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Abstract Comparing single-cell transcriptomic atlases from diverse organisms can elucidate the

origins of cellular diversity and assist the annotation of new cell atlases. Yet, comparison between

distant relatives is hindered by complex gene histories and diversifications in expression programs.

Previously, we introduced the self-assembling manifold (SAM) algorithm to robustly reconstruct

manifolds from single-cell data (Tarashansky et al., 2019). Here, we build on SAM to map cell atlas

manifolds across species. This new method, SAMap, identifies homologous cell types with shared

expression programs across distant species within phyla, even in complex examples where

homologous tissues emerge from distinct germ layers. SAMap also finds many genes with more

similar expression to their paralogs than their orthologs, suggesting paralog substitution may be

more common in evolution than previously appreciated. Lastly, comparing species across animal

phyla, spanning sponge to mouse, reveals ancient contractile and stem cell families, which may

have arisen early in animal evolution.

Introduction
There is much ongoing success in producing single-cell transcriptomic atlases to investigate the cell

type diversity within individual organisms (Regev et al., 2017). With the growing diversity of cell

atlases across the tree of life (Briggs et al., 2018; Cao et al., 2019; Fincher et al., 2018; Hu et al.,

2020; Musser et al., 2019; Plass et al., 2018; Siebert et al., 2019; Wagner et al., 2018), a new

frontier is emerging: the use of cross-species cell type comparisons to unravel the origins of cellular

diversity and uncover species-specific cellular innovations (Arendt et al., 2019; Shafer, 2019). Fur-

ther, these comparisons promise to accelerate cell type annotation and discovery by transferring

knowledge from well-studied model organisms to under-characterized animals.

However, recent comparative single-cell analyses are mostly limited to species within the same

phylum (Baron et al., 2016; Geirsdottir et al., 2019; Sebé-Pedrós et al., 2018; Tosches et al.,

2018). Comparisons across longer evolutionary distances and across phyla are challenging for two

major reasons. First, gene regulatory programs diversify during evolution, diminishing the similarities

in cell-type-specific gene expression patterns. Second, complex gene evolutionary history causes dis-

tantly related organisms to share few one-to-one gene orthologs (Nehrt et al., 2011), which are

often relied upon for comparative studies (Briggs et al., 2018; Shafer, 2019). This effect is com-

pounded by the growing evidence suggesting that paralogs may be more functionally similar than

orthologs across species, due to differential gain (neo-functionalization), loss (non-functionalization),
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or partitioning (sub-functionalization) events among paralogs (Nehrt et al., 2011; Prince and Pick-

ett, 2002; Stamboulian et al., 2020; Studer and Robinson-Rechavi, 2009).

Here, we present the Self-Assembling Manifold mapping (SAMap) algorithm to enable mapping

single-cell transcriptomes between phylogenetically remote species. SAMap relaxes the constraints

imposed by sequence orthology, using expression similarity between mapped cells to infer the rela-

tive contributions of homologous genes, which in turn refines the cell type mapping. In addition,

SAMap uses a graph-based data integration technique to identify reciprocally connected cell types

across species with greater robustness than previous single-cell data integration methods

(Haghverdi et al., 2018; Hie et al., 2019; Polański et al., 2019; Stuart et al., 2019).

Using SAMap, we compared seven whole-body cell atlases from species spanning animal phylog-

eny, which have divergent transcriptomes and complex molecular homologies (Figure 1A–B and

Supplementary file 1). We began with well-characterized cell types in developing frog and zebrafish

embryos. We found broad concordance between transcriptomic signatures and ontogenetic rela-

tionships, which validated our mapping results, yet also detected striking examples of homologous

cell types emerging from different germ layers. We next extended the comparison to animals from

the same phylum but with highly divergent body plans, using a planarian flatworm and a parasitic

blood fluke, and found one-to-one homologies even between cell subtypes. Comparing all seven

species from sponge to mouse, we identified densely interconnected cell type families broadly

shared across animals, including contractile and stem cells, along with their respective gene expres-

sion programs. Lastly, we noticed that homologous cell types often exhibit differential expression of

orthologs and similar expression of paralogs, suggesting that the substitution and swapping of

paralogs in cell types may be more common in evolution than previously appreciated. Overall, our

study represents an important step toward analyzing the evolutionary origins of specialized cell

types and their associated gene expression programs in animals.

Results

The SAMap algorithm
SAMap iterates between two modules. The first module constructs a gene-gene bipartite graph with

cross-species edges connecting homologous gene pairs, initially weighted by protein sequence simi-

larity (Figure 1C). In the second module, SAMap uses the gene-gene graph to project the two sin-

gle-cell transcriptomic datasets into a joint, lower-dimensional manifold representation, from which

each cell’s mutual cross-species neighbors are linked to stitch the cell atlases together (Figure 1D).

Then, using the joint manifold, the expression correlations between homologous genes are com-

puted and used to reweight the edges in the gene-gene homology graph in order to relax SAMap’s

initial dependence on sequence similarity. The new homology graph is used as input to the subse-

quent iteration of SAMap, and the algorithm continues until convergence, defined as when the

cross-species mapping does not significantly change between iterations (Figure 1E).

This algorithm overcomes several challenges inherent to mapping single-cell transcriptomes

between distantly related species. First, complex gene evolutionary history often results in many-to-

many homologies with convoluted functional relationships (Briggs et al., 2018; Nehrt et al., 2011).

SAMap accounts for this by using the full homology graph to project each dataset into both its own

and its partner’s respective principal component (PC) spaces, constructed by the SAM algorithm,

which we previously developed to robustly and sensitively identify cell types (Tarashansky et al.,

2019). The resulting within- and cross-species projections are concatenated to form the joint space.

For the cross-species projections, we translate each species’ features into those of its partner, with

the expression for individual genes imputed as the weighted average of their homologs specified in

the gene-gene bipartite graph. Iteratively refining the homology graph to only include positively cor-

related gene pairs prunes the many-to-many homologies to only include genes that are expressed in

the same mapped cell types.

Second, frequent gene losses and the acquisitions of new genes result in many cell type gene

expression signatures being species-specific, limiting the amount of information that is comparable

across species. Restricting the analysis of each dataset to only include genes that are shared across
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species would result in a decreased ability to resolve cell types and subtypes with many species-spe-

cific gene signatures. SAMap solves this problem by constructing the joint space through the concat-

enation of within- and cross-species projections, thus encoding all genes from both species.

Third, the evolution of expression programs gradually diminishes the similarity between homolo-

gous cell types. To account for this effect, SAMap links cell types across species while tolerating their

differences. Cells are mapped by calculating each of their k mutual nearest cross-species neighbors
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Figure 1. SAMap addresses challenges in mapping cell atlases of distantly related species. (A) Schematic showing the phylogenetic relationships

among seven species analyzed. (B) Challenges in mapping single-cell transcriptomes. Gene duplications cause large numbers of homologs per gene,

determined by reciprocal BLAST (cut-off: E-value <10�6), and frequent gene losses and the acquisition of new genes result in large fractions of

transcriptomes lacking homology, which limits the amount of information comparable across species. (C) SAMap workflow. Homologous gene pairs

initially weighted by protein sequence similarity are used to align the manifolds, low dimensional representations of the cell atlases. Gene-gene

correlations calculated from the aligned manifolds are used to update the edge weights in the bipartite graph, which are then used to improve

manifold alignment. (D) Mutual nearest neighborhoods improve the detection of cross-species mutual nearest neighbors by connecting cells that target

one other’s within-species neighborhoods. (E) Convergence of SAMap is evaluated by the root mean square error (RMSE) of the alignment scores

between mapped clusters in adjacent iterations for all 21 pairwise comparisons of the seven species.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Scalability of SAMap.
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in the combined projection. To establish more robust mutual connectivity, we integrate information

from each cell’s local, within-species neighborhood (Figure 1D), overcoming the inherent stochastic-

ity of cross-species correlations. Two cells are thus defined as mutual nearest cross-species neigh-

bors when their respective neighborhoods have mutual connectivity. It is important to note that the

magnitude of connections is not directly calculated from their expression similarity, allowing cell

types with diverged expression profiles to be tightly linked if they are among each other’s closest

cross-species neighbors.

