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Transcriptome-wide association study identifies
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Abstract
Depression is the most prevalent mental disorder with substantial morbidity and mortality. Although genome-wide
association studies (GWASs) have identified multiple risk variants for depression, due to the complicated gene
regulatory mechanisms and complexity of linkage disequilibrium (LD), the biological mechanisms by which the risk
variants exert their effects on depression remain largely unknown. Here, we perform a transcriptome-wide association
study (TWAS) of depression by integrating GWAS summary statistics from 807,553 individuals (246,363 depression
cases and 561,190 controls) and summary-level gene-expression data (from the dorsolateral prefrontal cortex (DLPFC)
of 1003 individuals). We identified 53 transcriptome-wide significant (TWS) risk genes for depression, of which 23
genes were not implicated in risk loci of the original GWAS. Seven out of 53 risk genes (B3GALTL, FADS1, TCTEX1D1,
XPNPEP3, ZMAT2, ZNF501 and ZNF502) showed TWS associations with depression in two independent brain expression
quantitative loci (eQTL) datasets, suggesting that these genes may represent promising candidates. We further
conducted conditional analyses and identified the potential risk genes that driven the TWAS association signal in each
locus. Finally, pathway enrichment analysis revealed biologically pathways relevant to depression. Our study identified
new depression risk genes whose expression dysregulation may play a role in depression. More importantly, we
translated the GWAS associations into risk genes and relevant pathways. Further mechanistic study and functional
characterization of the TWS depression risk genes will facilitate the diagnostics and therapeutics for depression.

Introduction
Depression is a complex and heterogeneous mental

disorder characterized by depressed mood, loss of
interests, appetite and sleep disturbances, cognitive
impairments, feelings of worthlessness and hope-
lessness1,2. Depression has a high global prevalence

(~4.7%) and over 298 million of the global population
were affected by depression3–5. Females were more likely
(about twice) to develop depressive symptoms than
males6. As depression has a high prevalence and is
accompanied with substantial morbidity and mortality, it
becomes a leading cause of disability worldwide and a
major contributor to global disease burden (e.g. the
economic burden of depression was estimated about
$210.5 billion in US in 20104,7). To date, the etiology of
depression remains largely unknown. However, accu-
mulating evidence indicate that depression was caused
by a combination of genetic and environmental factors.
Twin study has estimated the heritability of depression
to be ~37%8, indicating the important role of genetic
component in the development of depression.
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In the past decade, we have witnessed the rapid progress
of genetic study of depression. Since CONVERGE con-
sortium identified two genome-wide significant risk loci
for depression in 20149, multiple exciting findings have
been reported by genome-wide association studies
(GWASs)10–13. Recently, Howard et al. reported the lar-
gest GWAS of depression and identified over 100 risk loci
that reached genome-wide significance level14. Despite
the fact that GWASs of depression have made great
progress in recent years and over 100 depression risk loci
have been identified by GWASs, mechanistic investiga-
tions and biological interpretations lag far behind. For
most of the risk loci, the implicated genes and corre-
sponding mechanisms remain largely unknown. In tradi-
tional GWASs, the gene (or genes) that located the
nearest to the most significant risk variant was usually
assigned as the potential candidate gene. However, due to
the complexity of LD (each risk locus usually contains
several genes that were in high linkage disequilibrium
(LD)) and gene regulation (genetic variants may regulate
distal genes rather than the nearest gene through affecting
chromosomal conformation change), the nearest gene
may not necessarily represent the causal gene by which
the identified GWAS risk variants exert their effects on
depression15. As the vast majority of depression risk
variants identified by GWASs were located in non-coding
regions, it is possible that these risk variants confer
depression risk through modulating gene expression
rather than altering protein sequences or structures16.
Transcriptome-wide association study (TWAS) is a

powerful approach aimed at identifying risk genes whose
expression perturbations may confer disease suscept-
ibility. Through integrating expression quantitative loci
(eQTL) results with GWAS associations, TWAS could
identify genes whose genetically regulated expression may
be associated with diseases risk17. This method leverages a
relatively small set of reference individuals with expres-
sion and genotype measured data to impute the
expression-trait association statistics from GWAS sum-
mary data18. In addition to prioritizing putative target
genes at genome-wide significant loci, TWAS provides an
opportunity to detect genes with small effect sizes and
located in regions that do not contain genome-wide sig-
nificant variants19. Furthermore, the susceptibility genes
identified by TWAS can more accurately inform follow-
up experimental validation and potential treatment
strategies.
In this study, we carried out a TWAS of depression by

integrating brain eQTL data (from the dorsolateral pre-
frontal cortex (DLPFC)) of 1003 subjects (including the
CommonMind Consortium (CMC)20 and the second
phase of the BrainSeq Consortium (BrainSeq2)21) and the
largest depression GWAS (including 246,363 cases and
561,190 controls)14. We identified 53 transcriptome-wide

significant (TWS) depression risk genes that reached
Bonferroni-corrected significance level. We subsequently
performed conditional analysis of all significant TWAS
associations to identify independent associations (i.e. the
driven genes at each risk locus). Pathway and gene
ontology analyses of the TWS genes identified relevant
pathways, including formation of fibrin clot, female
pregnancy and peripheral axonal degeneration pathways.
Finally, we compared the expression level of the TWS
depression risk genes in brains of depression cases and
controls using RNA-sequencing (RNA-seq) expression
data. Overall, our findings highlight the power of TWAS
in identifying depression risk genes with small effect size
and provide testable targets for further functional vali-
dation of depression. Future mechanistic investigations
and functional experiments of the TWS depression risk
genes will provide pivotal information for the diagnostics
and therapeutics of depression.

