
ARTICLE

Common DNA methylation dynamics in
endometriod adenocarcinoma and glioblastoma
suggest universal epigenomic alterations in
tumorigenesis
Jennifer A. Karlow 1, Benpeng Miao1,2, Xiaoyun Xing 1, Ting Wang 1,3✉ & Bo Zhang 1,2✉

Trends in altered DNA methylation have been defined across human cancers, revealing global

loss of methylation (hypomethylation) and focal gain of methylation (hypermethylation) as

frequent cancer hallmarks. Although many cancers share these trends, little is known about

the specific differences in DNA methylation changes across cancer types, particularly outside

of promoters. Here, we present a comprehensive comparison of DNA methylation changes

between two distinct cancers, endometrioid adenocarcinoma (EAC) and glioblastoma mul-

tiforme (GBM), to elucidate common rules of methylation dysregulation and changes unique

to cancers derived from specific cells. Both cancers exhibit significant changes in methylation

over regulatory elements. Notably, hypermethylated enhancers within EAC samples contain

several transcription factor binding site clusters with enriched disease ontology terms

highlighting uterine function, while hypermethylated enhancers in GBM are found to overlap

active enhancer marks in adult brain. These findings suggest that loss of original cellular

identity may be a shared step in tumorigenesis.
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S ince the advent of the first reference human genome in
20011, the identification of genetic mutations in cancer has
largely established cancer as a genetic disease. Many groups

have compared the mutational landscape across different cancer
types to identify functional genomic mutations and pathways
mechanistically linked to cancer-type-specific and pan-cancer
tumorigenesis2–8. The more recent identification of epigenetic
alterations in cancer has revealed increased complexity of cancer
gene regulation, extending the view of cancer abnormalities
beyond simply genetic alterations5,9,10.

One epigenetic modification in particular, DNA methylation,
has long been associated with gene expression, where promoter
methylation absence and high gene body methylation positively
correlate with gene expression11–13. Studies regarding DNA
methylation changes and additional epigenetic modifications have
highlighted important roles these alterations play in cancer,
leading the field to now recognize cancer as both a genetic and
epigenetic disease9,10,14–19. DNA methylation alterations, in
particular genome-wide loss and local gains within promoters, are
considered hallmarks of many cancers9,15–19 and could possibly
be causal20–22. As DNA methylation can impact gene expression,
methylation alterations in cancer likely impact the tumor phe-
notype by modulating the regulatory landscape, thereby helping
shape the cancer’s cell fate10,23. Although epigenetic abnormal-
ities have been observed in many cancers, their specific functions
and possible roles in tumorigenesis remain unclear. Moreover,
commonalities in the locations of abnormal DNA methylation
residing outside promoters and their functional roles across dif-
ferent cancer types remain understudied, as the majority of pan-
cancer DNA methylation analyses to date have included only
array-based methylation data2,5,10,24.

We have previously generated global DNA methylation profiles
for endometrial cancers25 as well as for glioblastoma multiforme
(GBM)26, revealing altered DNA methylation over regulatory
enhancers and promoters, as well as hypomethylated gene body
promoters, respectively. In addition, studies of colon cancer27–29

and of multiple cancer cell lines30,31 suggest that enhancer
methylation is drastically altered in cancers and is closely related
to altered transcriptional profiles. Together, these results suggest
that the regulatory landscape in cancer may be altered directly,
through methylation changes within regulatory elements, or
indirectly, through reassignment of regulatory element
target genes.

The compilation of reference human epigenomes for a variety
of cell types and tissues allows for a comprehensive, cell-type-
specific annotation of epigenetic abnormalities32. We hypothesize
that by comparing the global epigenetic abnormalities of two
highly distinct cancer types in the context of non-malignant cell-
type epigenomes, we can unveil both shared and unique epige-
netic mechanisms contributing to cancer. To better understand
how epigenetic abnormalities differ between cancers in both
location and function, we directly compared deeply profiled DNA
methylomes of two distinct cancer types, GBM and endometrioid
adenocarcinoma (EAC), whose DNA methylation abnormalities
have been previously identified25,26. GBM, also known as grade
IV astrocytoma, originates from astrocytes and quickly develops
into highly heterogeneous malignancies33. Roughly 90% of GBM
cases are classified as primary GBM and are associated with a
poor clinical outcome33, contributing to an overall 5-year survival
rate of about 5.5%34. Uterine corpus cancer, of which 90% of
cases originate in the endometrium35, is associated with a much
better prognosis36. Endometrial cancer is broadly classified into
two categories. Type 1 tumors, which include EAC, constitute the
majority of cases, are typically low grade, only moderately dif-
ferentiated, and are hormone-sensitive37–39. If detected in an
early, localized stage, the 5-year survival rate for uterine corpus

cancers can be as high as 85–96%36. GBM and EAC appear to
have little in common, suggesting they are good candidates for
identifying shared and unique epigenetic abnormalities with
predicted functional impacts on cancer phenotype.

In this study, we directly compare the DNA methylation
abnormalities of these two cancer types and annotate their likely
impacts on gene regulation using normal reference epigenomes.
Our results indicate that both cancer types exhibit thousands of
local, recurrent DNA methylation abnormalities, in the form of
both increased (hyper) and decreased (hypo) methylation, which
are significantly enriched in genomic regions annotated as reg-
ulatory elements, such as promoters and enhancers. Only ~50%
of these DNA methylation abnormalities fall within regions tar-
geted by the Infinium 450k array, the most common platform for
DNA methylation profiling chosen by projects including The
Cancer Genome Atlas (TCGA), highlighting the importance of
whole-genome, unbiased approaches for profiling cancer DNA
methylomes. Despite being very distinct diseases, EAC and GBM
share a significant number of differentially methylated regions
(DMRs). Notably, both cancers demonstrate an enrichment of
hyperDMRs within the apoptosis pathway and hypoDMRs within
the long terminal repeat (LTR) retrotransposon subfamily
MER52A, alluding to potential pan-cancer signatures. We further
report that clusters of enhancer hyperDMRs in EAC defined by
the presence of binding sites for enriched TFs most notably
enrich for uterine disease ontology. In addition, enhan-
cer hyperDMRs in GBM largely overlap active enhancer histone
modifications in adult brain tissue. These results suggest that
regulatory regions of genes involved in functions related to the
cancer’s original cell type often become methylated during tumor
progression, perhaps contributing to the loss of a phenotypic
cellular identity experienced by cancer cells.

Taken together, our results support findings that cancer is a
complex disease with a large epigenetic component. Although the
locations of DNA methylation abnormalities are often specific to
a particular cancer type, many appear to functionally contribute
in similar ways by potentially silencing cell-type-of-origin
enhancers. Our results begin to shed light on the mechanistic
principles that drive both common and cancer-type-specific DNA
methylation abnormalities and their functional consequences.

Results
Comparative analysis of EAC and GBM DNA methylation
abnormalities. We previously profiled the DNA methylomes of
EAC25 and GBM26. A combined technique of methylated DNA
immunoprecipitation sequencing (MeDIP-seq) and methylation-
sensitive restriction enzyme sequencing (MRE-seq), which detect
methylated CpGs and unmethylated CpGs, respectively, was used
for methylome profiling40. Complete DNA methylomes were
generated for a total of five GBM samples26, two normal frontal
cortex brain samples26, three EAC samples25, and one normal
endometrial sample pooled from ten healthy individuals25. DMRs
between EAC samples and pooled normal endometrium (EAC
DMRs), and between GBM samples and normal brain (GBM
DMRs) were identified by integrating the MeDIP-seq and MRE-
seq data using M&M41, allowing for the comparison of two dis-
tinct cancer-type DMR sets in the context of their normal, tissue-
specific DNA methylomes. Examination of DMRs called across
tumors within a specific cancer type revealed considerable
intertumoral heterogeneity. However, roughly 60% of DMRs
identified in one sample were also discovered in an additional
sample (Supplementary Fig. 1), suggesting that the requirement
for a DMR to be identified in at least two tumors to be con-
sidered, as in previous analyses25,26, allowed for the identification
of the majority of common epigenetic changes for the given
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cancer type. DMRs were further classified according to their
direction of methylation change, a hypermethylated DMR
(hyperDMR) being more highly methylated in the cancer than in
the normal, and a hypomethylated DMR (hypoDMR) being less
methylated. DMRs were also classified as either cancer-type
unique (DMR present in only one of the two cancers) or shared
between EAC and GBM, resulting in 6 categories: EAC-unique
hyperDMRs, EAC-unique hypoDMRs, GBM-unique
hyperDMRs, GBM-unique hypoDMRs, shared hyperDMRs, and
shared hypoDMRs.