Lastly, SAMap is robust to technical batch effects between datasets that are collected through

different platforms. For instance, we have succeeded in running SAMap on datasets containing hun-

dreds of thousands of cells that were collected with different single-cell platforms, including 10X

genomics, Drop-Seq, SmartSeq, and MARS-Seq. SAMap runtimes were typically less than an hour

on an average desktop computer for the largest dataset we tested (Figure 1—figure supplement

1). Further, SAMap overcomes potential memory issues when running on large datasets by chunking

its computationally intensive operations into smaller blocks, saturating the memory usage with

respect to the number of cells (Figure 1—figure supplement 1B).

Homologous cell types emerging from distinct germ layers in frog and
zebrafish
We first applied SAMap to the Xenopus and zebrafish atlases, which both encompass embryogene-

sis until early organogenesis (Briggs et al., 2018; Wagner et al., 2018). Previous analysis linked cell

types between these two organisms by matching ontogeny, thereby providing a reference for com-

parison. SAMap produced a combined manifold with a high degree of cross-species alignment while

maintaining high resolution for distinguishing cell types in each species (Figure 2A). We measured

the mapping strength between cell types by calculating an alignment score (edge width in

Figure 2B and color map in Figure 2C), defined as the average number of mutual nearest cross-spe-

cies neighbors of each cell relative to the maximum possible number of neighbors.

SAMap revealed broad agreement between transcriptomic similarity and developmental ontog-

eny, linking 26 out of 27 expected pairs based on previous annotations (Figure 2B and

Supplementary file 2; Briggs et al., 2018). The only exception is the embryonic kidney (pronephric

duct/mesenchyme), potentially indicating that their gene expression programs have significantly

diverged. In addition, SAMap succeeded in drawing parallels between the development of homolo-

gous cell types and matched time points along several cell lineages (Figure 2C). While the concor-

dance was consistent across cell types, we noticed that the exact progression of developmental

timing can vary, suggesting that SAMap can quantify heterochrony with cell type resolution.

SAMap also linked a group of secretory cell types that differ in their developmental origin, some

even arising from different germ layers (highlighted edges in Figure 2B). Within ectoderm, frog

cement gland cells map to zebrafish muc5ac+ secretory epidermal cells, and frog small secretory

cells (SSCs) map to zebrafish pvalb8+ mucous cells (Janicke et al., 2010). Across germ layers, SSCs

also map weakly to zebrafish endodermal cells, and frog ectodermal hatching gland maps to zebra-

fish mesodermal hatching gland. These cell types are linked through a large set of genes, including

proteins involved in vesicular protein trafficking and several conserved transcription factors (TFs)

such as myb, foxa1, xbp1, and klf17 (Figure 2D), which all have documented functions in controlling

the differentiation of secretory cell types (Bennett et al., 2007; Dubaissi et al., 2014; Pan et al.,

2014). For example, klf17 is expressed in zebrafish and frog hatching glands, and plays essential

roles in regulating gland cell specification in both species (Kurauchi et al., 2010; Suzuki et al.,

2019). Together, the conserved cell type specification programs (Erwin and Davidson, 2009)

between developmentally distinct secretory cells support the notion that they may be transcription-

ally and evolutionarily related despite having different developmental origins (Arendt et al., 2016).

To benchmark the performance of SAMap, we used eggNOG (Huerta-Cepas et al., 2019) to

define one-to-one vertebrate orthologs between zebrafish and frog and fed these gene pairs as

input to several broadly used single-cell data integration methods, Seurat (Stuart et al., 2019),

LIGER (Welch et al., 2019), Harmony (Korsunsky et al., 2019), Scanorama (Hie et al., 2019), and

BBKNN (Polański et al., 2019). We found that they failed to map the two atlases, yielding minimal

alignment between them (Figure 2E and Figure 2—figure supplement 1). We also compared the

results when restricting SAMap to using the one-to-one orthologs instead of the full homology

graph. Even when removing the many-to-many gene homologies and the iterative refinement of the
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Figure 2. SAMap successfully maps D. rerio and X. tropicalis atlases. (A) UMAP projection of the combined zebrafish (yellow) and Xenopus (blue)

manifolds, with example cell types circled. (B) Sankey plot summarizing the cell type mappings. Edges with alignment score <0.1 are omitted. Edges

that connect developmentally distinct secretory cell types are highlighted in black, with connections across germ layers highlighted in red. (C)

Heatmaps of alignment scores between developmental time points for ionocyte, forebrain/midbrain, placodal, and neural crest lineages. X-axis:

Xenopus. Y-axis: zebrafish. (D) Expressions of orthologous gene pairs linked by SAMap are overlaid on the combined UMAP projection. Expressing

cells are color-coded by species, with those connected across species colored cyan. Cells with no expression are shown in gray. The mapped secretory

cell types are highlighted with circles. (E) SAMap alignment scores compared to those of benchmarking methods using one-to-one vertebrate

orthologs as input. Each dot represents a cell type pair supported by ontogeny annotations.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Existing methods failed to map D. rerio and X. tropicalis atlases.
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homology graph, we identified similar, albeit weaker, cell type mappings. This suggests that, at least

for the frog and zebrafish comparison, SAMap’s performance is owed in large part to its robust, atlas

stitching approach.

Finally, to test if SAMap is robust to incomplete cell type atlases, we downsampled the frog and

zebrafish data by systematically removing individual cell types. We found that cell types whose

homologous partners were removed mapped weakly to closely related cell types, some of which

were already present in the original mapping. For example, optic cells from both species were also

connected to eye primordium, frog skeletal muscles to zebrafish presomitic mesoderm, and frog

hindbrain to zebrafish forebrain/midbrain (Supplementary file 3). We observed several new map-

ping pairs, but their alignment scores were all barely above the detection threshold of SAMap.

Moreover, most of these edges were mapped between cell types with similar developmental origins,

with the only exception being the zebrafish neural crest mapped to the frog otic placode in the

absence of frog neural crest cells. Examining the genes that support this mapping revealed that

both cell types express sox9 and sox10, two TFs previously implicated to form a conserved gene

regulatory circuit common to otic/neural crest cells (Betancur et al., 2011). Taken together, these

results suggest that SAMap is more sensitive in linking homologous cell types compared to other

existing methods, exhibits high robustness when applied to incomplete datasets, and yields map-

ping results that are well supported by conserved gene expression programs.

Paralog substitutions are prevalent between homologous cell types in
frog and zebrafish
The key benefit of using the full homology graph is to enable the systematic identification of gene

paralogs that exhibit greater similarity in expression across species than their corresponding ortho-

logs. These events are expected to arise as the result of gene duplications followed by diversification

of the resulting in-paralogs (Studer and Robinson-Rechavi, 2009). In an alternative scenario, genetic

compensation by transcriptional adaptation, where loss-of-function mutations are balanced by upre-

gulation of related genes with similar sequences (El-Brolosy et al., 2019), could also result in this

signature.