Methods and materials
GWAS meta-analysis
The summary statistics from the largest GWAS of

depression14 were used in this study. To identify the
common risk variants for depression, Howard et al. per-
formed a genome-wide meta-analysis through combining
three large-scale depression cohorts (including 23andme,
PGC2 and UK Biobank)10,11,22 (a total of 246,363 cases
and 561,190 controls, after excluding overlapping sam-
ples) and identified 102 independent genetic variants
associated with depression14. Detailed information about
the participants ascertainment, genotyping, quality con-
trol and statistical analysis can be found in the original
study14. The summary statistics for the meta-analysis of
depression in UK Biobank and PGC_139k cohorts were
downloaded from the Edinburgh data share center
(https://doi.org/10.7488/ds/2458)14. We then conducted a
meta-analysis by combining summary statistics from
above two cohorts and 23andMe10 using PLINK23 soft-
ware and more detailed procedure of fixed-effect meta-
analysis has been previously described in study of Li
et al.12. We obtained the depression GWAS summary
statistics of 23andme under a data transfer agreement12.

Transcriptome-wide association analysis
We performed a TWAS through integrating the

depression GWAS summary statistics and two sets of
eQTL data (i.e. CMC20 (N= 452) and BrainSeq221 (N=
551), respectively). The CMC SNP-expression weights
(The SNP-expression weights represent the correlations
between SNPs and gene expression in the reference panel
while accounting for LD and were computed from dif-
ferent linear models (including BLUP, BSLMM, LASSO,
Elastic Net and top SNPs)) were downloaded directly
from the FUSION/TWAS website (http://gusevlab.org/

Li et al. Translational Psychiatry          (2021) 11:306 Page 2 of 13

https://doi.org/10.7488/ds/2458
http://gusevlab.org/projects/fusion/


projects/fusion/). The BrainSeq2 SNP-expression weights
were obtained from the Lieber Institute for Brain Devel-
opment (LIBD) browser (http://eqtl.brainseq.org/phase2/).
Please refer to the original papers for further details on
the sample collection, RNA extraction and sequencing,
genotyping and statistical analysis20,21. The SNP-
expression weights (i.e. expression weights) were derived
using the default processing pipelines described in
FUSION (http://gusevlab.org/projects/fusion)17.
The TWAS was performed using the FUSION software

with default settings17 and a strict Bonferroni-corrected
study-wise P threshold (i.e. P= 3.95 × 10−6 (0.05/12,647)
(total number of genes across panels) was used in this
study. TWAS analysis utilizes several regularized linear
models (including BLUP, LASSO and elastic net) and an
additional Bayesian linear mixed model (BSLMM) to
evaluate expression imputation. Furthermore, FUSION
performs a fivefold cross-validation for each of the desired
models to determine which model is the best. For a given
gene, SNP-expression weights in the cis-locus were
computed using the best prediction model and FUSION
typically restricts the cis-locus to 500 kb boundary on
either side of the gene. The TWAS calculated Z-score
results were used to assess the association between gene
and depression and the absolute value of the Z-score
reflects the association strength between implicated genes
and disease. More detailed information about the princi-
ple of FUSION, statistical model and Z-score calculation
can be found in the original paper17.

Transcriptome-wide association analysis using SNP-
expression weights from PsychENCODE
We further performed a TWAS using the SNP-

expression weights data from PsychENCODE24. Briefly,
TWAS was performed using the FUSION package17

(https://github.com/gusevlab/fusion_twas) as above
described, with the use of SNP-expression weights from
PsychENCODE (1321 unique individuals). Detailed
information about PsychENCODE was provided in Psy-
chENCODE website (http://resource.psychencode.org/)
and related publication17.

Transcriptome-wide association study in the Asian dataset
To further explore the ethnic difference for the TWAS

results in depression across populations, we carried out a
depression TWAS in the Asian population by integrating
eQTL data from lymphoblastoid cell lines of 162 samples
(including 80 Han Chinese from Beijing and 82
Japanese in Tokyo, Japan populations)25 and the Chinese
GWAS summary statistics (including 5303 women
depression and 5337 controls) from the CONVERGE
consortium9. More detailed information about eQTL
and GWAS datasets can be found in the original
studies9,25.