We identified 26,990 DMRs in EAC (10,414 (38.6%) of which
were shared across all 3 samples) and 14,672 in GBM (426 (2.9%)
of which were shared across all 5 GBM samples). The ratio of
hyperDMRs to hypoDMRs was remarkably similar between GBM
(ratio= 2.265 : 1) and EAC (ratio= 2.098 : 1). Although the
number of shared hyperDMRs (n= 2760) drastically outnum-
bered the shared hypoDMRs (n= 195), both were highly
significant (p < 2.2E− 308 and p < 6.0E− 199, respectively,
hypergeometric tests, using as background 500 bp genomic
regions with at least one CpG and MeDIP and/or MRE signal
in at least one sample) (Methods and Fig. 1a). Examination of the
methylation levels of the identified shared EAC and GBM DMR

regions within TCGA samples spanning 24 cancer types revealed
similar trends (Methods). Specifically, 22/24 cancer types profiled
in TCGA with both tumor and normal methylation data showed
a significant increase in methylation from normal to tumor over
shared EAC and GBM hyperDMRs (Supplementary Fig. 2).
Similarly, 21/24 cancer types profiled in TCGA exhibited a
significant decrease in methylation over shared EAC and GBM
hypoDMRs (Supplementary Fig. 3), supporting that the methyla-
tion changes observed over these shared regions likely extend
beyond EAC and GBM, possibly corresponding to a pan-cancer
methylation signature.

To better understand the possible functional contribution of
altered DNA methylation within EAC and GBM, we identified
the fraction as well as enrichment of DMRs that fell into genomic
regions annotated as promoters (1 kb and 2.5 kb), CpG islands,
gene bodies, enhancers defined either by Fantom 542,43, or by the
VISTA enhancer project44, super enhancers45, and intergenic
regions. We found that the three hyperDMR groups (EAC-
unique hyperDMRs, GBM-unique hyperDMRs, and shared
hyperDMRs) exhibited a much higher percentage overlap to
promoter regions, CpG islands, gene bodies, and super enhancers
than did the three hypoDMR groups (EAC-unique hypoDMRs,
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Fig. 1 Comparative analysis of EAC and GBM DNA methylation abnormalities. a Overlap of 500 bp differentially methylated regions (DMRs) in EAC and
GBM. Left: hypermethylated DMRs; right: hypomethylated DMRs. Both overlaps are significant (p < 2.2E− 308 and p < 6.0E− 199, respectively,
hypergeometric tests). b Genomic annotation distribution of EAC and GBM DMRs. Top: percentage of DMR group nucleotides within each genomic
category. Bottom: enrichment of DMR group nucleotides within each genomic category. c EAC and GBM DMR enrichment within epigenetic annotations
(chromHMM 18-states) across a variety of cell and tissue types (n= 80, Human Roadmap Epigenome32). For each DMR group, the percentage of base
pairs (bps) that overlapped each epigenetic state in each of the cell/tissue types was calculated, and enrichment scores were calculated by dividing those
percent overlaps by the percentage of background bps that overlapped each epigenetic state in each cell/tissue type. Background regions considered when
calculating enrichment in both b and c were 500 bp genomic regions that excluded chromosome ends, excluded bins overlapping blacklisted CpGs,
excluded bins not containing at least one MeDIP and/or MRE read for at least one sample, excluded bins not containing at least one CpG, and excluded
those on chrY (and chrX for GBM).
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GBM-unique hypoDMRs, and shared hypoDMRs), also reflected
by increased relative enrichment (Fig. 1b). Conversely, the
hypoDMR groups exhibited a higher percentage overlap to
intergenic regions, where the hyperDMR groups and EAC-unique
hypoDMRs were depleted within intergenic regions (Fig. 1b). The
high enrichment of both hyperDMRs and hypoDMRs in Fantom
and VISTA enhancers suggests that cis-regulatory enhancer
elements may contain both activating and inactivating DNA
methylation abnormality hotspots in cancer.

DMRs were further characterized according to their
chromatin-state annotations, defined based on various histone
modifications32. Taking advantage of the 18-state chromatin
models (chromHMM) generated from complete human epigen-
ome references for various cell and tissue types46, we calculated
the fraction and enrichment of DMRs overlapping each
chromatin state across many different cell and tissue types (n
= 80) (Methods). HyperDMR groups were generally enriched
within regulatory regions annotated as active transcription start
sites (TSSs), regions flanking TSSs (both upstream and down-
stream), genic enhancers, and active enhancers across different
tissues (Fig. 1c and Supplementary Fig. 4). In contrast,
hypoDMRs exhibited a range of enrichment values in active
chromatin states, varying from depletion to weak enrichment
(Fig. 1c and Supplementary Fig. 4). Although hyperDMRs were
most highly enriched within bivalent/poised TSSs across tissues,
hypoDMRs were generally depleted or had little enrichment over
these regions. Conversely, hypoDMRs were enriched within
weakly repressed polycomb regions across tissues, whereas
hyperDMRs were generally depleted or showed no enrichment
(Fig. 1c and Supplementary Fig. 4). HyperDMRs and hypoDMRs
were both enriched within repressed polycomb regions and
bivalent/poised enhancers, although the magnitude of enrichment
was much higher for hyperDMRs in both cases. In concordance
with the most severe gain of methylation in both cancer types
residing over polycomb and bivalent regions, we found that EZH2
binding in normal human astrocytes47 was highly enriched within
GBM hyperDMRs, suggesting that these tumors undergo an
epigenetic switch involving gain of DNA methylation over
regions normally bound by EZH2 in non-malignant astrocytes
(Supplementary Table 1). These results demonstrate that DMRs
are enriched within regulatory regions in both cancers, both
within and outside promoters, highlighting the complexity of
DNA methylation alterations within cancer27–31.

EAC and GBM DMRs exhibit similar characteristics on a
pathway level. To better understand the shared functionality of
DMRs between EAC and GBM, we compared the frequency at
which they contained potential regulatory regions. We found that
although only about half of all EAC and GBM hypoDMRs
overlapped regions with regulatory annotations, this percentage
increased to roughly 90% for EAC and GBM hyperDMRs,
reflecting a large enrichment within both cancers. We found that
EAC and GBM hyperDMRs largely overlapped regions annotated
as both promoters and enhancers (44.09% and 41.12%, respec-
tively), whereas an additional 27.49% and 33.32% overlapped
promoters only, and an additional 17.63% and 12.54% overlapped
active enhancers only (Methods and Fig. 2a).

As the silencing of tumor suppressor genes (TSGs) by DNA
methylation is a common mechanism of gene inactivation in
cancer20–22,48–50, we examined the frequency at which DMRs
overlapped TSG core promoters. We found that the number of
TSGs suffering hypermethylation within their core promoters in
EAC and GBM, as well as those overlapping shared hyperDMRs,
were statistically significant (p < 2.22E− 08, p < 5.27E− 05, and p
< 1.94E− 03, respectively; hypergeometric tests) (Supplementary

Data 1). The number of TSGs suffering hypomethylation within
their core promoters was not significant for either EAC or GBM
individually, or for those overlapping shared hypoDMRs (Supple-
mentary Data 1). In addition, the number of TSGs undergoing
hypermethylation in both EAC and GBM was higher than
expected by chance (p < 8.39E− 14; hypergeometric test), suggest-
ing that methylation of some of the same TSGs might be a shared
attribute of these cancers (Fig. 2b and Supplementary Data 2).

As enhancers frequently undergo DNA methylation changes
during tumorigenesis, we further examined distal DMRs near
TSGs. Hypermethylation in promoters and/or active enhancers
was found in 350 TSGs in EAC and 245 TSGs in GBM (Fig. 2c
and Supplementary Data 3). Hypermethylation of regulatory
elements around TSGs was generally associated with decreased
expression of TSGs in these two cancer types.

We next examined the commonalities in distal DNA methyla-
tion changes between these two cancer types on a pathway level.
In our study, the majority of EAC and GBM DMRs fell outside
gene promoters; however, many of these non-promoter DMRs
(EAC hyperDMRs: 72%, GBM hyperDMRs: 63%, EAC
hypoDMRs: 46%, GBM hypoDMRs: 45%) exhibited an active
enhancer signature in at least one of the 80 different tissues or cell
types provided by Roadmap Epigenomics Consortium32. There-
fore, we defined non-promoter DMRs that fell within regions
annotated as an active enhancer (state “9_EnhA1” or
“10_EnhA2”) in at least 1 of 80 epigenomes as cancer-enhancer
DMRs (ceDMRs). By comparing enriched biological processes
associated with merged ceDMRs (Methods), we found that both
cancer-type cancer-enhancer hyperDMRs (ce-hyperDMRs) were
highly enriched for terms related to apoptosis, a process
commonly deregulated in cancer cells51, sometimes through
DNA methylation alterations52 (Fig. 2d and Supplementary
Data 4). In EAC, 36 of the 140 apoptosis-associated genes
contained hyperDMRs within regulatory elements, 4 of which
contained hyperDMRs over both promoters and enhancers.
Similarly, in GBM, 30 of the 140 apoptosis-associated genes
contained regulatory element hyperDMRs, 3 of which exhibited
both promoter and enhancer hyperDMRs (Fig. 2e). One gene in
particular, BCL2L11, contained a single hyperDMR that spanned
both the gene’s promoter and an active enhancer in both cancer
types (Supplementary Fig. 5). Although both EAC and GBM
hyperDMRs were enriched within apoptosis pathway genes, only
11 genes gained regulatory region methylation in both cancer
types (Fig. 2e), highlighting the complex strategies different
cancers might take to reach the same functional consequences.