In total, SAMap selected 8286 vertebrate orthologs and 7093 paralogs, as enumerated by egg-

NOG, for manifold alignment. Paralogs were identified as non-orthologous genes that map to the

same eggNOG orthology group ancestral to Vertebrata. Among these, 565 genes have markedly

higher expression correlations (correlation difference >0.3) with their paralogs than their orthologs

(see Figure 3A for examples), and 209 of them have orthologs that are either completely absent or

lowly expressed with no cell-type specificity (Supplementary file 4). We term these events as

‘paralog substitutions’, as the orthologs may have lost or changed their functional roles at some

point and were compensated for by their paralogs. Substituting paralogs were identified in most

cells types with some (e.g. dorsal organizer) exhibiting higher rates than others (Figure 3B), suggest-

ing uneven diversification rates of paralogs across cell types. SAMap also linked an additional 297

homologous pairs previously unannotated by orthology or paralogy, but which exhibit sequence sim-

ilarity and high expression correlations (>0.5 Pearson correlation). These likely represent unanno-

tated orthologs/paralogs or isofunctional, distantly related homologs (Gabaldón and Koonin,

2013).

We next asked whether paralog substitution rates depend on the evolutionary time since gene

duplication. We categorized paralogs by the taxonomic level of their most recent shared orthology

group and found that more recent paralogs substitute orthologs at higher rates than more ancient

paralogs (Figure 3C). This observation is consistent with the expectation that less diverged genes

may be more capable of functionally compensating for each other. To rule out the possibility that

these paralogs were linked spuriously during the homology refinement steps of SAMap, we

repeated the paralog substitution analysis on an aligned manifold constructed using only one-to-one

orthologs. We identified 70% of the paralog substitutions and observed similar patterns in evolution-

ary time and cell type dependencies (Figure 3—figure supplement 1A–B). The other 30% of substi-

tutions had smaller correlation differences on the border of our detection threshold (i.e. correlation

difference >0.3) (Figure 3—figure supplement 1C). Failure to detect these substitutions was due to

inaccurate imputation of gene expressions across species when restricting the mapping to one-to-

one orthologs, which resulted in weaker alignment with fewer cross-species edges. Altogether, these

results illustrate the potential of SAMap in leveraging single-cell gene expression data for pruning
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the networks of homologous genes to identify evolutionary substitution of paralogs and, more gen-

erally, identify non-orthologous gene pairs that may perform similar functions in the cell types within

which they are expressed.

Homologous cell types between two flatworm species with divergent
body plans
To test if we can identify homologous cell types in animals with radically different body plans, we

mapped the cell atlases of two flatworms, the planarian Schmidtea mediterranea (Fincher et al.,
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Figure 3. SAMap reveals prevalent paralog substitutions in frog and zebrafish. (A) Expression of orthologous (top) and paralogous (bottom) gene pairs
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The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Paralog substitution analysis yields similar results using the SAMap manifold constructed from one-to-one orthologs.
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2018), and the trematode Schistosoma mansoni, which we collected recently (Li et al., 2021). They

represent two distant lineages within the same phylum but have remarkably distinct body plans and

autecology (Laumer et al., 2015; Littlewood and Waeschenbach, 2015). While planarians live in

freshwater and are known for their ability to regenerate (Reddien, 2018), schistosomes live as para-

sites in humans. The degree to which cell types are conserved between them is unresolved, given

the vast phenotypic differences caused by the transition from free-living to parasitic habits

(Laumer et al., 2015).

SAMap revealed broad cell type homology between schistosomes and planarians. The schisto-

some had cells mapped to the planarian stem cells, called neoblasts, as well as most of the differen-

tiated tissues: neural, muscle, intestine, epidermis, parenchymal, protonephridia, and cathepsin+

cells, the latter of which consists of cryptic cell types that, until now, have only been found in planar-

ians (Fincher et al., 2018; Figure 4A). These mappings are supported by both known cell-type-
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Figure 4. SAMap transfers cell type information from a well-annotated organism (planarian S. mediterranea) to its less-studied cousin (schistosome S.

mansoni) and identifies parallel stem cell compartments. (A) UMAP projection of the combined manifolds. Tissue type annotations are adopted from

the S. mediterranea atlas (Fincher et al., 2018). The schistosome atlas was collected from juvenile worms, which we found to contain neoblasts with an

abundance comparable to that of planarian neoblasts (Li et al., 2021). (B) Overlapping expressions of selected tissue-specific TFs with expressing cell

types circled. (C) UMAP projection of the aligned manifolds showing planarian and schistosome stem cells, with homologous subpopulations circled.

Planarian neoblast data is from Zeng et al., 2018, and cNeoblasts correspond to the Nb2 population, which are pluripotent cells that can rescue

neoblast-depleted planarians in transplantation experiments. (D) Distributions of conserved TF expressions in each neoblast subpopulation. Expression

values are k-nearest-neighbor averaged and standardized, with negative values set to zero. Blue: planarian; yellow: schistosome.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. SAMap-linked gene pairs that are enriched in cell type pairs between S. mediterranea and S. mansoni.

Figure supplement 2. Schistosome muscle progenitors express canonical muscle markers.
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specific marker genes and numerous homologous transcriptional regulators (Figure 4B and Fig-

ure 4—figure supplement 1).

We next determined if cell type homologies exist at the subtype level. For this, we compared the

stem cells, as planarian neoblasts are known to comprise populations of pluripotent cells and tissue-

specific progenitors (Fincher et al., 2018; Zeng et al., 2018). By mapping the schistosome

stem cells to a planarian neoblast atlas (Zeng et al., 2018), we found that the schistosome has a

population of stem cells, e-cells (Wang et al., 2018), that cluster with the planarian’s pluripotent

neoblasts, both expressing a common set of TFs (e.g. soxp2, unc4, pax6a, gcm1) (Figure 4C–D).

The e-cells are closely associated with juvenile development and lost in adult schistosomes

(Wang et al., 2018; Nanes Sarfati et al., 2021), indicating pluripotent stem cells may be a transient

population restricted to their early developmental stages. This is consistent with the fact that,

whereas schistosomes can heal wounds, they have limited regenerative ability (Wendt and Collins,

2016). SAMap also linked other schistosome stem cell populations with planarian progenitors,

including two populations of schistosome stem cells – denoted as m (Tarashansky et al., 2019) and

m’ – to planarian muscle progenitors, all of which express myoD, a canonical master regulator of

myogenesis (Scimone et al., 2017). These likely represent early and late muscle progenitors, respec-

tively, as m-cells do not yet express differentiated muscle markers such as troponin, whereas m’-cells

do (Figure 4—figure supplement 2).

Cell type families spanning the animal tree of life
To compare cell types across broader taxonomic scales, we extended our analysis to include juvenile

freshwater sponge (Spongilla lacustris) (Musser et al., 2019), adult Hydra (Hydra vulgaris)

(Siebert et al., 2019), and mouse (Mus musculus) embryogenesis (Pijuan-Sala et al., 2019) atlases.

In total, SAMap linked 1051 cross-species pairs of cell types, defined by the annotations used in

each respective study. Of the cell type pairs, 95% are supported by at least 40 enriched gene pairs,

and 87% are supported by more than 100 gene pairs, indicating that SAMap does not spuriously

connect cell types with limited overlap in transcriptional profiles (Figure 5—figure supplement 1A).

We next extended the notion of cell type pairs to cell type trios, as mapped cell types gain addi-

tional support if they share transitive relationships to other cell types through independent map-

pings, forming cell type triangles among species. The transitivity of a cell type pair (edge) or a cell

type (node) can be quantified as the fraction of triads to which they belong that form triangles

(Figure 5A). The majority (81%) of cell type pairs have non-zero transitivity independent of align-

ment score and the number of enriched gene pairs (Figure 5—figure supplements 1–2). Cell type

pairs with fewer than 40 enriched gene pairs tend to have lower (<0.4) transitivity (Figure 5—figure

supplement 1B). The transitivity measure can also be used to identify potentially spurious connec-

tions. 16% of mapped cell type pairs have zero edge transitivity but non-zero node transitivity. These

cell types are connected to only a single member of an interconnected cell type group (motifs 2 and

3 in Figure 5B). Such links may be of lower confidence as they should connect to other members of

the group and are thus excluded from downstream analysis.