Defining of genes implicated in depression GWAS
We first extracted the genomic coordinates of all TWS

genes (based on hg19). We then compared the genomic
locations of the TWS genes with genes identified by
Howard et al.14 (i.e. gene located in the 102 depression
risk loci identified by Howard et al.). Genes that overlap
with any risk locus defined by Howard et al. were con-
sidered as genes implicated in depression GWAS.

Conditional and joint analysis
Conditional and joint analysis (based on genes rather

than SNPs) were performed for genome-wide significant
(Bonferroni-corrected) TWAS signals using FUSION17.
The joint and conditional tests aim to evaluate the GWAS
association signal after removing expression association
from TWAS (i.e., to investigate if the GWAS signals are
still significant after removing the expression association
from TWAS). To evaluate the joint/conditional gene
model, marginal association statistics (i.e., the main
TWAS results) and a correlation/LD matrix are required.
Each depression GWAS SNP association was conditioned
on the joint gene model (one SNP at a time). The per-
mutation test was used in conditional and joint analysis,
with a maximum of 100,000 permutations and an initiate
permutation P-value threshold of 0.05 for each feature.
“FUSION.post_process.R” script was used for post-
processing and generating multiple conditional output
plots along with summary statistics.

Pathway analysis
Considering the correlation (i.e., co-expression) of the

TWAS implicated genes may affect the independence of
the Bonferroni-correction assumption, we tend to relax
the Bonferroni-corrected P threshold instead of stringent
Bonferroni-corrected standard. Therefore, a relaxed
Bonferroni significance threshold (estimated as P=
7.91 × 10−6 (0.10/12,647)) was used for pathway analyses
in our analysis (which allows for more genes to include in
the pathway enrichment analysis). GeneNetwork v2.0
(https://genenetwork.nl), which uses gene co-regulation
to predict pathway membership and HPO term associa-
tions26 was used for pathway analysis. By integrating
31,499 public RNA-seq samples from a wide range of
tissues and cell types, GeneNetwork generated multiple
pathways for pathway analysis26. As genes are known to
cause a particular disease or disease symptom tend to
have similar molecular functions or are involved in the
same pathway or biological processes27,28, it’s possible for
GeneNetwork to accurately predict gene functions and to
prioritize candidate disease genes with high accuracy.
Agnostic analyses of pathways in databases (including
Gene Ontology (GO) and Reactome) were done to iden-
tify special pathways relevant to depression. More detailed
information about the principle of GeneNetwork such as
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principal component analysis (PCA), co-regulation scores
calculation, P-value calculation and statistical analyses can
be found in the original study26.

Expression analysis of TWAS significant genes in
depression cases and controls
TWAS identified a total of 53 genes that showed sig-

nificant association with depression (after correcting for
Bonferroni test). To explore whether the expression levels
of depression-associated risk genes identified by TWAS
were dysregulated in depression cases compared with
controls, we obtained expression data (based on RNA-
seq) of brain tissues (only the expression data from the
DLPFC were used for further analysis) from three data-
sets, including GSE102556 (26 depression cases and 22
controls)29, GSE101521 (30 depression cases and 29
controls)30 and GSE80655 (23 depression cases and 24
controls)31. The same processing procedure was con-
ducted for quality control, alignment and gene-expression
quantification in three RNA-seq datasets. Briefly, Trim-
momatic32 was utilized to examine the sequencing quality
and trim reads. The clean paired-end reads were then
aligned to the human reference genome (GRCh38) by
using Hisat233 and gene-level reads counts were quanti-
fied as transcripts per million (TPM) with feature-
Counts34. Protein-coding genes with average TPM ≥ 1.0
were extracted and differentially expressed genes (DEGs)
were identified (based on read counts using likelihood
ratio test (LRT)) for each of three datasets using DESeq235

R package. More detailed information about sample col-
lection, sample diagnose and RNA sequencing can be
found in the original studies36.

Spatio-temporal expression pattern analysis
To explore the spatio-temporal expression pattern of

the depression candidate genes identified by TWAS
analysis in human brain, we downloaded expression data
(based on RNA-seq) from the Allen Institute for Brain
Science (http://www.brainspan.org/)37. For a specific
brain developmental stage, the mean expression level of
all the genes in a geneset was represented as the expres-
sion level of the geneset at this stage. The gene-expression
level was measured by RPKM (read per kilobase per
million mapped reads) and two genesets implicated by
TWAS analysis were used in this study. Background genes
were extracted from a previous study38.

Cell-type-specific expression analysis of TWS depression
genes
The cell-type-specific expression pattern data were

obtained from a previous study39. Briefly, Skene et al.
carried out a comprehensive single-cell analysis of mouse
brain tissues (including the hippocampus, neocortex,
striatum and etc). A total of 9970 cells were sequenced

and 24 cell types were identified by Skene et al. Skene
et al. then calculated the specificity score of each gene in
each cell type (a higher specificity score indicates a higher
specificity of gene expression in a specific cell type). We
firstly converted candidate human genes into mouse
orthologs. We then extracted the specificity score for each
gene in each cell type. We set a cutoff value of the spe-
cificity score to 0.1, and we calculated the number of
genes with a specificity score greater than 0.1 in each cell
type. All the analyses were performed with R software and
more details about the single-cell data could be found in
the original paper39.