Abnormally methylated enhancer-potential regions in cancer
are associated with deregulated TFs. DNA cytosine methylation
status has been shown to be associated with transcription factor
(TF)-binding events53,54, although the mechanism linking the
two remains unclear. Motif discovery within ceDMRs identified
highly enriched sets of TF-binding sites (TFBSs; Fig. 3a), most of
which were exclusive to one cancer type. Expression of TFs with
motifs enriched in EAC ce-hyperDMRs were downregulated in
EAC compared to normal endometrium (Fig. 3b), whereas TFs
whose bindings motifs were enriched in EAC cancer-enhancer
hypoDMRs (EAC ce-hypoDMRs) were generally upregulated in
EAC (Fig. 3c), suggesting that changes in TF expression may help
dictate changes in DNA methylation at target motifs in EAC.

In support of this directionality, we observed cases of
hypomethylation in GBM over non-brain enhancers, accompa-
nied by gain in expression of both the TFs with predicted binding
motifs and their target genes, illustrated in two examples (Fig. 3d,
e). Neuropipin-2 (NRP2), a non-tyrosine kinase receptor
frequently overexpressed in various malignancies, including
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GBM, regulates endosome maturation and EGFR trafficking,
supporting the growth and replication of cancer cells55. We
identified a GBM hypoDMR in the NRP2 gene body, located 70.5
kb downstream of the NRP2 TSS (Fig. 3d). RNA polymerase II
ChIA-PET data in HeLa cells generated by the ENCODE
consortium indicated a direct physical interaction between the
NRP2 TSS and the hypoDMR in this particular cell line, arguing
that these two genomic regions have the potential to interact. In
addition, this region also contained strong H3K27ac and
H3K4me1 signal in adipose tissue, indicative of an active
enhancer in this cell type. Motif analysis revealed the presence
of a TCF12-binding site within this hypoDMR and chromatin
immunoprecipitation sequencing (ChIP-seq) data in a cancer cell
line (A549) supported strong binding of TCF12 in this enhancer
region. TCF12 and NRP2 were found to be relatively highly
expressed in adipose tissue, lowly expressed in the brain frontal
cortex, and highly expressed again in the GBM. Therefore, this
site reflects a possible co-opted adipose enhancer that lost DNA
methylation in GBM cells, possibly as a result of abnormal
upregulation of TCF12 in GBM, resulting in an upregulation of
NRP2. Similarly, CD248 (Endosailin) marks tumor-associated
pericytes in high-grade glioma56, where blocking CD248 can
inhibit the growth and differentiation of perivascular cells57. We
identified a GBM hypoDMR located ~9 kb upstream of CD248,
which contained an enhancer with strong H3K27ac and
H3K4me1 signal in adipocyte tissue (Fig. 3e). K562 RNA

polymerase II ChIA-PET data suggested this enhancer has the
capability to physically interact with the CD248 TSS. An EGR1-
binding motif was identified within this hypoDMR and both
EGR1 and CD248 were more highly expressed in adipose and
GBM than in normal brain. This suggests another example where
GBM is adopting the potential regulation of CD248 by EGR1 seen
in adipose tissue.

Gain of methylation over original cell-type enhancers may
contribute to loss of cellular identity during cancer progres-
sion. Although DNA methylation alterations in GBM and EAC
exhibited many commonalties, the two cancers also displayed
distinct signatures, reflecting tissue type specificity5. To better
understand these unique differences, we first calculated the
enriched vertebrate TF-binding motifs within the ceDMRs using
Homer58 and opposite ceDMR groups as background (Methods).
Enriched motifs were then filtered to only include those TFs with
significant expression changes in TCGA, and ceDMRs were then
clustered based on presence or absence of these enriched motifs,
using a distance method of “Euclidean” and a clustering method
of “complete” (Methods). Clusters of ceDMRs were identified by
cutting the dendrogram at various heights, which resulted in
robust groupings and enriched Gene Ontology (GO) terms.
Clustering ceDMRs by the presence of enriched TF-binding
motifs revealed several clusters of DMRs with similar subsets of
TF-binding motifs, likely reflecting the high similarity among
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Fig. 2 EAC and GBM DMRs show similar characteristics on a pathway level. a Percentage of DMRs with active regulatory annotations (promoter and/or
active enhancer) in EAC and GBM. b Overlap of tumor suppressor genes (TSGs) with abnormally methylated core promoters (1 kb, centered around TSS)
in EAC and GBM. Left: hyperDMRs (overlap is significant: p < 8.39E− 14, hypergeometric test); right: hypoDMRs. c TSGs with abnormally methylated
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binding motifs of related TFs, e.g., GATA family (Cluster 3) and
SMAD family (Cluster 10) in EAC ce-hyperDMRs (Fig. 4a) and
the FOX family (Cluster 4) in GBM ce-hyperDMRs (Fig. 4b).
However, despite a propensity for clusters of DMRs to harbor
motifs for a handful of TFs, many different, sometimes largely
non-overlapping clusters of EAC ce-hyperDMRs (clusters 1, 3, 4,
6, 7, 8, 9, and 10) enriched for similar disease ontology terms,
most commonly centered around uterine neoplasia (Fig. 4a),
suggesting that targeted silencing of intrinsic cell-identity path-
ways may contribute to cancer progression. GBM ce-hyperDMR
clusters of enriched TF-binding motifs, on the other hand, enri-
ched for terms most notably related to heart functions (Fig. 4b).

To better understand whether brain functionality was being
targeted by hypermethylation in GBM, we classified whether
distal GBM hyperDMRs (those located outside promoters)
overlapped the enhancer-defined chromatin state (“7_Enh” based
on the chromHMM 15-state model) for 13 adult and fetal brain-
related tissues using the brain epigenome references generated by
the Roadmap Epigenomics Consortium32. We found that a
significantly greater proportion of GBM hyperDMRs overlapped
annotated enhancers in adult brain tissues as opposed to in fetal
astrocyte and progenitor cells, with the exception of the male fetal
brain sample (Fig. 5a, b). To characterize the potential activity of
brain enhancers that gained methylation in GBM, we determined
whether they overlapped ChIP-seq peaks for H3K27ac and
H3K4me1 in fetal and adult brain tissues (Methods). We found
that the majority of GBM hyperDMR brain enhancers overlapped
H3K27ac peaks in adult brain (60.96–72.50%), whereas very few
GBM hyperDMR brain enhancers overlapped H3K27ac peaks in
fetal brain (22.04%) (Fig. 5c, d). The percentage of H3K27ac
peaks overlapping GBM hyperDMR brain enhancers was much
greater in the adult brain samples (0.725–0.877%) compared to
the fetal brain sample (0.314%), suggesting that the increased
number of GBM hyperDMR brain enhancers overlapping
H3K27ac peaks in adult brain is not due to increased global
H3K27ac signal, but is in fact specific. Likewise, the majority of
GBM hyperDMR brain enhancers overlapped H3K4me1 peaks in
adult brain (66.87–80.24%), whereas a significantly smaller
proportion overlapped H3K4me1 peaks in fetal brain
(31.38–66.20%) (Fig. 5c, e). In addition, although the percentage
of H3K4me1 peak base pairs within GBM hyperDMR brain
enhancers was similar between adult and fetal brain samples
(0.68–1.01% vs. 0.463–0.803%, respectively), a higher percentage
overlap in the adult brain samples indicates the increase in
H3K4me1 signal in adult brain is not simply due to increased
background H3K4me1 signal. These results suggest that although
a portion of GBM hyperDMR brain enhancers bear the mark of
active enhancers (H3K4me1) in the developing brain, a
significantly greater percentage contain these marks in adult
brain tissues. In addition, most of these enhancers are not located
in open chromatin (H3K27ac peaks) in developing tissue,
suggesting they might be more active in adult tissue and,
therefore, important for the maintenance of normal functionality
of mature glia cells as opposed to brain and glial cell
development.

