myocardial
function is therefore emerging, and our finding of SLC6A6 association
with DCM is remarkable in this context. Even though the underlying
pathway leading to heart failure remains to be fully studied in humans,
and efficacy of taurine supplementation remains to be fully demon-
strated, our results may suggest the potential for a new therapeutic
perspective through taurine administration or modulation.

The second novel DCM locus maps to chr22q11.23 where six
positional candidates showed significant expression in the heart, of
which three also presented differential left ventricular expression be-
tween DCM and healthy heart (CHCHD10, DDT, and SMARCB1).

Figure 4 Positional candidate genes located in topologically associating domains at chromosome 3p25.1 (left) and 22q11.23 (right) loci
(Supplementary material online, Table S10). Delimitation of the topologically associating domains was based on publicly available iPSC-derived cardio-
myocyte topologically associating domains that encompass the linkage disequilibrium block at both loci and confirmed by the results of in-house 4C-
sequencing data produced on an iPSC-derived cardiomyocyte line from a donor (details in Supplementary material online); 4C baits are localized by
a vertical black bar. Interaction P-values <10-8 are shown as a blue scale colour bar given below. Preferential chromatin interactions measured via pro-
moter chromatin Hi-C on iPSC-derived cardiomyocytes revealed preferential contact inside topologically associating domains as shown by the red
curves. Intra-topologically associating domain interactions allowed to establish candidate genes list prone to be regulated in cis by the linkage disequi-
librium blocks (blue highlight). Specific DNA interactions are joining associated regions with histone enhancer marks (H3K27ac, H3K4me1, and
H3K4me3).
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SMARCB1 (SWI/SNF-related matrix-associated actin-dependent
regulator of chromatin subfamily b member 1) is the sole gene under
the influence of the lead rs7284877 in the LV. Interestingly,
rs7284877 is in complete LD with SMARCB1-rs5760054, SMARCB1-
rs2070458, and DERL3-rs5760061, recently reported as associated in
the general population with systolic left ventricular internal dimen-
sion and fractional shortening17,24 and in strong LD (r2 = 0.8) with
rs6003909, associated with left ventricular mass to end-diastolic vol-
ume ratio in a UK Biobank GWAS on heart disease.25 Although
SMARCB1 function cannot be directly related to heart morphogenesis
or function, its involvement in left ventricular dimension or function
in a general population, in silico and data mining annotations, evolu-
tionary constraints’ prediction, and, to a lesser extent, functional ana-
lysis, suggest this gene as the more convincing candidate gene at the
locus (Supplementary material online, Figure S17).

This GWAS also provided an innovative estimate of the genome-
wide heritability of the disease in Europeans (31 ± 8%), a value con-
sistent with that (h2 � 30%) recently reported in a population of
African origin.8 However, the four independent lead SNPs (BAG3,
HSPB7, SLC6A6, and SMARCB1) only contribute to 2% of the heritabil-
ity, suggesting the role of additional genetic factors and gene/gene
and gene/environment interactions yet to be identified. Based upon
those four SNPs, we developed the first GRS in DCM. This score
may have practical implications by improving the management of sub-
jects at risk for DCM or systolic dysfunction, such as patients taking
drugs increasing the risk of myocardial dysfunction, or relatives in
DCM families. However, further clinical studies are warranted to val-
idate its clinical utility.

Since some genes, such as BAG3, can be both involved in mono-
genic and multifactorial DCM forms, we checked whether genes
known to cause monogenic DCM forms could also present common
SNPs associated with sporadic DCM (Supplementary material online,
Table S18). Except for FLNC and FHOD3, none of the familial form
genes presents statistically suggestive association signals. We also
performed the exon sequencing of SLC6A6 and SMARCB1 genes in a
cohort of 769 index DCM patients and detected three rare missense
likely pathogenic variants in SLC6A6 (Supplementary material online,
Table S19) that suggest a potential role of SLC6A6 in monogenic
DCM, although this requires further functional studies to be able to
conclude.

Despite its innovative findings, this study may have some limita-
tions. First, we robustly identified two new DCM loci and convincing
candidates but were not able to definitely demonstrate which culprit
variants are responsible for the observed susceptibility to the disease.
Further molecular and cellular investigations are needed to fill this
gap. Second, despite being the largest GWAS ever performed on
DCM, with both a discovery and a replication phase, our study may
have been suboptimal in identifying common susceptibility alleles due
to the absence of perfectly matched healthy controls for the British
and US populations. Therefore, we performed our discovery GWAS
on combined individual data while handling any potential hidden
population stratification through adjustment on genetically-derived
principal components. The robust replication of two out of three
genome-wide significant associations in two European cohorts pro-
vides strong support for the validity of that strategy. Finally, our
results do apply to sporadic DCM and cannot be extrapolated at that
stage to familial DCM. The replication of the reported genetic

associations in non-European ancestry populations as well as the ana-
lysis of familial forms of DCM, are now needed.