Spatio-temporal expression pattern analysis of TWS genes
in the human brain
We used the expression data from the Allen Institute

for Brain Science (http://www.brainspan.org/)37 for
spatio-temporal expression analysis. Gene-expression
values of the TWS risk genes in the prefrontal cortex
(PFC) (N= 42) were downloaded and transformed as
previously described40.

Tissue-type-specific expression analysis of TWS depression
genes
To explore the expression pattern of TWS genes in

human tissues, we investigated their expression level in
diverse human tissues using the Genotype-Tissue
Expression (GTEx) project (http://gtexportal.org/)41,
which includes expression data in 54 human tissues.
Detailed information about the GTEx (e.g. sample source
or size, gene-expression normalization) can be found in
original publication41 and the GTEx website.

Results
TWAS identifies 53 susceptibility genes for depression
To identify genes associated with depression, we per-

formed a TWAS by integrating two gene-expression
reference panels (i.e. CMC and BrainSeq2) and
summary-level association data from the largest
depression GWAS meta-analysis so far (a total of
807,553 individuals). We performed TWAS using the
FUSION software (Methods)17. Briefly, this approach
uses GWAS summary statistics and gene-expression
panels with reference LD to estimate the association
between the cis-genetic components of gene expression
and depression risk. In total, we identified 53 TWS
depression-associated genes (summed across two
expression reference panels) after Bonferroni correction,
including 33 significant genes detected using the CMC
dataset (Supplementary Table 1 and Fig. 1a) and 27
genes detected using the BrainSeq2-DLPFC dataset
(Supplementary Table 2 and Fig. 1b). Among the TWS
associations (53 genes), 30 of the genes were implicated
in the original depression GWAS and the remaining 23
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genes did not fall within previous GWAS loci (definition
of genes implicated in depression GWAS can be found in
methods). Notably, we found that 7 out of 53 genes
reached transcriptome-wide significance level in both
two expression panels (CMC and BrainSeq2), including
B3GALTL, FADS1, TCTEX1D1, XPNPEP3, ZMAT2,
ZNF501 and ZNF502 (Table 1 and Fig. 1). Among the
seven TWS genes, upregulation of XPNPEP3 may be
associated with depression risk as it has a positive Z-

score (Z > 0 suggests that the gene is predicted to be
upregulated in cases compared with controls). However,
downregulation of other genes may increase risk of
depression (Z < 0). These data suggested that the TWAS
significant genes may have a role in depression risk. In
addition, the overlapping genes identified in both
expression panels represent plausible candidate genes for
depression as these genes showed TWS association with
depression in two independent eQTL datasets.

Fig. 1 Manhattan plot of the TWAS results for depression (246,363 cases and 561,190 controls). a Manhattan plot of TWAS results in CMC
dataset (a total of 33 significant genes detected). b Manhattan plot of TWAS results in BrainSeq2 dataset (a total of 27 significant genes detected).
Each point represents a gene, with physical genomic position (chromosome, basepair) plotted on the x-axis and association P-value (the −log10
(FUSION P-value)) between gene expression in the DLPFC and depression plotted on the y-axis. Bonferroni-corrected significant genes are labeled
and the significance threshold of P= 7.91 × 10−6 was used. Seven genes reached transcriptome-wide significance in both two expression panels
(including B3GALTL, FADS1, TCTEX1D1, XPNPEP3, ZMAT2, ZNF501 and ZNF502) and are highlighted in red colour.
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Expression signals driven the depression TWAS hits
TWAS usually identifies several TWS genes for each of

the risk locus. To detect if the identified transcriptome-
wide association signals were conditionally independent
and to explore whether the GWAS signals remain sig-
nificant after removing the expression weights from
TWAS, we conducted conditional and joint analyses. Our
conditional analyses identified several independent TWS
genes from both of the brain eQTL datasets (Fig. 2). We
found that TCTEX1D1 explains most of the signal at its
locus in both CMC dataset (rs10789214 lead SNP PGWAS

= 7.53 × 10−8, conditioned on TCTEX1D1 lead SNP
PGWAS= 7.83 × 10−3) (Fig. 2a) and BrainSeq2 dataset
(rs10789214 lead SNP PGWAS= 7.53 × 10−8, conditioned
on TCTEX1D1 lead SNP PGWAS= 2.12 × 10−2) (Fig. 2b).
Similarly, conditional analyses showed that ZNF445
explained most of the signal at its locus in CMC dataset
(Fig. 2c) and ZNF502 explained most of the signal at its
locus in BrainSeq2 dataset (Fig. 2d). In addition, we also
found that FADS1 (Fig. 2e, f), B3GALTL (Fig. 2g, h) and
XPNPEP3 (Fig. 2i, j) genes explained most of the variance
at their loci in both CMC and BrainSeq2 datasets. Col-
lectively, our conditional analyses identified independent
genes that driven the transcriptome-wide association
signals.