When considering TFs with motifs enriched within EAC ce-
hypoDMRs, 30 exhibited a corresponding increase in expression
in TCGA EAC samples (a subset of the TCGA uterine corpus
endometrial carcinoma (UCEC) cohort). Clustering these 30 TFs
based on enriched motif locations within the ce-hypoDMRs
revealed 6 clusters of more than 1 TF. In contrast to targeting
enhancers related to the cell-type-of-origin function, EAC ce-
hypoDMR clusters that contained enriched TF-binding motifs
often enriched for various cancer types, most notably hemangio-
mas (Fig. 6a). Similarly, 67 TFs with enriched motifs within GBM
ce-hypoDMRs demonstrated an increased expression in TCGA

GBM samples, comprising 9 TF clusters. The majority of
enrichment terms across all clusters of associated ce-hypoDMRs
were related to various tumors, most notably gastrointestinal
(Fig. 6b). Taken together, we observe that enhancer-potential
regions with loss of methylation, containing enriched motifs for
TFs that exhibit increased expression, are primarily tied to a
variety of cancers, suggesting that the loss of methylation over
and potential activation of aberrant enhancers may be a common
trend among distinct cancer types.

Distinct spectrum of epigenetic abnormalities within TEs in
cancers. Transposable elements (TEs) are hotspots of epigenetic
abnormalities during carcinogenesis and were generally believed
to be globally hypomethylated in cancer cells59. We observed that
39–62% of DMRs contained TEs (GBM: 44% of hyperDMRs and
49% of hypoDMRs; EAC: 39% of hyperDMRs and 62% of
hypoDMRs). Although 23.77% and 12.02% of GBM and EAC
hyperDMR-overlapped TEs, respectively, fell within RefSeq-
defined promoters, an additional 39.32% and 46.54%, which
were located outside canonical promoters, were annotated as
TSSs in at least 1 of the 80 Roadmap cell/tissue types, based on
chromHMM 18-state chromatin predictions (Fig. 7a). In addi-
tion, 18.53–27.85% of DMR-overlapped TEs outside promoters
fell within predicted active enhancer regions based on Roadmap
Epigenomics data chromHMM 18-state chromatin predictions
(Fig. 7a). We estimated the enrichment of epigenetically altered
TE subfamilies and discovered distinct patterns within GBM and
EAC (Fig. 7b). A small number of TE subfamilies, including
LTR16A1, MLT1C, and MER52A, were highly enriched in both
GBM and EAC hypoDMRs, where the primate-specific LTR
retrotransposon MER52A exhibited the highest enrichment
(Fig. 7b). We further examined the DNA methylation level of
MER52A copies in normal tissues and cancer, and found that the
majority of MER52A subfamily copies were highly methylated in
various normal tissues, but became demethylated in cancer
(Fig. 7c). A small number of MER52A copies were lowly
methylated in normal breast myoepithelial cells, liver, and pan-
creas tissues, suggesting that some MER52A copies maintain an
active epigenetic state and may provide regulatory functions in
normal cells. Finally, we found that several TEs overlapping
hypoDMRs in GBM encompassed H3K4me3 signal, a mark of
active promoters, in the GBM cell line U87, consistent with
previous findings of hypomethylated TEs providing cryptic pro-
moters during tumorigenesis60 and embryonic development61

(Fig. 7d).

Discussion
In the present study, we sought to expand the current view of
methylation alteration comparisons across distinct cancer types.
By utilizing DNA methylation data derived from MeDIP-seq and
MRE-seq, we were able to comprehensively explore the pro-
pensity for methylation alterations in cancer to be specific, based
on their cell type of origin, and the ways in which alterations were
shared physically or functionally between two distinct cancer
types: GBM and EAC. We identified thousands of DMRs in both
cancers, highly enriched within regulatory regions including
promoters and enhancers.

The Infinium 450k array platform and more recent 850k array
platform have been the standard of practice for measuring
methylation and the method of choice for many TCGA
studies2,5,62–64. When validating our DMRs using cancer DNA
methylation data generated by TCGA with the Infinium 450K
platform, we found that roughly half of our DMRs could not be
detected, due to the platform’s relatively low coverage (52.55%
and 46.55%, EAC and GBM DMRs, respectively) (Supplementary
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Fig. 4 Gain of methylation over original cell-type enhancers may contribute to loss of cellular identity during cancer progression. a Heatmap indicating
the presence of enriched TF-binding motifs in EAC ce-hyperDMRs and top GO disease ontology enrichment results for DMR clusters (red: present; gray:
absent). b Heatmap indicating the presence of enriched TF-binding motifs in GBM ce-hyperDMRs and top GO disease ontology enrichment result for DMR
clusters (red: present; gray: absent).
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Table 2). Even when comparing to the more recent 850K plat-
form, we still found that 41.85% (EAC) and 38.13% (GBM) of our
DMRs were missed (Supplementary Table 2). HypoDMRs often
did not contain a probe (75.87% (450k) and 62.44% (850k) for

EAC, and 81.55% (450k) and 67.00% (850k) for GBM), whereas
more than half of all hyperDMRs contained probes (58.57%
(450k) and 67.97% (850k) for EAC, and 68.90% (450k) and
74.62% (850k) for GBM. Forty-one to 49% of the CpGs within

E081 Fetal Brain (Male)
E125 NH-A Astrocyte
E070 Brain Germinal Matrix
E082 Fetal Brain (Female)
E054 Neurospheres (Ganglion Eminence-Derived)
E053 Neurospheres (Cortex-Derived)
E074 Brain Substantia Nigra
E073 Brain Dorsolateral Prefrontal Cortex
E067 Brain Angular Gyrus
E068 Brain Anterior Caudate
E072 Brain Inferior Temporal Lobe
E071 Brain Hippocampus Middle
E069 Brain Cingulate Gyrus

F
et

al
 B

ra
in

A
du

lt 
B

ra
in

0% 5% 10% 15%

E125 NH-A Astrocyte

E053 Neurospheres (Cortex-Derived)

E070 Brain Germinal Matrix
E081 Fetal Brain (Male)
E082 Fetal Brain (Female)
E125 NH-A Astrocyte

E054 Neurospheres (Ganglion Em.-Der.)

E067 Brain Angular Gyrus
E068 Brain Anterior Caudate 
E069 Brain Cingulate Gyrus
E071 Brain Hippocampus Middle
E072 Brain Inferior Temporal Lobe
E073 Brain Dorsolateral Prefrontal Cortex
E074 Brain Substantia Nigra

E067 Brain Angular Gyrus
E068 Brain Anterior Caudate
E069 Brain Cingulate Gyrus
E071 Brain Hippocampus Middle
E072 Brain Inferior Temporal Lobe
E073 Brain Dorsolateral Prefrontal Cortex
E074 Brain Substantia Nigra

0.0% 20% 40% 60% 80%

H3K27ac Peak
H3K4me1 Peak

6%

9%

12%

15%

Adult Brain Fetal Brain

P
er

ce
nt

ag
e 

of
 G

B
M

 h
yp

er
D

M
R

s
O

ve
rla

pp
in

g 
A

nn
ot

at
ed

 E
nh

an
ce

rs

p < 0.05

20%

30%

40%

50%

60%

70%

P
er

ce
nt

ag
e 

of
 G

B
M

 b
ra

in
-e

nh
an

ce
r-

po
te

nt
ia

l D
M

R
s

O
ve

rla
pp

in
g 

H
3K

27
ac

 P
ea

ks
 

Adult Brain Fetal Brain
30%

40%

50%

60%

70%

80%

P
er

ce
nt

ag
e 

of
 G

B
M

 b
ra

in
-e

nh
an

ce
r-

po
te

nt
ia

l D
M

R
s

O
ve

rla
pp

in
g 

H
3K

4m
e1

 P
ea

ks
 

Adult Brain Fetal Brain

p < 0.01

a

c

65.27%
67.89%

66.51%
72.50%

70.33%
71.97%

60.96%
22.04%

68.06%
71.97%

75.01%
80.24%

69.43%
72.02%

66.87%
52.63%

42.72%
31.38%

66.20%
47.42%
49.39%

b

d e

GBM HyperDMRs
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enhancer annotation present in DMR; gray: enhancer annotation absent in DMR). Bar plot indicates the fraction of all GBM hyperDMRs overlapping
enhancer annotations in each cell/tissue type. b Boxplot depicting the distribution of fractions of GBM hyperDMRs overlapping enhancer annotations,
comparing adult (n= 7) and fetal (n= 6) brain tissues (t-test, p < 0.05). c H3K27ac (green) and H3K4me1 (orange) peak occupancy within GBM
enhancer-potential hyperDMRs (GBM hyperDMRs overlapping an enhancer annotation in at least one adult or fetal brain tissue) across fetal (n= 1 and 6,
for H3K27ac and H3K4me1, respectively, light blue) and adult (n= 7 for both H3K27ac and H3K4me1, purple) brain tissues. Bar plot indicates the fraction
of all GBM enhancer-potential hyperDMRs that contained H3K27ac peaks or H3K4me1 peaks in each cell/tissue type. d Boxplot depicting fractions of GBM
enhancer-potential hyperDMRs overlapping H3K27ac peaks in adult brain tissues (n= 7, left) and horizontal line depicting the fraction of GBM enhancer-
potential hyperDMRs overlapping H3K27ac peaks in fetal brain (n= 1, right). e Comparison of the proportions of GBM enhancer-potential hyperDMRs
overlapping H3K4me1 peaks in adult brain tissues (n= 7, left) to the proportions of GBM enhancer-potential hyperDMRs overlapping H3K4me1 peaks in
fetal brain tissues (n= 6, right) (t-test, p < 0.01).
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DMRs profiled via our method but missed by the Infinium 450K
array were located within regions annotated as having active
enhancer potential based on Roadmap’s chromHMM 18-state
annotations. As we and others have demonstrated that methyla-
tion at enhancer regions can play an important role in
cancer25,26,65, the inclusion of this set of CpGs not covered by the
Infinium array, but covered by our method, is instrumental in
understanding the impact DNA methylation abnormalities have
on cancer.

