Skip to main content
. 2021 May 21;4:603. doi: 10.1038/s42003-021-02129-7

Table 1.

Statistical overview.

Figure Type of statistic Type of test Test statistic P value Effect size Power
a S1a Parametric One-way ANOVA F(2,26) = 0.406 p = 0.670 f = 0.176 0.115
b 1c Parametric One-way ANOVA and post-hoc (LSD) F(2,26) = 3.713 p = 0.038 f = 0.463 0.548
Rat vs water p = 0.011 d = 1.147 – 
Rat vs urine p = 0.197 d = 0.604
Urine vs. water p = 0.195 d = 0.663  –
c 1e Parametric One-way ANOVA and post-hoc (LSD) F(2,26) = 3.586 p = 0.042 f = 0.525 0.663
Rat vs water p = 0.025 d = 1.117  –
Rat vs urine p = 0.034 d = 0.824
Urine vs. water p = 0.949 d = 0.232  –
d S1c Parametric One-way ANOVA F(2,24) = 0.633 p = 0.539 f = 0.229 0.156
e S1d Parametric One-way ANOVA F(2,24) = 0.746 p = 0.485 f = 0.237 0.164
f S1e Parametric One-way ANOVA F(2,24) = 1.952 p = 0.164 f = 0.403 0.404
g 2c Non-parametric Related samples Wilcoxon test W(8)=0; z = −2.521 p = 0.012 r = 0.891 0.995
h 2e Non-parametric Related samples Wilcoxon test W(9)=1; z = −2.547 p = 0.011 r = 0.849 0.984
i 2 g Non- parametric Related samples Wilcoxon test W(20)=0; z = −3.920 p < 0.001 r = 0.876 1.000
j 2 h Non-parametric Mann–Whitney-U test z = −4.652 p < 0.001 r = 0.736 1.000
k 2i Non-parametric Kruskal–Wallis and post-hoc (Bonferroni) H = 17.439, df=2 p < 0.001
5-HT vs NA z = 0.003 p = 1.000 r = 0.001 0.050
ACh vs 5-HAT z = −3.433 p = 0.003 r = 0.649 0.991
ACh vs NA z = −3.291 p = 0.002 r = 0.611 0.980
l S2a Parametric (4) × (2) mixed model ANOVA (intensity [within-subject] × treatment [within-subject]) F(3, 54) = 23.12 p < 0.001 f = 1.132 1.000
F(1, 18) = 0.647 p = 0.432 f = 0.176 0.119
F(3,54) = 0.562 (interaction) p = 0.604 f = 0.255 0.158
m S2b Parametric (4) × (2) mixed model ANOVA (intensity [within-subject] × treatment [within-subject]) F(3, 54) = 52.19 p < 0.001 f = 1.705 1.000
F(1, 18) = 3.228 p = 0.089 f = 0.423 0.398
F(3,54) = 6.346 (interaction) p = 0.010 f = 0.594 0.792
ACh vs. ACSF with 40 pA p = 0.026 d = 1.083  –
n 3b Non-parametric Related samples Wilcoxon test W(5) = 0; z = −2.023 p = 0.043 r = 0.905 0.872
o 3d Non-parametric Related samples Wilcoxon test W(5) = 0; z = 2.023 p = 0.043 r = 0.905 0.872
p Non-parametric Mann–Whitney-U test z = 3.121 p = 0.002 r = 0.716 0.988
q 3 g Parametric (2) × (2) mixed model ANOVA (location [within-subject] × treatment [within-subject]) F(1,7) = 17.8 p = 0.004 f = 1.596 1.000
F(1,7) = 1.98 p = 0.203 f = 0.531 1.000
F(1,7) = 0.014 (interaction) p = 0.910 f = 0.045 0.081
r 3 g Parametric (2) × (2) mixed model ANOVA (stimulation [within-subject] × location [within-subject]) and post-hoc (Bonferroni) F(1, 7) = 4.194 p = 0.080 f = 0.775 0.424

F(1, 7) = 7.446

F(1,7) = 15.01 (interaction)

p = 0.029

p = 0.006

f = 1.030

f = 1.454

0.650

0.911

ON/soma vs. 50 Hz/soma p = 0.014 dz = 5.943
ON/soma vs. ON/tuft p = 0.002 dz = 6.643
s S3c Non-parametric Mann–Whitney-U test z = 0.936 p = 0.456 r = 0.209 0.148
t 4b Non-parametric Related samples Wilcoxon test W(8) = 4; z = −0.420 p = 0.327 r = 0.148 0.065
u 4d Non-parametric Friedman test χ2 = 3.714, df=2 p = 0.156
v 4 f Non-parametric Related samples Wilcoxon test W(6)=0; z = −2.201 p = 0.028 r = 0.984 1.000
w 4 h Non-parametric Friedman test and post-hoc (Dunn) χ2 = 6.750, df=2 p = 0.034
Mecamylamine/ACh vs Mecamylamine z = 2.250 p = 0.024 r = 0.795 0.868
Mecamylamine/ACh vs ACSF z = −2.250 p = 0.024 r = 0.795 0.868
Mecamylamine vs ACSF z = 0.000 p = 1.000 r = 0.000 0.050
x 5b Parametric One-way ANOVA F(2,13) = 2.701 p = 0.104 f = 0.645 0.526
y 5c Parametric One-way ANOVA and post-hoc (LSD) F(2,13) = 4.411 p = 0.034 f = 0.823 0.748
Rat vs water p = 0.113 d = 0.918 – 
Rat vs urine p = 0.011 d = 1.826 – 
Urine vs. water p = 0.255 d = 0.933
z 6d Parametric Paired samples t test t(12) = −2.411 p = 0.033 dz = 0.709 0.651
a1 6e Parametric Paired samples t test t(13) = −1.231 p = 0.240 dz = 0.202 0.208
b1 6 f Parametric Paired samples t test t(13) = −2.420 p = 0.031 dz = 0.647 0.647
c1 6 g Non-parametric Kruskal–Wallis Test H = 0.915, df=2 p = 0.633
d1 6 h Parametric (4) × (3) mixed model ANOVA (time bin [within-subject] × treatment [between-subject]) F(3,114) = 51.02 p < 0.001 f = 1.161 1.000
F(2,38) = 0.599 p = 0.355 f = 0.244 0.301
F(6,114) = 1.509 (interaction) p = 0.234 f = 0.283 0.427
e1 S4a Non-parametric Kruskal–Wallis Test H = 0.341, df=2 p = 0.843
f1 S4b Parametric (4) × (3) mixed model ANOVA (time bin [within-subject] × treatment [between-subject]) F(3,114) = 82.09 p < 0.001 f = 1.147 1.000
F(2,38) = 0.599 p = 0.554 f = 0.179 0.142
F(6,114) = 1.144 (interaction) p = 0.224 f = 0.274 0.456

Type of statistic was determined using the Kolmogorov- Smirnov test in SPSS. Tests were performed using SPSS. Effect sizes for parametric statistics were determined using SPSS and G*Power (Cohen’s d, dz, f). Effect sizes for non-parametric statistics were calculated from z-scores (Pearson’s r = z/n) [73]. Power (for α = 0.05) was determined using G*Power.