Pathway enrichment analysis of the identified TWS genes
revealed related biological processes
To detect whether the TWS genes identified by TWAS

were enriched in specific pathways, we carried out
pathway and gene ontology analysis. All of genes that
reached a relaxed Bonferroni-corrected significance were
grouped into three different clusters based on co-
expression of 31,499 public samples (expression level
was quantified with RNA-seq) (Fig. 3). Several biological
pathways were significantly enriched among the
TWS depression genes, including female pregnancy

(Mann–Whitney U-Test, P= 8.53 × 10−6), formation of
Fibrin Clot (Mann–Whitney U-Test, P= 7.92 × 10−5),
cAMP binding (Mann–Whitney U-Test, P= 7.45 ×
10−4) and ephrin signaling (Mann–Whitney U-Test, P=
7.37 × 10−4) (Table 2). In addition, Human Phenotype
Ontology (HPO) analyses suggested that the identified
TWAS significant genes were enriched in peripheral
axonal degeneration (Mann–Whitney U-Test,
P= 5.49 × 10−4) and neurodevelopmental delay
(Mann–Whitney U-Test, P= 7.08 × 10−4) (Table 2).
Interestingly, we noticed that several marginally sig-
nificant enriched pathways were consistent with previous
findings42, including G-protein coupled receptor activity
(Mann–Whitney U-Test, P= 8.54 × 10−2).

TWS genes showed higher expression level than
background genes in the human brain
In addition to pathway enrichment analysis, another

important approach to explore the biological function of
geneset is the spatio-temporal gene-expression profiling.
Based on the expression data from the BrainSpan (http://
www.brainspan.org/), we carried out spatio-temporal
expression pattern analysis for two TWS genesets (gene-
set 1: the TWS depression genes identified both in CMC
and BrainSeq2 expression panels, N= 7; geneset 2: all
TWS depression genes across two expression panels, N=
53). More detailed information about spatio-temporal
expression pattern analysis can be found in the study of
Gilman et al.43. The average expression level of all TWS
depression genes (Supplementary Table 1 and 2) was
significantly higher than the expression level of the
background genes across all developmental stages (Wil-
coxon rank-sum test, P < 8.66 × 10−5) (Supplementary Fig.
1). Moreover, we found that the expression level of the
TWS depression genes was higher in prenatal stage than
the postnatal stages in geneset 2 (P= 1.30 × 10−2, Wil-
coxon rank-sum test) but not in geneset 1 (P= 6.60 ×

Table 1 Significant TWAS genes both in CMC and LIBD datasets for depression.

Gene Region CMC dataset BrainSeq2 dataset

Best eQTL TWAS.Z TWAS.P Best eQTL TWAS.Z TWAS.P

TCTEX1D1 chr 1:67218142–67244470 rs512691 −5.81 6.26E-09 rs10493416 −5.49 3.99E-08

ZNF501 chr 3:44771088–44778575 rs10514710 −4.69 2.68E-06 rs10514710 −4.79 1.68E-06

ZNF502 chr 3:44754135–44765323 rs10514710 −4.93 8.21E-07 rs10514710 −4.98 6.50E-07

ZMAT2a chr 5:140078265–140086248 rs801183 −5.24 1.65E-07 rs3756341 −5.02 5.28E-07

FADS1a chr 11:61567099–61596790 rs174568 −4.82 1.42E-06 rs174566 −5.12 3.08E-07

B3GALTL chr 13:31774073–31906413 rs4065552 −4.79 1.70E-06 rs9543390 −5.52 3.44E-08

XPNPEP3 chr 22:41253081–41363838 rs138354 5.93 2.97E-09 rs2899341 5.18 2.26E-07

aIndicates that the TWAS gene was not implicated in the original depression GWAS.
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Fig. 2 (See legend on next page)
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10−2, Wilcoxon rank-sum test). These data suggest that
the identified TWS depression genes may have pivotal
roles in brain development and function.

Cell-type-specific expression analysis of target genes
To explore the expression pattern of the TWS depres-

sion genes in different brain cell types, we conducted cell-
type-specific expression analyses39. TWS depression
genes identified in CMC and BrainSeq2 datasets (a total of

53 genes) (Supplementary Table 1 and 2) were analyzed to
investigate if TWS depression genes were specifically
expressed in specific cell populations. Notably, we found
that the TWS depression genes were primarily expressed
in two pyramidal cell types (including hippocampal CA1
pyramidal cells and somatosensory pyramidal cells) (i.e.
these two pyramidal cell types contained the most num-
bers of the TWS depression genes that above the speci-
ficity score (i.e. specificity score > 0.1)) (Supplementary