Although the combined use of MeDIP-seq and MRE-seq to
interrogate genome-wide methylation levels has many advantages
over array-based techniques, it should be noted that this approach
is not without limitations. For example, MeDIP-seq enriches for
genomic regions with a methylated CpG; however, the exact CpG
that is methylated within a given read captured is unknown. In
addition, MRE-seq is limited to interrogate restriction sites for
enzymes used in the protocol, which only cover a small fraction of
all genomic CpG sites66. Although these methods do not produce
a quantitative measurement of the methylation status at each
CpG, as is generated using whole-genome bisulfite sequencing
(WGBS), together these methods provide complementary data
that can be used to computationally predict the methylation
status of individual CpGs, which recapitulate WGBS results well
and at a fraction of the cost41.

Upon discovering that there were many more shared
hyperDMRs between the two cancer types than expected by
chance, we sought to elucidate possible functions within these
regions. As expected, we found that TSG core promoters were
often enriched within hyperDMRs. Examination of expression
changes over TSGs with enhancer and/or promoter hyper-
methylation revealed general expression loss within tumors
compared to normals, suggesting that different cancers jointly
alter the methylation status of TSG regulatory regions, possibly
contributing to their loss of expression in cancer.

GBM and EAC hyperDMRs also enriched for active
enhancer regions, which displayed the unique enrichment of
several biological processes and pathways, as well as shared
enrichment regarding processes such as apoptosis. Examination
of 140 apoptosis-related genes revealed several with increased
promoter methylation in both cancer types, whereas many
more accrued methylation changes within the surrounding
enhancers. These results suggest that silencing genes involved in
the apoptotic signaling pathway via methylation at enhancers
and promoters may be a common mechanism shared across
cancer types.

The extent to which DNA methylation alterations shape
transcriptional activity remains unclear in cancer. To better
understand the relationship between altered DNA methylation
and phenotypic impact via gene expression changes, we identified
enriched TF-binding motifs in both EAC and GBM ceDMRs. We
found that TFs associated with EAC ce-hyperDMRs exhibited
reduced gene expression in cancer when compared to normal
endometrium, whereas TFs associated with EAC ce-hypoDMRs
exhibited increased expression. Similarly, in GBM, we observed
specific incidences of methylation loss over regions bearing marks
of active enhancers in alternative cell types, accompanying an
increased expression of encompassed motif TFs. These results
suggest that altered TF abundance may likely be driving the
differential methylation patterns over regulatory regions in these
cancers.

GO enrichment analyses of EAC ce-hyperDMR sets that
contained clusters of enriched TF-binding motifs often enriched
for GO terms associated with the original cell type—primarily
uterine-specific disease terms. Although GBM ce-hyperDMRs did
not show a similar enrichment of brain-specific disease terms,
examination of their annotations across numerous normal brain
and developing brain tissues revealed that hundreds more GBM
hyperDMRs could be annotated as enhancers in adult brain
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Fig. 7 Distinct spectrum of epigenetic abnormalities within transposable elements in cancers. a Percentage of abnormally methylated transposable
elements (TEs) within predicted regulatory regions (promoter and enhancer) in EAC and GBM. ChromHMM 18-state models32 were used to define active
enhancer states and TSS states outside genic promoters. b Enrichment of abnormally methylated TEs in EAC and GBM at the subfamily level. c DNA
methylation level of MER52A copies across different tissues and cancer types. Left: boxplot showing DNA methylation across all MER52A copies (n=
1580). Right: heatmap showing DNA methylation across all MER52A copies. d Epigenome Browser74,75 view of the promoter-associated histone
modification H3K4me3 in the U87 cell line (GBM cells, normalized reads per million) across 11 TEs.
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tissues rather than in fetal brain. In addition, H3K4me1 and
H3K27ac peaks within adult brain tissues were more commonly
found in GBM hyperDMRs compared with peaks in developing
brain tissues, suggesting that enhancers gaining methylation in
GBM are more active in maintaining adult brain function as
opposed to developing brain function. In contrast, ce-hypoDMRs
with enriched TF-binding motifs were primarily associated with
cancer-related GO terms. These results are consistent with the
“cancer cell-identity crisis” hypothesis67: during carcinogenesis,
tissue-specific enhancers may become methylated and silenced in
addition to the silencing of tissue-specific TFs, contributing to the
loss of original cellular identity. Hypomethylated cancer enhan-
cers and associated upregulated TFs may also contribute to car-
cinogenesis by activating pro-growth, pro-migration pathways,
and genes specific to other cell types, resulting in a deregulated
cell fate. This concept is further illustrated by two examples of
loss of methylation in GBM over enhancers active in a distant
tissue type accompanied by increased expression of the predicted
TF binding the enhancer and the target gene (Fig. 3d, e).

As TEs have been shown to harbor regulatory elements and
have been routinely filtered out in methylation array-based stu-
dies, we examined the methylation status across various TE
subfamilies in both cancer types. A large proportion of both EAC
and GBM hyper- and hypoDMR-overlapped TEs had either
enhancer and/or promoter potential, as determined by Road-
map’s reference human epigenome annotations. Distinct cancer-
specific methylation abnormalities were found in GBM and EAC,
possibly associated with tissue-specific activity, consistent with
the observation that TEs can play tissue-specific enhancer roles68.
However, enrichment of the retrotransposon subfamily MER52A
was observed in both cancer-type hypoDMRs and across several
additional cancer types, suggesting a potential role for this sub-
family in carcinogenesis. Finally, several instances of hypo-
methylated TEs exhibited the active promoter histone mark,
H3K4me3, in the U87 cell line (GBM), suggesting that a shared
cancer mechanism may include altering the gene regulatory
landscape through the demethylation of regulatory elements
harbored within TEs.

Methods
Statistics and reproducibility. A description of all statistical methods used for
each test can be found in the specific sub-sections below.

DMR calling guidelines. For a genomic region to be called an EAC DMR, the region
must have been differentially methylated between the cancer and the normal endo-
metrium in at least two of the three EAC samples25. For a genomic region to be called a
GBM DMR, the region must have been differentially methylated between the cancer
and both normal brain samples in at least two of the five GBM samples26. In both cases,
DMRs were defined at a 500 base pair resolution using the M&M tool41. The M&M
tool integrates MeDIP-seq and MRE-seq data from two different samples and deter-
mines regions where the methylation levels are significantly different. In both previous
studies where DMRs were called25,26, default parameters were set, which included
“mreratio= 3/7” (the ratio of the percentage of unmethylated genome to the percentage
that is methylated), “method= ‘XXYY’” (specifying to use MeDIP and MRE in testing),
“psd= 2” (pseudo count added to MeDIP and MRE reads), “mkadded= 1” (pseudo
count added to the number of CpGs in total and MRE-CpGs), “a= 1e− 16” (p-value
cutoff when sum of observations is smaller than “top”), “cut= 100” (p-value cutoff
when less than the sum of observations), and “top= 500” (p-value cutoff when less than
the sum of observations and p-values < “a”). Additional default parameters used for
selecting significant DMRs included “up= 1.45” (minimum threshold for MeDIP1/
MeDIP2 read ratio), “p.value.MM= 0.01” (p-value threshold), “p.value.SAGE= 0.01”
(SAGE p-value threshold), “q-value= 0.00005” (q-value threshold), “cutoff= ‘q-value’”
(measurement to use to call significance), and “quant= 0.6” (minimum threshold for
the rank of the absolute value of the difference between MeDIP1 and MeDIP2).