In conclusion, we identified two new genetic loci associated with
DCM at chr3p25.1 and chr22q11.23, in which SLC6A6 and SMARCB1
stand out as the most likely culprit candidate genes. A GRS was built
with a potential clinical perspective for the prediction of DCM or its
prognosis but additional work is required to conclude about this po-
tential application. These findings not only provide a better under-
standing of the genetic architecture of DCM but also identify new
players in the pathophysiology of systolic heart failure, with the po-
tential for new therapeutic developments, especially through taurine
modulation.

Supplementary material

Supplementary material is available at European Heart Journal online.
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Translational perspective
We present the results of the largest genome-wide association study performed so far in dilated cardiomyopathy (DCM), a leading
cause of systolic heart failure. We identified two new DCM-associated loci and two strong culprit genes, SLC6A6 and SMARCB1, on
chromosomes 3p25.1 and 22q11.23, respectively. A polygenic risk score was constructed to better predict the risk of DCM.
Furthermore, SLC6A6 gene encodes a taurine transporter whose involvement in myocardial dysfunction is supported by numerous
observations in humans and animals. This study sheds light on novel biological pathways underlying heart failure, and putative new
therapeutic targets.
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Corrigendum to: Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on
chromosomes 3p25.1 and 22q11.23

Eur Heart J 2021; doi:10.1093/eurheartj/ehab030

In the originally published version of this manuscript, there were several errors that are listed in this corrigendum.

In the Abstract, the following sentence was incorrect: “A genetic risk score constructed from the number of risk alleles at these four DCM
loci revealed a 27% increased risk of DCM for individuals with 8 risk alleles compared to individuals with 5 risk alleles (median of the refer-
ral population).” It should read: “A genetic risk score constructed from the number of risk alleles at these four DCM loci revealed a 3-fold
increased risk of DCM for individuals with 8 risk alleles compared to individuals with 5 risk alleles (median of the referral population).”
In the Results section, ‘Genetic risk score analysis’ paragraph, the following sentence was incorrect: “Briefly, the unweighted GRS showed a
27% increased risk of DCM for subjects with 8 risk alleles (1.27 [1.14–1.42]) and a 21% decreased for those having only one risk allele (0.79
[0.66–0.95]) as compared with individuals with 5 risk alleles (median of the referral population) (Figure 2A, Table S7A).” It should read:
“Briefly, the unweighted GRS showed a 3-fold increased risk of DCM for subjects with 8 risk alleles (3.34 [1.87–6.00]) and a 5-fold
decreased for those having only one risk allele (0.21 [0.06–0.77]) as compared with individuals with 5 risk alleles (median of the referral
population) (Figure 2A, Table S7A).”

In the Supplementary data, Results section, ‘GRS association analysis in the replication studies’ paragraph, the following sentence was incor-
rect: “Nevertheless, an unweighted GRS of 7 was associated with an increased risk of DCM of OR = 1.13 [1.09–1.18], OR = 1.19 [1.08–
1.32] and OR = 1.57 [0.9–2.73] and conversely an unweighted GRS of 2 with a decreased risk of DCM, OR = 0.85 [0.79–0.92], OR = 0.96
[0.81–1.13] and OR = 0.42 [0.17–1.07], in the discovery, iGeneTRAiN and SFB_TR19 German cohorts, respectively (Table S7A). Results
were similar for the weighted GRS analysis (Table S7B)”. It should read: “Nevertheless, an unweighted GRS of 7 was associated with an
increased risk of DCM of OR = 1.78 [1.46–2.18], OR = 3.70 [1.59–8.67] and OR = 1.57 [0.9–2.73] and conversely an unweighted GRS of 2
with a decreased risk of DCM, OR = 0.38 [0.23–0.61], OR = 0.51 [0.12–2.21] and OR = 0.42 [0.17–1.07], in the discovery, iGeneTRAiN
and SFB_TR19 German cohorts, respectively (Table S7A). Results were similar for the weighted GRS analysis (Table S7B).”

These errors were also present in Figure 2, and in Table S7 and Figure S13 in the Supplementary data, and have been replaced with
corrected versions online.

Published on behalf of the European Society of Cardiology. All rights reserved. VC The Author(s) 2021. For permissions, please email: journals.permissions@oup.com.
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