(see figure on previous page)
Fig. 2 Regional association of transcriptome-wide significant genes. a Chr 1 regional association plot in CMC dataset. b Chr 1 regional
association plot in BrainSeq2 dataset. Of note, TCTEX1D1 driven the association signal in both two eQTL datasets. c Chr 3 regional association plot in
CMC dataset. d Chr 3 regional association plot in BrainSeq2 dataset. e Chr 11 regional association plot in CMC dataset. f Chr 11 regional association
plot in BrainSeq2 dataset. Notably, FADS1 explained most of the association signal in both two eQTL datasets. g Chr 13 regional association plot in
CMC dataset. h Chr 13 regional association plot in BrainSeq2 dataset. Notably, B3GALTL driven the association signal in both two eQTL datasets. i Chr
22 regional association plot in CMC dataset. j Chr 22 regional association plot in BrainSeq2 dataset. Notably, XPNPEP3 explained most of the
association signal in both two eQTL datasets. The top panel in each plot shows all of the genes in the locus. The marginally TWAS associated genes
are highlighted in blue, and those that are jointly significant highlighted in green. The bottom panel shows a Manhattan plot of the GWAS data
before (grey) and after (blue) conditioning on the predicted expression of the green genes. The x-axis denotes genome coordinates and the y-axis
denotes association P-values in GWAS.

Fig. 3 Gene clustering for the identified TWAS genes based on co-expression. Public RNA-sequencing data from 31,499 samples was used to
determine co-expression profiles. Co-expression cluster 1 was showed in blue. Co-expression cluster 2 was showed in green. Co-expression cluster 3
was showed in purple. Darker lines represent stronger co-expression.
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Fig. 2). This result is consistent with previous findings and
provides further support for the involvement of pyramidal
cells in depression44,45. In addition, this result also sug-
gests that the TWS genes may confer depression risk by
affecting the functions of pyramidal cells. To explore the
expression pattern of the seven overlapping TWS genes in
different human tissues, we performed tissue-type-specific
expression analysis using expression data from GTEx.
Our results indicated that expression level of FADS1 and
TCTEX1D1 is low in most human tissues. However, other
five genes (B3GALTL, XPNPEP3, ZMAT2, ZNF501 and
ZNF502) are all expressed in human brains (Supplemen-
tary Figs. 3–9).

Expression analysis of TWS genes in brains of depression
cases and controls
TWAS identified depression-associated genes (Supple-

mentary Tables 1 and 2) under the assumption that
genetic variants influence depression risk by modulating
gene expression. To further explore if the significant
genes identified by TWAS analysis were dysregulated in
depression cases compared with controls, we compared
the expression level of the TWS genes in brains of
depression cases and healthy controls using the expres-
sion data from three RNA-seq studies29–31. As previous
studies have indicated that the DLPFC may play a pivotal
role in depression46,47, we only selected the expression
data from the DLPFC to perform differential expression
analysis. These three datasets were GSE102556 (26
depression cases and 22 controls)29, GSE101521 (30
depression cases and 29 controls)30 and GSE80655 (23
depression cases and 24 controls)31. The P value was

corrected by the Bonferroni correction (for multiple
testing) approach, which resulted in a significance
threshold of P= 9.43 × 10−4 (=0.05/53 TWS genes were
retained for differential expression analysis analysis). We
found that PCDHA8 (P= 1.31 × 10−3) was significantly
downregulated in depression cases compared with con-
trols in GSE101521 dataset. By contrast, FANCL (P=
4.88 × 10−2) showed a significant upregulation in
depression cases compared with controls in GSE101521
dataset (Supplementary Table 3). In GSE80655 dataset,
PCDHA7 showed a significant upregulation (P= 4.34 ×
10−3) (Supplementary Table 3). Interestingly, five TWAS
significant genes (TMEM161B-AS1, GMPPB, STAU1,
NDUFA2 and GPX1) were significantly upregulated in
brains of depression cases compared with controls in
GSE102556 dataset (Supplementary Table 3). Taken
together, these results further support that the identified
TWAS significant genes may have a role in depression. In
addition, these results also suggest that the identified risk
variants may confer depression risk through regulating
gene expression.

Discussion
Depression is a common psychiatric disorder that is

caused by a combination of multiple risk factors, includ-
ing genetic, psychological, biological and social factors.
Although recent GWASs have successfully identified
multiple depression risk loci, the biological interpretations
and functional understanding of these associations remain
poorly understood (partly due to the inability to fine-map
depression-relevant genes). TWAS17 is a powerful
approach to identify associated genes by combining the

Table 2 Significant pathways of TWAS genes identified through gene-network analysis.