Determining significance of DMR overlap. To calculate the significance of
hyperDMRs and hypoDMRs shared by EAC and GBM, a hypergeometric test was
performed using the phyper() function in R. More specifically, for calculating the
significance of shared hyperDMRs, the values considered were as follows: 10,178
(total GBM hyperDMRs), 18,278 (total EAC hyperDMRs), 2760 (shared
hyperDMRs), and 5,196,471 (number of 500 bp genomic regions with at least 1

CpG, and MeDIP and/or MRE signal in at least 1 sample). To calculate the sig-
nificance of observing at least 2760 shared hyperDMRs, we used “lower.tail=-
FALSE,” as well as subtracted 1 from our “x” value (2760− >2759). For calculating
the significance of shared hypoDMRs, the values considered were as follows: 4494
(total GBM hypoDMRs), 8712 (total EAC hypoDMRs), 195 (shared hypoDMRs),
and 5,196,471 (number of 500 bp genomic regions with at least 1 CpG, and MeDIP
and/or MRE signal in at least 1 sample). To calculate the significance of observing
at least 195 shared DMRs, we used “lower.tail=FALSE,” and subtracted 1 from our
“x” value (195− >194). To calculate the expected number of shared hyper/
hypoDMRs, the following equation was used:

ExpectedNo: of sharedDMRs ¼ No: of EACDMRs
No: of background 500 bp bins

� �
*No: of GBMDMRs ð1Þ

Methylation validation using TCGA array data. Hg19-aligned TCGA methyla-
tion array-based datasets were downloaded from https://gdc.cancer.gov using the
gdc-client (v1.6.0) for the following cancers: adrenocortical carcinoma, bladder
urothelial carcinoma, breast invasive carcinoma, cervical squamous cell carcinoma
and endocervical adenocarcinoma, cholangiocarcinoma, colon adenocarcinoma,
lymphoid neoplasm diffuse large B-cell lymphoma, esophageal carcinoma, GBM,
head and neck squamous cell carcinoma, kidney chromophobe, kidney renal clear
cell carcinoma, kidney renal papillary cell carcinoma, acute myeloid leukemia,
brain lower grade glioma, liver hepatocellular carcinoma, lung adenocarcinoma,
lung squamous cell carcinoma, mesothelioma, ovarian serous cystadenocarcinoma,
pancreatic adenocarcinoma, pheochromocytoma and paraganglioma, prostate
adenocarcinoma, rectum adenocarcinoma, sarcoma, skin cutaneous melanoma,
stomach adenocarcinoma, testicular germ cell tumors, thyroid carcinoma, thy-
moma, UCEC, uterine carcinosarcoma, and uveal melanoma. Methylation files
corresponding to the same patient ID were averaged at each probe location. The
average methylation values over probes overlapping DMRs were calculated for each
tumor sample and normal sample (when available).

Genomic characterization of DMRs. To determine the genomic landscape of each
DMR class, we considered the following genomic regions:

● Promoters (1 kb core (500 bp upstream to 500 bp downstream the TSS) and
2.5 kb (2 kb upstream the TSS to 500 bp downstream the TSS), defined by
refGene (last updated: 3 April 2016), downloaded from the UCSC Gene
Annotation Database69 (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/
database/)).

● Unmasked CpG Islands (last updated: 1 June 2014), downloaded from the
UCSC Gene Annotation Database69 (http://hgdownload.cse.ucsc.edu/
goldenpath/hg19/database/).

● Gene bodies, defined by refGene (last updated: 3 April 2016), downloaded
from the UCSC Gene Annotation Database69 (http://hgdownload.soe.ucsc.
edu/goldenPath/hg19/database/)).

● Fantom 5 Enhancers, human permissive enhancers phase 1 and 2 (http://
fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/)42,43.

● VISTA Enhancers (1745 human enhancers downloaded on 21 December
2015) human elements44 (Supplementary Data 5).

● Super enhancers (defined by dbSUPER45).
● Intergenic regions, defined by refGene (last updated: 3 April 2016),

downloaded from the UCSC Gene Annotation Database69 (http://
hgdownload.soe.ucsc.edu/goldenPath/hg19/database/)).

For each DMR class, we computed the fraction of DMR nucleotides that
overlapped each genomic category. As these genomic categories are not mutually
exclusive, DMR positions may have been counted more than once if they applied to
multiple categories. Therefore, the percentages for each DMR group may sum to
more than 1. Background regions considered when calculating enrichment were
500 kb genomic regions that excluded the ends of chromosomes, excluded bins
overlapping blacklisted CpGs, excluded bins not containing at least one MeDIP
and/or MRE read for at least one sample, excluded bins not containing at least one
CpG, and excluded those on chrY (and chrX for GBM).

Enrichment was then calculated as:

Enrichment ¼ % of DMR nucleotides overlapping genomic feature
% of background region base pairs considered overlapping genomic feature

ð2Þ

Epigenetic characterization of DMRs. To determine the distribution of epige-
nomic annotations for each DMR group, we used chromHMM maps predefined
for 80 cell and tissue types32, downloaded from Roadmap Epigenomics Data Portal,
https://egg2.wustl.edu/roadmap/web_portal/ (Supplementary Data 5). For each
DMR group, we calculated the percentage of DMR bps that overlapped each feature
(defined according to the 18-state chromHMM model) in each cell/tissue type. To
calculate enrichment, we divided the percentage of DMR bps overlapping the
feature in the cell/tissue type by the percentage of background bps overlapping the
feature in the cell/tissue type. Genomic regions considered for background pur-
poses were defined as described above in “Genomic characterization of DMRs”.

Polycomb binding enrichment within DMRs. To determine whether GBM
hyperDMRs were enriched for polycomb binding in normal brain, we first
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downloaded control-normalized EZH2 ChIP-seq data for ENCODE’s NH-A
sample (GSM1003532) in BigWig format and converted the file to bed format47.
We then calculated the average normalized signal in GBM-unique hyperDMRs and
GBM/EAC shared hyperDMRs, as well as the average normalized signal in back-
ground regions (described above in “Genomic characterization of DMRs”).
Enrichment was then calculated as the ratio of the average signal in the DMR group
to the average signal in the genomic background.

DMR overlap to 450k and 850k array probes. If a DMR contained at least one
probe found on the 450k array or 850k array, the DMR was considered
identifiable via the 450k platform or 850k platform, respectively. Locations of
Illumina HumanMethylation450 BeadChip probes (Infinium HumanMethy-
lation450K v1.2) were downloaded from https://support.illumina.com/array/
array_kits/infinium_humanmethylation450_beadchip_kit/downloads.html
(“HumanMethylation450 v1.2 Manifest File (CSV Format)”). Locations of
Illumina MethylationEPIC BeadChip probes (850K array) were downloaded
from https://support.illumina.com/array/array_kits/infinium-methylationepic-
beadchip-kit/downloads.html (“Infinium MethylationEPIC v1.0 B4 Manifest
File (CSV Format)”).

DMR overlap with potential regulatory regions. We identified regions of the
genome with possible regulatory function as any 200 bp region that was annotated as
one of the following chromatin states in at least one of the cell or tissue types listed
above: 1_TssA (Active TSS), 2_TssFlnk (Flanking Active TSS), 3_TssFlnkU (Flanking
TSS Upstream), 4_TssFlnkD (Flanking TSS Downstream), 7_EnhG1 (Genic Enhan-
cers 1), 8_EnhG2 (Genic Enhancers 2), 9_EnhA1 (Active Enhancers 1), 10_EnhA2
(Active Enhancers 2), and 11_EnhWk (Weak enhancers). We then calculated the
percentage of DMR base pairs that overlapped regions of regulatory potential. To
calculate enrichment for EAC DMRs, the background was calculated as the percen-
tage of hg19 base pairs with chromHMM 18-state annotations for the cell and tissue
types above, excluding chrY and chrM, those that overlapped blacklisted CpG 500 bp
bins, bins without a CpG, and bins without MeDIP and/or MRE signal in at least one
sample (2,170,900,000 bp) that met the above criteria (1,109,392,000 bp (51.10%)).
The background GBM was calculated similarly, additionally excluding chrX (of
2,076,745,800 bp, 1,081,211,800 bp (52.06%) met the above criteria).

We then calculated the percentage of DMR bps that overlapped specific types of
regulatory regions: promoters (defined according to refGene and Roadmap
chromHMM 18-state reference epigenomes), active enhancers (defined according
to Roadmap chromHMM 18-state reference epigenomes), and both promoters and
active enhancers. Regions of active enhancer potential were defined as any region
annotated as “9_EnhA1” or “10_EnhA2” in at least 1 of the 80 tissues or cell-type
chromHMM 18-state models described above. Promoter regions were defined as
any region annotated as “1_TssA,” “2_TssFlnk,” “3_TssFlnkU,” or “4_TssFlnkD”
in at least 1 of the 80 tissues or cell-type chromHMM 18-state models in addition
to regions defined using refGene TSS annotations, where a promoter spanned 2 kb
upstream the TSS to 500 bp downstream the TSS.