Among the interconnected groups of cell types, we identified families of neural cells and contrac-

tile cells (Figure 5C). Both cell type families are highly transitive compared to the overall graph tran-

sitivity (bootstrap p-value<1�10�5), meaning that their constituent cell types have more transitive

edges within the group than outside the group (Figure 5D). In addition, the dense, many-to-many

connections within the contractile and neural families are each supported by at least 40 enriched

gene pairs (Figure 5E). Consistent with the nerve net hypothesis suggesting a unified origin of neu-

ral cell types (Tosches and Arendt, 2013), the neural family includes vertebrate brain tissues, both

bilaterian and cnidarian neurons, cnidarian nematocytes that share the excitatory characteristics of

neurons (Weir et al., 2020), and Spongilla choanocytes and apopylar cells, both of which are not

considered as neurons but have been shown to express postsynaptic-like scaffolding machinery

(Musser et al., 2019; Wong et al., 2019). The contractile family includes myocytes in bilaterian ani-

mals, Hydra myoepithelial cells that are known to have contractile myofibrils (Buzgariu et al., 2015),

and sponge pinacocytes and myopeptidocytes, both of which have been implicated to play roles in

contractility (Musser et al., 2019; Sebé-Pedrós et al., 2018). In contrast to the families encompass-

ing all seven species, we also found a fully interconnected group that contains invertebrate multipo-

tent stem cells, including planarian and schistosome neoblasts, Hydra interstitial cells, and sponge

archeocytes (Alié et al., 2015). The lack of one-to-one connections across phyla is in keeping with
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recent hypotheses that ancestral cell types diversified into families of cell types after speciation

events (Arendt et al., 2016; Arendt et al., 2019). Our findings thus suggest that these cell type

families diversified early in animal evolution.

Transcriptomic signatures of cell type families
The high interconnectedness between cell types across broad taxonomic scales suggests that they

should share ancestral transcriptional programs (Arendt et al., 2016). SAMap identified broad tran-

scriptomic similarity between bilaterian and non-bilaterian contractile cells that extends beyond the

core contractile apparatus. It links a total of 23601 gene pairs, connecting 5471 unique genes, which

are enriched in at least one contractile cell type pair. Performing functional enrichment analysis on

these genes, we found cytoskeleton and signal transduction functions to be enriched (p-value<10�3)

based on the KOG functional classifications (Tatusov et al., 2003) assigned by eggNOG
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Figure 5. Mapping evolutionarily distant species identifies densely connected cell type groups. (A) Schematic illustrating edge (left) and node (right)

transitivities, defined as the fraction of triads (set of three connected nodes) in closed triangles. (B) The percentage of cell type pairs that are

topologically equivalent to the green edge in each illustrated motif. (C) Network graphs showing highly connected cell type families. Each node

represents a cell type, color-coded by species (detailed annotations are provided in Supplementary file 7). Mapped cell types are connected with an

edge. (D) Boxplot showing the median and interquartile ranges of node transitivities for highly connected cell type groups. For all box plots, the

whiskers denote the maximum and minimum observations. The average node transitivity per group is compared to a bootstrapped null transitivity

distribution, generated by repeatedly sampling subsets of nodes in the cell type graph and calculating their transitivities. **p<5�10�5, ***p<5�10�7.

(E) Boxplot showing the median and interquartile ranges of the number of enriched gene pairs in highly connected cell type groups. All cell type

connections in these groups have at least 40 enriched gene pairs (dashed line).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Number of enriched gene pairs are mostly independent of edge transitivity.

Figure supplement 2. Alignment scores are mostly independent of edge transitivity.
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(Figure 6A). These genes include orthology groups spanning diverse functional roles in contractile

cells, including members of the adhesion complex that connects cells, actomyosin networks that

drive contractility, and signaling pathways that stimulate contraction (Figure 6B and

Supplementary file 5). This observation suggests that contractile cells near the beginning of animal

evolution already possessed the broad assemblage of gene modules associated with different func-

tional aspects of derived muscle cell types in extant animals.

We also identified several transcriptional regulators shared among contractile cells (Figure 6B).

Previously known core regulators involved in myocyte specification (Brunet et al., 2016) were

enriched only in bilaterian (e.g. myod and tcf4/E12) or vertebrate contractile cells (e.g. mef2). In con-

trast, we found homologs of Muscle Lim Protein (Csrp) and Forkhead Box Group 1 (Larroux et al.,

2008) enriched in contractile cells from all seven species. The Fox proteins included FoxC, which is

known to regulate cardiac muscle identity in vertebrates (Brunet et al., 2016) and is contractile-spe-

cific in all species except schistosome and Spongilla. Notably, we also identified FoxG orthologs to
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Figure 6. SAMap identifies muscle and stem cell transcriptional signatures conserved across species. (A) Enrichment of KOG functional annotations

calculated for genes shared in contractile cell types. For each species, genes enriched in individual contractile cell types are combined. (B) Expression

and enrichment of conserved muscle genes in contractile cell types. Color: mean standardized expression. Symbol size: the fraction of cells each gene

is expressed in per cell type. Homologs are grouped based on overlapping eukaryotic eggNOG orthology groups. If multiple genes from a species are

contained within an orthology group, the gene with highest standardized expression is shown. Genes in blue: core transcriptional program of bilaterian

muscles; red: transcriptional regulators conserved throughout Metazoa. (C) Enrichment of KOG functional annotations for genes shared by stem cell

types. (D) Top: boxplot showing the median and interquartile ranges of the mean standardized expressions of stem cell-enriched genes in multipotent

stem cells (MSCs), lineage-committed stem cells (LSCs), and differentiated cells (DCs). MSCs include sponge archaeocytes (Musser et al., 2019), hydra

interstitial stem cells (Siebert et al., 2019), planarian neoblasts cluster 0 defined in Fincher et al., 2018, schistosome e-cells (Tarashansky et al.,

2019). LSCs include sponge transition cells, hydra ecto- and endo-epithelial stem cells; planarian piwi+ cells that cluster with differentiated tissues, and

schistosome tissue-specific progenitors. Bottom: dot plot showing the mean standardized expressions of selected transcriptional regulators. The

transcript IDs corresponding to each gene are listed in Supplementary file 6.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Phylogenetic reconstruction of animal contractile cell transcriptional regulators.
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be enriched in three of the four invertebrates (Figure 6—figure supplement 1), suggesting that

FoxG may play an underappreciated role in contractile cell specification outside vertebrates.

Whether the most conserved regulators are positioned at the center of the cell type specification

regulatory complex remains an important question to address in future studies.

For the family of invertebrate multipotent stem cells, we identified 3343 genes that are enriched

in at least one cell type pair and observed significant enrichment (p-value<10�3) of genes involved in

translational regulation such as RNA processing, translation, and post-translational modification

(Figure 6C). We also observed cell cycle and DNA replication genes, as expected for actively divid-

ing cells, though these were not the most enriched categories. Shared stem cell genes comprise 979

orthology groups, 17% of which are enriched in all cell types of this family (Supplementary file 5).

Importantly, these genes have consistently higher expression in the multipotent stem cells (MSCs)

compared to lineage-restricted stem cells (LSCs) and differentiated cells (DCs) for all four species

(Figure 6D), and may represent a large, deeply conserved gene module specifically associated with

multipotency.