Pathway Significance Database

Formation of Fibrin Clot (Clotting Cascade) 7.92E-05 Reactome

Common Pathway of Fibrin Clot Formation 3.98E-04 Reactome

Keratinization 4.95E-04 Reactome

Ephrin signaling 7.37E-04 Reactome

Female pregnancy 8.53E-06 GO Processes

Defense response to Gram-negative bacterium 3.05E-05 GO Processes

Fibrinolysis 3.65E-05 GO Processes

Epithelial to mesenchymal transition 5.63E-04 GO Processes

Pattern specification process 6.96E-04 GO Processes

Protease binding 7.00E-05 GO Function

cAMP binding 7.45E-04 GO Function

Peripheral axonal degeneration 5.49E-04 Human Phenotype Ontology

Neurodevelopmental delay 7.08E-04 Human Phenotype Ontology
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GWAS results and expression data. In this study, we
performed a depression TWAS and identified candidate
risk genes for depression. Considering that sample size
and tissue matching have pivotal roles in TWAS, we used
expression data from the DLPFC (i.e. CMC20 and Brain-
Seq221) to conduct TWAS analysis. We integrated the
summary statistics from the largest depression GWAS14

so far (N= 807,553 individuals) and gene-expression
measurements from two large-scale expression studies
to identify TWS genes for depression. Overall, we iden-
tified 53 significant genes whose expression were asso-
ciated with depression risk, of which 23 genes did not
overlap with a genome-wide significant locus in the
depression GWAS.
Our study also highlighted seven overlapping TWS

genes (including B3GALTL, FADS1, TCTEX1D1,
XPNPEP3, ZMAT2, ZNF501 and ZNF502) in both CMC
and BrainSeq2 datasets. These seven TWS genes may
represent high-confidence risk genes for depression as
they reached transcriptome-wide significance level in two
independent expression datasets. B3GLCT encodes Beta
3-Glucosyltransferase, which is involved in metabolism of
proteins and O-glycosylation of TSR domain-containing
proteins48. No previous study showed association between
this gene and depression. TCTEX1D1 (Tctex1 Domain
Containing 1) has a role in organelle biogenesis and
maintenance, and intraflagellar transport49. The protein
encoded by XPNPEP3 belongs to the family of X-pro-
aminopeptidases, which remove the N-terminal amino
acid from peptides with a proline residue in the penulti-
mate position50. ZMAT2 (Zinc Finger Matrin-Type 2) is
related to nucleic acid binding. ZNF501 (Zinc Finger
Protein 501) encodes a DNA-binding transcription factor.
An important paralog of ZNF501 is ZNF502. There were
no previous studies reported associations between
ZNF501/ZNF502 and depression. It is possible that
ZNF501/ZNF502 confer risk of depression by regulating
gene expression. FADS1 encodes fatty acid desaturase 1, a
protein that is mainly involved in metabolism of alpha-
linolenic (omega3), linoleic (omega6) acid and metabo-
lism51. Interestingly, a previous study has showed that
mRNA expression of FADS1 was significantly lower in
depression patients compared with controls, suggested
that FADS1 may have pivotal roles in depression52. More
work is needed to characterize the potential role of these
genes in depression.
We further performed a depression TWAS analysis

using the expression weights data from PsychENCODE24.
Among the seven overlapping TWS genes, three genes
(i.e. B3GALTL, FADS1 and ZMAT2) showed significant
associations in PsychENCODE dataset (Supplementary
Table 4). Spatio-temporal expression pattern analysis
showed distinct expression patterns of these seven over-
lapping TWS genes in the developing and adult human

brain (Supplementary Fig. 10). Five genes (FADS1,
XPNPEP3, ZMAT2, ZNF501 and ZNF502) showed higher
expression in the prenatal developing human brain than
adult brain. However, other two genes (B3GALTL and
TCTEX1D1) showed reverse spatio-temporal expression
patterns.
Of note, we noticed that previous studies11,53 also used

CMC dataset as SNP-expression weights for depression
TWAS. To identify genes whose genetically regulated
expression are associated with complex diseases and
traits, Mancuso et al. performed a comprehensive TWAS
by integrating multiple expression references and GWAS
summary statistics53. They identified over 1000 genes
whose expression are associated with diseases or traits.
Based on this comprehensive TWAS, they developed
TWAS hub (http://twas-hub.org/), which includes mul-
tiple TWAS results and provides a convenient online
resource to explore if a specific gene is associated with
disease or trait. However, the sample size (i.e. depression
cases and controls) included in this study is relatively
small (N= 135,458 depression cases and 344,901 con-
trols). We used the summary statistics from a larger
depression GWAS (N= 246,363 depression cases and
561,190 controls) in this study. In addition, we also uti-
lized another independent expression weights dataset
(BrainSeq2) in this study.
We also explored the ethnic difference for the TWAS or

GWAS results for major depressive disorder across
populations (i.e. Caucasian v.s. Asian). We compared the
depression GWAS performed in Asian (CONVERGE9)
and European populations14. The CONVERGE con-
sortium showed that rs12415800 (P= 1.92 × 10−8) and
rs35936514 (P= 1.27 × 10−8) were significantly associated
with depression in Chinese population9. However, recent
large-scale GWAS did not found significant associations
between these risk variants and depression in European
populations14. The frequencies of the risk alleles of the
identified risk variants (rs12415800 and rs35936514) show
dramatic differences in Chinese and European popula-
tions, suggesting the potential ethnic difference (i.e.
population heterogeneity) of depression risk variants. We
further performed a TWAS using expression weights
data25 and GWAS9 of the Asians. We did not identify any
TWS genes after Bonferroni correction (P < 7.32 × 10−5)
(Supplementary Table 5). However, it should be noted
that the sample size included in eQTL and GWAS were
relatively small. In addition, as there is no public available
brain eQTL of Asians, we used eQTL data from lym-
phoblastoid cell lines. More work is needed to explore the
ethnic difference for the TWAS or GWAS results for
major depressive disorder across populations (i.e. Cau-
casian v.s. Asian).
To explore if the three TWS genes (i.e. ZNF501,