TSG core promoter DMR overlap analysis. A human TSG list containing 1217
genes was obtained from the TSGene Tumor Suppressor Gene Database70,71 (http://
bioinfo.mc.vanderbilt.edu/TSGene/Human_TSGs.txt); however, only 1216 of these
genes could be identified with RefSeq (missing gene: TRP53COR), so we proceeded
with the list of 1216 TSGs. The TSS of each TSG was identified using RefSeq and then
TSG core promoter regions were defined as the region spanning 500 bp upstream to
500 bp downstream the TSS. All transcripts for each TSG were considered.

Assigning enhancer regions to genes. A list of all genomic positions that were
annotated as either state “9_EnhA1” or “10_EnhA2” in at least 1 Roadmap
reference epigenomes listed above, based on the chromHMM 18-state model32, was
compiled. DMRs not overlapping core promoter regions (1 kb regions centered
around TSSs) were overlapped to these enhancer-potential regions. DMRs over-
lapping enhancers were assigned to the gene with the nearest TSS. If the nearest
TSS was >500,000 bp away, the DMR was not assigned to any gene.

Gene expression changes associated with TSG DNA methylation alterations.
Normalized TCGA RNA-seq data (level-3, reads per kilobase of transcript, per
million mapped reads (RPKM)) and clinical metadata of EAC, their matched-
control samples, and GBM were downloaded from the Genomic Data Commons
Data Portal (https://portal.gdc.cancer.gov/). Expression of normal brain samples (n
= 28, frontal cortex) was downloaded from GTEx. TSGs with core promoters and/
or active enhancers (assigned as described above) overlapping EAC hyperDMRs
and/or GBM hyperDMRs were identified. This resulted in a list of 350 TSGs with
an EAC hyperDMR overlapping the core promoter and/or an active enhancer, and
245 TSGs with a GBM hyperDMR overlapping the core promoter and/or an active
enhancer. However, of the 350 and 245 TSGs, only 310 and 210 had available
expression data (see Supplementary Data 3). In the case of EAC hyperDMRs, two
TSGs with regulatory regions overlapping DMRs (BRINP1 and CCAR2) had the
same alias: DBC1. As the expression data were associated with the alias, DBC1 was
only counted once. For each TSGs with available RNA-seq data, the mean RPKM
value was calculated for both cancer (EAC or GBM) and normal (normal

endometrium or normal brain), and the expression fold change was calculated as:

TSG expression fold change ¼ log2
TSGmeanRPKM in cancer
TSGmeanRPKM in normal

� �
ð3Þ

GO enrichment for merged ceDMRs. Consecutive 500 bp DMRs were merged for
each DMR group (EAC hyperDMRs, GBM hyperDMRs, EAC hypoDMRs, and
GBM hypoDMRs) and any merged DMRs that overlapped promoter regions
(refGene annotations, 2.5 kb) were discarded. The remaining DMRs were filtered to
only include those that overlapped a region annotated as an active enhancer
(chromHMM 18-states “9_EnhA1” or “10_EnhA2”) in at least 1 of the 80 tissues/
cell types mentioned above. GREAT72 was then run with the remaining DMRs
(each group separately), using version 3.0.0 and default parameters (including the
whole genome as background). GO biological processes terms that were significant
in both the binomial and hypergeometric tests (BinomFDRQ ≤ 0.05 and
HyperFDRQ ≤ 0.05), were within the top 500 ranked Binomial test terms and had a
region fold enrichment ≥ 2 were considered.

Apoptosis pathway genes with DMRs overlapping promoters and enhancers.
Apoptosis-associated genes were obtained from KEGG73 (Entry: hsa04210, n=
140). Genes with a DMR overlapping their promoter (refGene, 2.5 kb) were
identified. A list of active enhancer locations (chromHMM 18-states “9_EnhA1”
and “10_EnhA2” in at least 1 of the 80 tissue/cell types listed above) was obtained
and active enhancers (unmerged) that overlapped promoters (refGene, 2.5 kb) were
removed. Remaining active enhancer regions were then assigned to the nearest
gene (shortest distance to the TSS) and those that were assigned to apoptosis genes
and that overlapped DMRs were identified.

TF expression differences in EAC vs. normal endometrium. To determine
whether there was a correlation between ceDMRs and changes in TF expression,
we used publicly available RNA-seq data from TCGA (https://portal.gdc.cancer.
gov/). TFs with enriched motifs (see method below in “Motif and GO analysis for
ceDMRs” with the exception: q-value ≤ 0.01) present in at least 20% of the DMRs
were considered. Genes with an RPKM value ≤ 1 were excluded. RPKM values were
then log2 transformed and z-scored.

Motif and GO analysis for ceDMRs
EAC ce-hyperDMRs. The Homer58 (v4.9) function “findMotifsGenome.pl” was run
using as input EAC ce-hyperDMRs: EAC hyperDMRs that did not overlap RefSeq
promoters but did overlap an active enhancer annotation (“9_EnhA1” or
“10_EnhA2”) in at least 1 of 80 tissues/cell types from Roadmap’s chromHMM 18-
state model predictions (listed above). EAC ce-hypoDMRs were used as back-
ground. Aside from the pre-specified background and the flag “-size given,” default
parameters were used to detect enriched TFBSs using known vertebrate motifs (n
= 364). Resulting enriched motifs were then filtered to include only those with a q-
value ≤ 0.05. Remaining motifs were then matched with their most likely TF using
Homer’s Motif database and the expression of each TF was calculated in TCGA
EAC samples and normal endometrium samples. TFs with a significant loss of
expression in the EAC samples relative to the normal samples (t-test, Benjamini-
Hochberg corrected) were retained. The Homer2 function “annotatePeaks.pl” was
then run to identify the location of each enriched motif within the EAC ceDMRs,
using default parameters. The binary matrix of EAC ce-hyperDMRs and enriched
motifs (where 1 indicated the presence of the motif in the DMR and 0 indicated the
absence) was then clustered using R’s heatmap.2 function with distance method
“euclidean” and clustering method “complete.” To identify clusters of TFs, the
dendrogram was cut at a height of 42. All resulting groups that had more than one
TF were called a cluster. For each cluster, DMRs that contained an enriched TF-
binding motif were then checked for enriched Disease Ontology terms using
GREAT72 v3.0 and parameters: Species Assembly: Human GRCh37, Background
regions: Whole genome; and default association rule settings. The top five enriched
Disease Ontology terms are displayed for each cluster.

GBM ce-hyperDMRs. The same methods described for EAC ce-hyperDMRs were
used here, with the following exceptions. GBM ce-hyperDMRs: GBM hyperDMRs
that did not overlap RefSeq promoters but did overlap an active enhancer anno-
tation (“9_EnhA1” or “10_EnhA2”) in at least 1 of 80 tissues/cell types from
Roadmap’s chromHMM 18-state model predictions (Supplementary Data 5) were
used as input to the Homer2 (v4.9) function “findMotifsGenome.pl.” GBM ce-
hypoDMRs were used as background. TFs with a significant loss of expression in
TCGA GBM samples relative to normal brain were retained. To identify clusters,
the dendrogram was cut at a height of 25.

EAC ce-hypoDMRs. The same methods described above were used here, with the
following exceptions. EAC ce-hypoDMRs: EAC hypoDMRs that did not overlap RefSeq
promoters but did overlap an active enhancer annotation (“9_EnhA1” or “10_EnhA2”)
in at least 1 of 80 tissues/cell types from Roadmap’s chromHMM 18-state model
predictions (listed above) were used as input to the Homer2 (v4.9) function “find-
MotifsGenome.pl.” EAC ce-hyperDMRs were used as background. TFs with a sig-
nificant gain of expression in TCGA EAC samples relative to normal endometrium
were retained. To identify clusters, the dendrogram was cut at a height of 30.
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GBM ce-hypoDMRs. The same methods described above were used here, with the
following exceptions. GBM ce-hypoDMRs: GBM hypoDMRs that did not overlap
RefSeq promoters but did overlap an active enhancer annotation (“9_EnhA1” or
“10_EnhA2”) in at least 1 of 80 tissues/cell types from Roadmap’s chromHMM 18-
state model predictions (listed above) were used as input to the Homer2 (v4.9)
function “findMotifsGenome.pl.” GBM ce-hyperDMRs were used as background.
TFs with a significant gain of expression in TCGA GBM samples relative to normal
brain were retained. To identify clusters, the dendrogram was cut at a height of 22.

Data sources for enhancer hypomethylation examples. ChIA-PET HeLa RNA-
Pol2: ENCODE data portal (https://www.encodeproject.org/). Adipose H3K4me1,
H3K4me3, H3K27ac: processed adipose ChIP-seq data (bigWig: H3K4me1, H3K4me3,
and H3K27ac) were downloaded from the ENCODE data portal (https://www.
encodeproject.org/). A549 TCF12 ChIP-seq: ENCODE data portal (https://www.
encodeproject.org/). ChIP-PET K562 RNAPol2: ENCODE data portal (https://www.
encodeproject.org/). Adipose (subcutaneous, visceral) and brain (frontal cortex) RNA-
seq: GTEx. GBM expression: TCGA (https://portal.gdc.cancer.gov/).