Next, we asked whether there is an MSC-specific transcriptional regulatory program. Notably, we

identified a number of transcriptional regulators enriched in MSCs across all four invertebrates. This

included TFs from sox and klf orthology groups, the transcriptional coactivator sub1, and several

chromatin modifiers, including ssrp1, a subunit of the FACT complex, and kat7, a histone acetyltrans-

ferase (Figure 6D and Supplementary file 6). sox and klf are well-known pluripotency factors

(Bialkowska et al., 2017; Sarkar and Hochedlinger, 2013), whereas the others have been studied

in various processes associated with stem cell functions (MacPherson et al., 2020; Sikder et al.,

2019; Zeng et al., 2013). The conserved enrichment of these transcriptional regulators in inverte-

brate MSCs suggests that their functional role in stem cells may be more phylogenetically ancient

than previously appreciated. Determining their roles in establishing and maintaining multipotency

across diverse animal taxa is an important avenue of future research.

Discussion
Cell types evolve as their gene expression programs change either as integrated units or via evolu-

tionary splitting that results in separate derived programs. While this notion of coupled cellular and

molecular evolution has gained significant traction in the past years, systematically comparing cell

type-specific gene expression programs across species has remained a challenging problem. Here,

we map single-cell atlases between evolutionarily distant species in a manner that accounts for the

complexity of gene evolution. SAMap aligns cell atlases in two mutually reinforcing directions, map-

ping both the genes and the cells, with each feeding back into the other. Although this algorithm

scales well to the majority of presently available whole-organism cell atlases, the size of single-cell

datasets will continue to increase. The most memory-intensive steps in SAMap are the neighborhood

coarsening of cross-species edges and the cross-species imputation of gene expression to calculate

gene-gene correlations, both of which could be intractable for datasets containing millions of cells.

Our current solution is to chunk these operations into smaller blocks for large datasets to avoid

memory limitations, but the runtime increases significantly as a result. An option for mapping mas-

sive datasets may be to downsample each atlas. So long as all cell types are preserved and remain

separable during downsampling, we expect the mapping results to be the same.

SAMap allows us to identify one-to-one cell type concordance between animals in the same phy-

lum, whereas between phyla, we observe interconnected cell types forming distinct families. These

findings support the notion that cell types evolve via hierarchical diversification (Arendt et al.,

2019), resulting in cell type families composed of evolutionarily related cell types sharing a regula-

tory gene expression program that originated in their common ancestor. One-to-one cell type

homologies should exist only if no further cell type diversification has occurred since the speciation.

To understand the genetic underpinnings of the observed cell type homologies, we have examined

similarities in gene expression programs of several cell types in depth. Among various gene sets, we

have focused on TFs, as they form regulatory networks that specify cell type identities and activate

downstream differentiation gene batteries (Erwin and Davidson, 2009). Notably, many of the

aligned cell types we identified share expression of transcription factors known to play important

roles in cell type differentiation, suggesting SAMap alignments based on mutual connectivity reflect

evolutionary homology, rather than convergent functional similarity. SAMap thus provides a
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roadmap for tracing cell type evolutionary history and identifying the molecular changes in transcrip-

tion factor regulatory complexes that have driven cell type diversification.

In parallel, SAMap systematically identifies instances where paralogs exhibit greater expression

similarity than orthologs across species. Paralog substitution can occur due to differential loss or

retention of cell-type-specific expression patterns of genes that were duplicated in the common

ancestor (Shafer et al., 2020; Studer and Robinson-Rechavi, 2009) or due to compensating upre-

gulation of paralogs following a loss-of-function mutation acquired by an ortholog (El-Brolosy et al.,

2019). Considering our observation that paralog substitutions occur at higher rates for more recent

paralogs, which should be more capable of functionally compensating for each other, we expect the

latter scenario to be more likely, at least between frog and zebrafish. Paralog substitutions may also

play an important role in cell type diversification, enabling newly evolved sister cell types to subfunc-

tionalize via the use of distinct paralogs. Whereas the analysis presented here focuses on compari-

sons between two species, incorporating multiple species into a single analysis that also accounts for

their phylogenetic relatedness could enable determining the stability of paralog substitutions within

clades and their associated cell type diversification events. However, this will require datasets that

densely sample species within specific clades and at key branching points along the tree of life.

Besides applications in evolutionary biology, we anticipate SAMap can catalyze the annotation of

new cell atlases from non-model organisms, which often represents a substantial bottleneck requir-

ing extensive manual curation and prior knowledge. Its ability to use the existing atlases to inform

the annotation of cell types in related species will keep improving as more datasets become avail-

able to better sample the diversity of cell types throughout the animal kingdom.

Materials and methods

Data and code availability
The source code for SAMap is publicly available at Github (https://github.com/atarashansky/SAMap;

copy archived at swh:1:rev:c696585f8fe41ec1599b0720df579f3cb14f935b; Tarashansky et al.,

2021), along with the code to perform the analysis and generate the types of plots presented in the

figures. We also provide a wrapper function to launch a graphical user interface provided by the

SAM package to interactively explore both datasets in the combined manifold. The datasets ana-

lyzed in this study are detailed in Supplementary file 1 with their accessions and annotations

provided.

The SAMap algorithm
The SAMap algorithm contains three major steps: preprocessing, mutual nearest neighborhood

alignment, and gene-gene correlation initialization. The latter two are repeated for three iterations,

by default, to balance alignment performance and computational runtime.

Preprocessing
Generate gene homology graph via reciprocal BLAST
We first construct a gene-gene bipartite graph between two species by performing reciprocal BLAST

of their respective transcriptomes using tblastx, or proteomes using blastp. tblastn and blastx are

used for BLAST between proteome and transcriptome. When a pair of genes share multiple High

Scoring Pairs (HSPs), which are local regions of matching sequences, we use the HSP with the high-

est bit score to measure homology. Only pairs with E-value <10�6 are included in the graph.

Although we define similarity using BLAST, SAMap is compatible with other protein homology

detection methods (e.g. HMMER [Eddy, 2008]) or orthology inference tools (e.g. OrthoClust

[Yan et al., 2014] and eggNOG [Huerta-Cepas et al., 2019]). While each of these methods has

known strengths and limitations, BLAST is chosen for its broad usage, technical convenience, and

compatibility with low-quality transcriptomes.

We encode the BLAST results into two triangular adjacency matrices, A and B, each containing bit

scores in one BLAST direction. We combine A and B to form a gene-gene adjacency matrix G. After

symmetrizing G, we remove edges that only appear in one direction:

G ¼ Recip 1

2
Aþ Bð Þ þ Aþ Bð ÞT

� �� �

2 Rm1þm2�m1þm2 , where Recip only keeps reciprocal edges, and m1
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and m2 are the number of genes of the two species, respectively. To filter out relatively weak homol-

ogies, we also remove edges where Gab<0:25
b

max Gabð Þ. Edge weights are then normalized by the

maximum edge weight for each gene and transformed by a hyperbolic tangent function to increase

discriminatory power between low and high edge weights,

Gab ¼ 0:5þ 0:5tanh 10Gab=
b

max Gabð Þ � 5

� �

.

Construct manifolds for each cell atlas separately using the SAM algorithm
The single-cell RNAseq datasets are normalized such that each cell has a total number of raw counts

equal to the median size of single-cell libraries. Gene expressions are then log-normalized with the

addition of a pseudocount of 1. Genes expressed (i.e. log2 Dþ 1ð Þ>1) in greater than 96% of cells are

filtered out. SAM is run using the following parameters: preprocessing = ‘StandardScaler’,

weight_PCs = False, k = 20, and npcs = 150. A detailed description of parameters is provided previ-

ously (Tarashansky et al., 2019). SAM outputs N1 and N2, which are directed adjacency matrices

that encode k-nearest neighbor graphs for the two datasets, respectively.