ZNF502 and B3GALTL) for depression were also
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associated with schizophrenia and bipolar disorder, we
first compared the genetic results of these three TWS
genes in GWAS of depression14, bipolar disorder54 and
schizophrenia55. These TWS genes did not show sig-
nificant associations with bipolar disorder and schizo-
phrenia (Supplementary Fig. 11). To explore if expression
of ZNF501, ZNF502, B3GALTL were associated with
schizophrenia and bipolar disorder, we further examined
TWAS results of these three genes (i.e. ZNF501, ZNF502
and B3GALTL) in PsychENCODE24 (Supplementary
Table 6). ZNF501, ZNF502 and B3GALTL did not show
TWS associations with schizophrenia and bipolar dis-
order, suggesting that the association is depression spe-
cific. More work is needed to investigate the role of these
genes in depression.
In addition to the seven overlapping TWS genes, other

genes may also have a role in depression. For example,
although eight genes (PCDHA8, FANCL, TMEM161B-
AS1, GMPPB, STAU1, NDUFA2, GPX1 and PCDHA7)
were not included in the overlapping TWS gene list, we
noticed that these genes were significantly dysregulated in
the DLPFC of depression cases compared with controls
(Supplementary Table 3), suggesting the potential role of
these genes in depression. Further work is needed to
investigate the potential role of these genes in depression.
The majority of TWS depression genes identified in our

study are located around known GWAS loci. Interest-
ingly, conditional and joint analyses (conditioning on the
top TWAS gene) demonstrated that several of the
genome-wide significant signals from the depression
GWAS were driven by the TWAS expression signals.
There was little residual association signal from the
genetic variant in the GWAS locus after conditioning on
the predicted expression signals. Notably, our TWAS
analysis suggested that the FADS1 gene may represent a
promising candidate for depression (as the length of
FADS1 was small compared with nearby genes, these
smaller genes are often overlooked in GWAS because
there are many larger protein-coding genes nearby). Our
TWAS results showed that the expression of FADS1 lar-
gely explains the GWAS signal of depression, suggesting
the power of TWAS to detect promising target genes.
Previous study has showed that the mRNA expression of
FADS1 was significantly downregulated in the post-
mortem prefrontal cortex of major depression patients
compared with controls52. Another microarray study also
found that FADS1 expression was downregulated in the
prefrontal cortex of suicidal male major depression
patients56. These results suggest that FADS1 implicated in
TWAS may represent a novel risk gene for depression.
In addition to identifying the candidate genes for

depression, pathway enrichment analysis was also per-
formed to better understand the biological implications of
these TWAS significant genes in the context of the

biological processes. Our pathways analysis identified
several interesting pathways for depression, including
female pregnancy, formation of Fibrin Clot, cAMP bind-
ing and ephrin signaling. Besides, our pathway analysis
also confirmed previously identified pathways for
depression. Among these enrichment pathways, synaptic
transmission (Mann–Whitney U-Test, P= 1.94 × 10−2),
dopaminergic (Mann–Whitney U-Test, P= 1.94 × 10−2)
and G-protein coupled receptor signaling pathway
(Mann–Whitney U-Test, P= 5.01 × 10−2) have been
reported to be implicated in the pathogenesis of depres-
sion57–59. Finally, we further performed the differential
expression analysis for the identified TWS genes across
three depression datasets (GSE10255629, GSE10152130

and GSE8065531). Several TWAS significant genes were
also dysregulated in brains of depression cases compared
with controls (including PCDHA8, FANCL, TMEM161B-
AS1, GMPPB, STAU1, NDUFA2, GPX1 and PCDHA7),
implying that genetic variants may contribute to depres-
sion risk by regulating gene expression.
There were several limitations in this study. First,

TWAS typically restricts to impute the cis genetic com-
ponent of expression on traits, thus, variants influencing
depression but are independent of cis expression will not
be identified. Second, the number of identified TWAS
genes is limited by the size of the training cohort (i.e.
reference individuals with expression and genotype mea-
sured data) and the quality of the training data. Therefore,
more work is needed to increase the sample size and
quality of expression data for future TWAS analysis.
Finally, the summary-based TWAS could not pinpoint the
causal variants and genes for depression. More works are
needed to pinpoint the causal variants and to elucidate
their roles in depression pathogenesis.
In summary, we performed a depression TWAS based

on the integration of depression GWAS summary statis-
tics and gene-expression data from the DLPFC. We
identified promising candidate susceptibility genes for
depression. Further functional characterization of the
identified TWS genes will provide pivotal information for
understanding the etiology of depression, facilitating
biological interpretations of depression GWAS results
and prioritizing potential targets for drug development.
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