Determining GBM hyperDMR overlap to H3K27ac and H3K4me1 peaks in
adult and fetal brain samples. We began by starting with all 500 bp GBM
hyperDMRs that overlapped state “7_Enh” (chromHMM 15-state model) in at least
one fetal or adult Roadmap brain sample (E053, E054, E067, E068, E069, E070,
E071, E072, E073, E074, E081, E082, and E125), and that did not overlap with
refGene-defined 2.5 kb promoters. We then obtained H3K4me1 peak files from
Roadmap (downloaded from Roadmap Epigenomics Data Portal (https://egg2.
wustl.edu/roadmap/web_portal/)) for the following samples: E053, E054, E070,
E081, E082, E125 (fetal brain) and E067, E068, E069, E071, E072, E073, E074 (adult
brain), as well as H3K27ac narrow peak files from Roadmap (downloaded from
Roadmap Epigenomics Data Portal (https://egg2.wustl.edu/roadmap/web_portal/))
for the following samples: E125 (fetal brain) and E067, E068, E069, E071, E072,
E073, and E074 (adult brain). All H3K4me1 adult brain peak files were merged to
generate one adult brain H3K4me1 signal file and all H3K4me1 fetal brain peak files
were merged to generate one fetal brain H3K4me1 signal file. All H3K27ac adult
brain peak files were merged to generate one adult brain H3K27ac signal file and the
E125 H3K27ac peak file was used as the fetal brain H3K27ac signal file.

TE DMR overlap and subfamily enrichment. RepeatMasker annotations were
downloaded from the UCSC Genome Browser69. Simple repeats and low-complexity
repeats were removed from annotation. The number of DMRs that overlapped TEs
were determined using bedtools (v2.27.1). Regions of DMRs that overlapped TEs were
extracted and the percentages of bps that overlapped genic promoters (RefSeq
annotations, 2.5 kb) were determined. Regions not overlapping genic promoter
annotations were then tested to see if they overlapped epigenomically defined pro-
moter states (regions annotated as “1_TssA,” “2_TssFlnk,” “3_TssFlnkU,” or
“4_TssFlnkD” in at least 1 of the 80 tissues or cell-type chromHMM 18-state models).
Finally, remaining regions were tested to see if they overlapped active enhancer
regions (region annotated as “9_EnhA1” or “10_EnhA2” in at least 1 of the 80 tissues
or cell-type chromHMM 18-state models described above).

Subfamily enrichment was calculated as:

Es ¼
nTE
nDMR

NTE
Nall

ð4wÞ

here nTE is the number of DMRs containing TEs, nDMR is the total number of
DMRs, NTE is the number of genomic windows overlapped with TEs in the
human genome, and Nall is the number of 500 bp windows in the human genome
(hg19).

MER52A subfamily DNA methylation measurements across various normal
and cancer tissues and cell types. WGBS data were downloaded from the
Roadmap data portal (http://www.roadmapepigenomics.org/) and the ENCODE
data portal (https://www.encodeproject.org/). The CpG sites were filtered to only
include those that had at least 5× coverage. The average methylation level of each
MER52A copy was calculated for generating boxplots and heat maps.

H3K4me3 signal over hypomethylated TEs in GBM. H3K4me3 ChIP-seq signal
(bigWig) file for U87 (normalized reads per million) was downloaded from GEO
(GSM2634761). The bigWig file was visualized on the WashU Epigenome Browser74,75.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data analyzed in the present study can be accessed as described below. Source data
used to generate manuscript figures are available in the Github repository: https://github.
com/jaflynn5/EAC_GBM_comparative_epigenomics, which is also linked to the Zenodo

repository with the identifier [DOI: 10.5281/zenodo.4637753]76. Any additional source
data can be obtained from the corresponding authors upon reasonable request. EAC
MeDIP-seq+MRE-seq: [GEO: GSE51565]. GBM MeDIP-seq+MRE-seq: [EGA:
EGAS00001000685]. Hg19 RefSeq annotations (last updated: 3 April 2016), downloaded
from the UCSC Gene Annotation Database (http://hgdownload.soe.ucsc.edu/goldenPath/
hg19/database/)). Hg19 unmasked CpG islands (last updated: 1 June 2014), downloaded
from the UCSC Gene Annotation Database (http://hgdownload.cse.ucsc.edu/goldenpath/
hg19/database/). Fantom 5 Enhancers, human permissive enhancers phase 1 and 2: http://
fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/. VISTA Enhancers (1745 human
enhancers downloaded on 21 December 2015) human elements: https://enhancer.lbl.gov/.
Super enhancers: https://asntech.org/dbsuper/. Blacklisted CpGs: http://genome.ucsc.edu/
cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability. chromHMM 18-state maps and 15-
state maps: downloaded from Roadmap Epigenomics Data Portal, https://egg2.wustl.edu/
roadmap/web_portal/. NH-A EZH2 CHIP-seq: [GEO: GSM1003532]. 450k and 850k
array probe locations: locations of Illumina HumanMethylation450 BeadChip probes
(Infinium HumanMethylation450K v1.2) were downloaded from https://support.illumina.
com/array/array_kits/infinium_humanmethylation450_beadchip_kit/downloads.html
(“HumanMethylation450 v1.2 Manifest File (CSV Format)”). Locations of Illumina
MethylationEPIC BeadChip probes (850K array) were downloaded from https://support.
illumina.com/array/array_kits/infinium-methylationepic-beadchip-kit/downloads.html
(“Infinium MethylationEPIC v1.0 B4 Manifest File (CSV Format)”). Tumor suppressor
genes: https://bioinfo.uth.edu/TSGene/. TCGA EAC, normal endometrium, and GBM
RNA-seq data (level-3, RPKM) and clinical metadata of EAC, GBM, and their matched-
control samples were downloaded from the Genomic Data Commons Data Portal
(https://portal.gdc.cancer.gov/). Adipose (subcutaneous, visceral) and brain (frontal
cortex) RNA-seq: GTEx. Apoptosis gene list: KEGG73 (Entry: hsa04210, n= 140). ChIA-
PET HeLa RNAPol2: ENCODE data portal (https://www.encodeproject.org/). Processed
adipose ChIP-seq data (bigWig, H3K4me1, H3K4me3, and H3K27ac) were downloaded
from the ENCODE data portal (https://www.encodeproject.org/). A549 TCF12 ChIP:
ENCODE data portal (https://www.encodeproject.org/). ChIP-PET K562 RNAPol2:
ENCODE data portal (https://www.encodeproject.org/). H3K27ac and H3K4me1 Peaks in
Adult and Fetal Brain Samples: we obtained H3K4me1 peak files from Roadmap
(downloaded from Roadmap Epigenomics Data Portal (https://egg2.wustl.edu/roadmap/
web_portal/)) for the following samples: E053, E054, E070, E081, E082, E125 (fetal brain)
and E067, E068, E069, E071, E072, E073, E074 (adult brain), as well as H3K27ac narrow
peak files from Roadmap (downloaded from Roadmap Epigenomics Data Portal (https://
egg2.wustl.edu/roadmap/web_portal/)) for the following samples: E125 (fetal brain) and
E067, E068, E069, E071, E072, E073, E074 (adult brain). RepeatMasker annotations were
downloaded from the UCSC Genome Browser69 https://hgdownload.soe.ucec.edu/
download.html. WGBS data (thymus, ovary, pancreas, lung, mid-frontal cortex, brain
germinal matrix, frontal cortex neuron, frontal cortex glia, atrium, sigmoid colon, colon
tumor, colorectal cell line HCT116, breast myoepithelial, breast cancer HCC1954, liver,
HepG2) were downloaded from the Roadmap data portal (http://www.
roadmapepigenomics.org/) and the ENCODE data portal (https://www.encodeproject.
org/). U87 H3K4me3 ChIP-seq [GEO: GSM2634761]. TCGA Infinium 450k array probe
data for all available cancer types: https://portal.gdc.cancer.gov/. Normal glia RNA-seq:
[GEO: GSE41826]. TCGA methylation array data: https://gdc.cancer.gov/.

Code availability
Custom scripts generated for use in this study are available in the Github repository
https://github.com/jaflynn5/EAC_GBM_comparative_epigenomics, which is also linked
to the Zenodo repository with the identifier [DOI: 10.5281/zenodo.4637753]76. Any
additional scripts can be obtained from the corresponding authors upon reasonable
request. Software utilized include: R (v3.3.0), Homer2 (v4.9), and GREAT (v3.0).
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