SAM only includes the top 3000 genes ranked by SAM weights and the first 150 principal compo-

nents (PCs) in the default mode to reduce computational complexity. However, downstream map-

ping requires PC loadings for all genes. Thus, in the final iteration of SAM, we run PCA on all genes

and take the top 300 PCs. This step generates a loading matrix for each species i, Li 2 R
300�mi .

Mutual nearest neighborhood alignment
Transform feature spaces between species
For the gene expression matrices Zi 2 R

ni�mi , where n and m are the number of cells and genes

respectively, we first zero the expression of genes that do not have an edge in G and standardize

the expression matrices such that each gene has zero mean and unit variance, yielding Z
~

i. G repre-

sents a bipartite graph in the form of G ¼
0m1;m1

H 2 Rm1�m2

HT 2 Rm2�m1
0m2 ;m2

� �

, where 0m;m is m� m zero

matrix and H is the biadjacency matrix. Letting H1 ¼ H and H2 ¼ HT encoding directed edges from

species 1 to 2 and 2 to 1, respectively, we normalize the biadjacency matrix Hi such that each row

sums to 1: Hi ¼ SumNorm Hið Þ 2 Rmi�mj , where the SumNorm function normalizes the rows to sum to 1.

The feature spaces can be transformed between the two species via weighted averaging of gene

expression, Z
~

ij ¼ Z
~

iHi.

Project single-cell gene expressions into a joint PC space
We project the expression data from two species into a joint PC space (Barkas et al., 2019),

Pi ¼ Z
~

iL
T
i and Pij ¼ Z

~

ijL
T
j . We then horizontally concatenate the principal components Pi and Pij to

form Pi 2 R
ni�600.

Calculate k-nearest cross-species neighbors for all cells
Using the joint PCs, Pi, we identify for each cell the k-nearest neighbors in the other dataset using

cosine similarity (k ¼ 20 by default). Neighbors are identified using the hnswlib library, a fast approxi-

mate nearest-neighbor search algorithm (Malkov and Yashunin, 2020). This outputs two directed

biadjacency matrices Ci 2 R
ni�nj for i; jð Þ ¼ 1; 2ð Þ or ð2; 1Þ with edge weights equal to the cosine simi-

larity between the PCs.

Apply the graph-coarsening mapping kernel to identify cross-species
mutual nearest neighborhoods
To increase the stringency and confidence of mapping, we only rely on cells that are mutual nearest

cross-species neighbors, which are typically defined as two cells reciprocally connected to one

another (Haghverdi et al., 2018). However, due to the noise in cell-cell correlations and stochasticity

in the kNN algorithms, cross-species neighbors are often randomly assigned from a pool of cells

that appear equally similar, decreasing the likelihood of mutual connectivity between individual cells

even if they have similar expression profiles. To overcome this limitation, we integrate information
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from each cell’s local neighborhood to establish more robust mutual connectivity between cells

across species. Two cells are thus defined as mutual nearest cross-species neighbors when their

respective neighborhoods have mutual connectivity.

Specifically, the nearest neighbor graphs Ni generated by SAM are used to calculate the neigh-

bors of cells ti hops away along outgoing edges: �Ni ¼ N
ti
i , where �Ni are adjacency matrices that con-

tain the number of paths connecting two cells ti hops away, for i ¼ 1 or 2. ti determines the length-

scale over which we integrate incoming edges for species i. Its default value is 2 if the dataset size is

less than 20,000 cells and 3 otherwise. However, cells within tight clusters may have spurious edges

connecting to other parts of the manifold only a few hops away. To avoid integrating neighborhood

information outside this local structure, we use the Leiden algorithm (Traag et al., 2019) to cluster

the graph and identify a local neighborhood size for each cell (the resolution parameter is set to 3

by default). If cell a belongs to cluster ca, then its neighborhood size is la ¼ jcaj. For each row a in �Ni

we only keep the la geodesically closest cells, letting the pruned graph update N i.

Edges outgoing from cell ai in species i are encoded in the corresponding row in the adjacency

matrix: Ci;ai . We compute the fraction of the outgoing edges from each cell that target the local

neighborhood of a cell in the other species: C
~

i;aibj ¼
P

c2Xj;bj
Ci;aic, where Xj;bj is the set of cells in the

neighborhood of cell bj in species j and C
~

i;aibj is the fraction of outgoing edges from cell ai in species

i targeting the neighborhood of cell bj in species j.

To reduce the density of C
~

i so as to satisfy computational memory constraints, we remove edges

with weight less than 0.1. Finally, we apply the mutual nearest neighborhood criterion by taking the

element-wise, geometric mean of the two directed bipartite graphs: C
~

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C
~

1 � C
~

2

q

. This operation

ensures that only bidirectional edges are preserved, as small edge weights in either direction results

in small geometric means.

Assign the k-nearest cross-species neighborhoods for each cell

Given the mutual nearest neighborhoods C
~

2 Rn1�n2 , we select the k nearest neighborhoods for each

cell in both directions to update the directed biadjacency matrices C1 and C2: C1 ¼ KNN C
~

; k
� �

and

C2 ¼ KNN C
~ T

; k

� �

, with k ¼ 20 by default.

Stitch the manifolds
We use C1 and C2 to combine the manifolds N1 and N2 into a unified graph. We first weight the

edges in N1 and N2 to account for the number of shared cross-species neighbors by computing the

one-mode projections of C1 and C2. In addition, for cells with strong cross-species alignment, we

attenuate the weight of their within-species edges. For cells with little to no cross-species alignment,

their within-species are kept the same to ensure that the local topological information around cells

with no alignment is preserved.

Specifically, we use N1 and N2 to mask the edges in the one-mode projections,

N
~

1 ¼ U N1ð Þ � Norm C1ð ÞNorm C2ð Þð Þ and N
~

2 ¼ U N2ð Þ � Norm C2ð ÞNorm C1ð Þð Þ, where U Eð Þ sets all edge

weights in graph E to 1 and Norm normalizes the outgoing edges from each cell to sum to 1. The

minimum edge weight is set to be 0.3 to ensure that neighbors in the original manifolds with no

shared cross-species neighbors still retain connectivity: N
~

1;ij ¼ min 0:3;N
~

1;ij

� �

and

N
~

2;ij ¼ min 0:3;N
~

2;ij

� �

for all edges i; jð Þ. We then scale the within-species edges from cell i by the

total weight of its cross-species edges: N
~

1;i ¼ 1� 1

k

Pn2
j¼1

C1;ij

� �

N
~

1;i and N
~

2;i ¼ 1� 1

k

Pn1
j¼1

C2;ij

� �

N
~

2;i.

Finally, the within- and cross-species graphs are stitched together to form the combined nearest

neighbor graph N: N ¼ N
~

1 � C1

h i

� C2 � N
~

2

h i

. The overall alignment score between species 1 and 2

is defined as S ¼ 1

n1þn2

Pn1
i¼1

Pn2
j¼1

C1;ij þ
Pn2

i¼1

Pn1
j¼1

C2;ij

� �

.
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Homology graph refinement
Update edge weights in the gene-gene bipartite graph with expression
correlations
To compute correlations between gene pairs, we first transfer expressions from one species to the

other: �Zi;nimj
¼ Ci;niZj;mj

, where �Zi;nimj
is the imputed expressions of gene mj from species j for cell ni in

species i, and Ci;ni is row ni of the biadjacency matrix encoding the cross-species neighbors of cell ni
in species i, all for i; jð Þ ¼ 1; 2ð Þ and ð2; 1Þ. We similarly use the manifolds constructed by SAM to

smooth the within-species gene expressions using kNN averaging: �Zj;mj
¼ Nj;mj

Zj;mj
, where Nj is the

nearest-neighbor graph for species j. We then concatenate the within- and cross-species gene

expressions such that the expression of gene mj from species j in both species is �Zmj
¼ �Zi;mj

� �Zj;mj
.

For all gene pairs in the initial unpruned homology graph, G, we compute their correlations,

Gab: ¼ � 0ð ÞCorr �Za; �Zbð Þ, where � 0ð Þ is a Heaviside step function centered at 0 to set negative correla-

tions to zero. We then use the expression correlations to update the corresponding edge weights in

G, which are again normalized through Gab ¼ 0:5þ 0:5tanh 10Gab=
b

max Gab

� �

� 5

� �

.

Annotation of cell atlases
To annotate the primary zebrafish and Xenopus cell types, the cell subtype annotations provided by

the original publications (Briggs et al., 2018; Wagner et al., 2018) are coarsened using a combina-

tion of the manual matching and developmental hierarchies. For example, as ‘involuting marginal

zone’ in Xenopus is manually matched to ‘non-dorsal margin’, ’dorsal margin’ ’non-dorsal margin

involuted’, and ‘dorsal margin involuted’ in zebrafish, we label these cells as ‘involuting marginal

zone’. In cases where the matching is insufficient to coarsen the annotations, we use the provided

developmental trees to name a group of terminal cell subtypes by their common ontogenic ances-

tor. Cell types that do not cluster well in the manifold reconstructed by SAM are excluded from the

comparison. These include germline, heart, and olfactory placode cells, as they are mixed with other

cell types in the Xenopus atlas. The germline cells are scattered across the reconstructed manifold

and do not concentrate in a distinct cluster. The heart cells and olfactory placode cells are inextrica-

bly mixed with larger populations of intermediate mesoderm and placodal cells, respectively. Simi-

larly, the iridoblast, epiphysis, nanog+, apoptotic-like, and forerunner cells are excluded because

they do not cluster distinctly in the zebrafish atlas.

The annotations provided by their respective studies are used to label the cells in the Spongilla,

Hydra, planarian, and mouse atlases. To annotate the schistosome cells, we use known marker genes

to annotate the main schistosome tissue types (Li et al., 2021). Annotations for all single cells in all

datasets are provided in Supplementary file 1.

Visualization
The combined manifold N is embedded into 2D projections using UMAP implemented in the scanpy

package (Wolf et al., 2018) by scanpy.tl.umap with the parameter min_dist = 0.1. The sankeyD3

package (https://rdrr.io/github/fbreitwieser/sankeyD3/man/sankeyD3-package.html) in R is used to

generate the sankey plots. Edge thickness corresponds to the alignment score between mapped cell

types. The alignment score between cell types a and b is defined as

sab ¼
1

jca jþjcb j

P

i2ca

P

j2cb
C1;ij þ

P

i2cb

P

j2ca
C2;ij

� �

, where ca and cb are the set of cells in cell types a

and b, respectively. Cell type pairs with alignment score less than z are filtered out. By default, z is

set to be 0.1.

The network graphs in Figure 5C are generated using the networkx package (https://networkx.

github.io) in python. To focus on densely connected cell type groups, we filter out cell type pairs

with alignment score less than 0.05.

Identification of gene pairs that drive cell type mappings
We define g1 and g2 to contain SAMap-linked genes from species 1 and 2, respectively. Note that a

gene may appear multiple times as SAMap allows for one-to-many homology. Let Xa1b2 denote the

set of all cells with cross species edges between cell types a1 and b2. We calculate the average stan-

dardized expression of all cells from species i that are in Xa1b2 : Yi;gi ¼
1

j x;x2Xa1b2f gj
P

x2Xa1b2
Z
~

i;x;gi , where
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Z
~

i;x;gi 2 R
jgij is the standardized expression of genes gi in cell x. The correlation between Y1;g1 and

Y2;g2 can be written as Corr Y1;g1 ; Y2;g2
� �

¼
Pjg1j

j¼1
S Y1;g1
� �

j
�S Y2;g2
� �

j
, where S Zð Þ standardizes vector Z to

have zero mean and unit variance. We use the summand to identify gene pairs that contribute most

positively to the correlation. We assign each gene pair a score: hg ¼ T S Y1;g1
� �� �

� T S Y2;g2
� �� �

, where

T Zð Þ sets negative values in vector Z to zero in order to ignore lowly-expressed genes. To be inclu-

sive, we begin with the top 1000 gene pairs according to hg and filter out gene pairs in which one or

both of the genes are not differentially expressed in their respective cell types (p-value > 10�2), have

less than 0.2 SAM weight, or are expressed in fewer than 5% of the cells in the cluster. The differen-

tial expression of each gene in each cell type is calculated using the Wilcoxon rank-sum test imple-

mented in the scanpy function scanpy.tl.rank_genes_groups.

Orthology group assignment
We use the eggNOG mapper (v5.0) (Huerta-Cepas et al., 2019) to assign each gene to an orthol-

ogy group with default parameters. For the zebrafish-to-Xenopus mapping, genes are considered

orthologs if they map to the same vertebrate orthology group. For the pan-species analysis, we

group genes from all species with overlapping orthology assignments. In Figure 6B, each column

corresponds to one of these groups. As each group may contain multiple genes from each species,

we present the expression of the gene with the highest enrichment score per species. All gene

names and corresponding orthology groups are reported in Supplementary file 5.

Paralog substitution analysis
SAMap outputs gene-gene correlations across the combined manifold for all pairs of genes in the

homology graph. As determined by eggNOG, genes that map to the same orthology group for the

two species’ most recent common ancestor are considered orthologs, and those that map to the

same orthology group more ancestral than Vertebrata are considered as paralogs. We note that as

eggNOG does not provide an orthology group corresponding to the osteichtyan ancestor, our anal-

ysis does not include the paralogs that duplicated in between the osteichtyan and the vertebrate

ancestors. If a gene has significantly higher correlation to one of its paralogs than its ortholog (>0.3

by default), we consider its ortholog to have been substituted. Paralog substitutions are identified

using the samap.analysis.ParalogSubstitutions function provided by the SAMap package.

The evolutionary time period in which paralogs were duplicated can be inferred by identifying

their most recent shared orthology group. We calculate the enrichment of paralog substitutions for

each taxonomic level (i.e. Chordata, Bilateria, Metazoa, Opisthokonta, and Eukaryota) using the egg-

NOG orthology group assignments. We normalize the number of substituting paralogs by the total

number of paralogs at each level to calculate the rate of paralog substitution across evolutionary

time.

To quantify the enrichment of substituting paralogs in each cell type, we define a cell type-spe-

cific substitution score. We first assign paralog substitution events to cell types if the paralogous

gene pairs are enriched in any of their mappings. Each cell type k then has a set of substituting

paralogs Pk. The score Sk for cell type k is calculated as Sk ¼
P

i2Pk

1�ni
mk

, where ni is the number of

paralogs of ortholog i normalized by the maximum number of paralogs observed across all genes to

accounts for the fact that genes with more paralogs are more likely to match with substituting paral-

ogs by random chance, and mk is the number of differentially expressed genes in cell type k. Simi-

larly, the denominator accounts for the fact that cell types with more differentially expressed genes

are more likely to have paralog substitutions by random chance. The substitution scores for cell

types with annotated homologs across species are averaged.

Phylogenetic reconstruction of gene trees
We generate gene trees to validate the identity of genes involved in putative examples of paralog

substitution and of Fox and Csrp transcriptional regulators that are identified as enriched in contrac-

tile cells. For this, we first gather protein sequences from potential homologs using the eggnog ver-

sion 5.0 orthology database (Huerta-Cepas et al., 2019). For the Fox and Csrp phylogenies, we

include all Fox clade I (Larroux et al., 2008) and Csrp/Crip homologs, respectively, from the seven

species included in our study.
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Alignment of protein sequences is performed with Clustal Omega version 1.2.4 using default set-

tings as implemented on the EMBL EBI web services platform (Madeira et al., 2019). Maximum like-

lihood tree reconstruction is performed using IQ-TREE version 1.6.12 (Nguyen et al., 2015) with the

ModelFinder Plus option (Kalyaanamoorthy et al., 2017). For the Csrp tree, we perform 1000 non-

parametric bootstrap replicates to assess node support. For Fox, we utilize the ultrafast bootstrap

support option with 1000 replicates. For each gene tree we choose the model that minimizes the

Bayesian Information Criterion (BIC) score in ModelFinder. This results in selection of the following

models: DCMut+R4 (Csrp) and VT+F + R5 (Fox). The final consensus trees are visualized and ren-

dered using the ETE3 v3.1.1 python toolkit (Huerta-Cepas et al., 2016) and the Interactive Tree of

Life v4 (Letunic and Bork, 2019).

KOG functional annotation and enrichment analysis
Using the eggNOG mapper, KOG functional annotations are transferred to individual transcripts

from their assigned orthology group. For enrichment analysis, all genes enriched in the set of cell

type pairs of interest are lumped to form the target set for each species. For example, the target set

for Spongilla archaeocytes used in Figure 6C is composed of all genes enriched between Spongilla

archaeocytes and other invertebrate stem cells. Note that this set includes genes from other species

that are linked by SAMap to the Spongilla archeocyte genes. We include genes from other species

in the target set to account for differences in KOG functional annotation coverage between species.

As such, the annotated transcripts from all seven species are combined to form the background set.

We use a hypergeometric statistical test (Eden et al., 2009) to measure the enrichment of the KOG

terms in the target genes compared to the background genes.

Mapping zebrafish and Xenopus atlases using existing methods
For benchmarking, we use vertebrate orthologs as determined by eggNOG as input to Harmony

(Korsunsky et al., 2019), LIGER (Welch et al., 2019), Seurat (Stuart et al., 2019), Scanorama

(Hie et al., 2019), BBKNN (Polański et al., 2019), which are all run with default parameters. One-to-

one orthologs are selected from one-to-many and many-to-many orthologs by using the bipartite

maximum weight matching algorithm implemented in networkx. When using the one-to-one ortho-

logs as input for SAMap, we run for only one iteration. The resulting integrated lower-dimensional

coordinates (PCs for Seurat, Harmony, and Scanorama and non-negative matrix factorization coordi-

nates for LIGER) and stitched graphs (BBKNN and SAMap) are all projected into 2D with UMAP (Fig-

ure 2—figure supplement 1A). The integrated coordinates are used to generate a nearest neighbor

graph using the correlation distance metric, which is then used to compute the alignment scores in

Figure 2—figure supplement 1B. The alignment scores for SAMap and BBKNN are directly com-

puted from their combined graphs.

In situ hybridization in schistosomes
S. mansoni (strain: NMRI) juveniles are retrieved from infected female Swiss Webster mice (NR-

21963) at ~3 weeks post-infection by hepatic portal vein perfusion using 37˚C DMEM supplemented

with 5% heat inactivated FBS. The infected mice are provided by the NIAID Schistosomiasis

Resource Center for distribution through BEI Resources, NIH-NIAID Contract HHSN272201000005I.

In adherence to the Animal Welfare Act and the Public Health Service Policy on Humane Care and

Use of Laboratory Animals, all experiments with and care of mice are performed in accordance with

protocols approved by the Institutional Animal Care and Use Committees (IACUC) of Stanford Uni-

versity (protocol approval number 30366). In situ hybridization experiments are performed as

described previously (Tarashansky et al., 2019), using riboprobes synthesized from gene fragments

cloned with the listed primers: collagen (Smp_170340): GGTGAAGAAGGCTGTTGTGG, ACGA

TCCCCTTTCACTCCTG; tropomyosin (Smp_031770): AAGCTGAAGTCGCCTCACTA, CATATGCCTC

TTCACGCTGG; troponin (Smp_018250): CGTAAACCTGGTCAGAAGCG, ATCCTTTTCCTCCA-

GAGCGT; myosin regulatory light chain (Smp_132670): GAGACAGCGAGTAGTGGAGG, TGCCTTC

TTTGATTGGAGCT; wnt11 (Smp_156540): TGTGGTGATGAAGATGGCAG, CCACGGCCACAA-

CACATATT; frizzled (Smp_174350): CGAACAGGCGCATGACAATA, TGCTAGTCCTGTTGTCGTGT.
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logs, the expression correlations for ortholog and paralog pairs, the difference between their

correlations, the paralogs’ last common ancestor, and the cell types in which the genes are enriched.

Highlighted rows are shown in Figure 3A.

. Supplementary file 5. Genes enriched in contractile cell types and invertebrate stem cells

highlighted in Figure 6. The IDs of the genes enriched in the contractile and invertebrate stem cell

types are provided along with the IDs of the eggNOG orthology groups to which they belong. In

cases where multiple genes from a species belonging to the same orthology group are enriched, the

most differentially expressed gene is shown. The descriptions in the stem cell table are orthology

annotations associated with the Spongilla genes provided in the original study (Musser et al.,

2019).

. Supplementary file 6. Transcript IDs corresponding to the multipotent stem cell enriched genes

shown in Figure 6D.

. Supplementary file 7. Cell types in the cell type families shown in Figure 5C. For the schistosome

cell types, we annotate two neural clusters, both of which express the neural marker complexin

(Li et al., 2021). One of the clusters expresses the antigen SmKK7, so we label the clusters ‘Neural’

and ‘Neural_KK7’, respectively. The ‘Muscle’ population contains non-stem cells expressing tropo-

nin. The ‘Tegument_prog’ and ‘Tegument’ populations consist of cells expressing tegument progen-

itor and differentiated marker genes, respectively, as reported in a previous study (Wendt et al.,

2018).

. Transparent reporting form

Data availability

All data analyzed during this study are available through various sources as listed in Supplementary

file 1.

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and Identifier

Musser JM 2019 Whole-body single-cell RNA
sequencing reveals
components of elementary
neural circuits in a sponge

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE134912

NCBI Gene Expression
Omnibus, GSE134912

Siebert S, Cazet J,
Farrell JA

2018 Stem cell differentiation
trajectories in Hydra resolved
at single cell resolution

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE121617

NCBI Gene Expression
Omnibus, GSE121617

Fincher CT, Wurtzel
O, de Hoog T,
Kravarik KM,
Reddien PW

2018 Cell type transcriptome atlas
for the planarian Schmidtea
mediterranea

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE111764

NCBI Gene Expression
Omnibus, GSE111764

Zeng A, Li H,
Sánchez Alvarado A

2017 Tetraspanin family member
functionally resolves and
facilitates the purification of
adult pluripotent stem cells
used for whole-body
regeneration

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE107873

NCBI Gene Expression
Omnibus, GSE107873
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Xue Y, Li P, Quake
SR, Wang B

2020 Single-cell analysis reveals
regulation of germline stem
cell fate in the human parasite
Schistosoma mansoni

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE147355

NCBI Gene Expression
Omnibus, GSE147355

Wagner DE,
Weinreb C, Collins
ZM, Megason SG,
Klein AM

2018 Systematic mapping of cell
state trajectories, cell lineage,
and perturbations in the
zebrafish embryo using single
cell transcriptomics

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE112294

NCBI Gene Expression
Omnibus, GSE112294

Briggs JA, Weinreb
C, Wagner DE,
Megason S,
Peshkin L, Kirschner
MW, Klein AM

2018 The dynamics of gene
expression in vertebrate
embryogenesis at single cell
resolution

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE113074

NCBI Gene Expression
Omnibus, GSE113074

Griffiths J 2018 Embryo Timecourse https://github.com/Mar-
ioniLab/EmbryoTime-
course2018

Github, ab59525
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