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Abstract

In their 2007(a) Psychological Review paper, Xu and Tenenbaum found that early word learning 

follows the classic logic of the “suspicious coincidence effect:” when presented with a novel name 

(‘fep’) and three identical exemplars (three Labradors), word learners generalized novel names 

more narrowly than when presented with a single exemplar (one Labrador). Xu and Tenenbaum 

predicted the suspicious coincidence effect based on a Bayesian model of word learning and 

demonstrated that no other theory captured this effect. Recent empirical studies have revealed, 

however, that the effect is influenced by factors seemingly outside the purview of the Bayesian 

account. A process-based perspective correctly predicted that when exemplars are shown 

sequentially, the effect is eliminated or reversed (Spencer, Perone, Smith, & Samuelson, 2011). 

Here, we present a new, formal account of the suspicious coincidence effect using a generalization 

of a Dynamic Neural Field (DNF) model of word learning. The DNF model captures both the 

original finding and its reversal with sequential presentation. We compare the DNF model’s 

performance with that of a more flexible version of the Bayesian model that allows both strong 

and weak sampling assumptions. Model comparison results show that the dynamic field account 

provides a better fit to the empirical data. We discuss the implications of the DNF model with 

respect to broader contrasts between Bayesian and process-level models.
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Bayesian models of cognition have entered the mainstream of cognitive science in the last 

two decades. Bayesian models investigate cognition from the perspective of optimal rational 
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inference and have been applied to a range of cognitive phenomena from visual perception 

(de Lange et al., 2018; Yuille & Kersten, 2006), to everyday statistical intuition (Griffiths & 

Tenenbaum, 2006), to social learning (Krafft et al., in press). Bayesian models have also 

been used to capture word learning (Xu & Tenenbaum, 2007a, 2007b). Reasoning from 

Bayesian principles, Xu and Tenenbaum (2007b) predicted and demonstrated a novel word 

learning behavior they referred to as the “suspicious coincidence” effect (SCE): both adults 

and children generalize novel words more narrowly when multiple identical exemplars (such 

as three Labradors) are provided by a teacher than when a single exemplar is provided (one 

Labrador). Xu and Tenenbaum explained this behavior as a result of optimal inductive 

inferences about the higher probabilities of narrower hypotheses for word meanings given 

the size of an exemplar set1.

Bayesian models can be contrasted with process-based models of cognition. Rather than 

focusing on abstract principles like inductive inference, process models aim to capture 

lower-level details of cognitive processes including the second-to-second or step-by-step 

cognitive operations that underlie behavioral phenomena. Process models are—more often 

than Bayesian models—concerned with the influence of task details, such as the timing or 

intensity of specific events. This distinction is most notable when these types of details are 

not obviously relevant to the optimal rational solution to a problem as is the case for the 

SCE. Reasoning from a process-based perspective, Spencer, Perone, Smith, and Samuelson 

(2011) predicted that the suspicious coincidence effect would be sensitive to the timing and 

spacing of word learning exemplars. In particular, Spencer and colleagues predicted that 

sequential versus simultaneous presentation of exemplars would eliminate or reverse the 

SCE. This was the case across multiple experiments. Although these researchers explained 

the effect in terms of well-studied processes of feature comparison (e.g., Garner, 1974; 

Gentner & Namy, 2006), they did not provide a formal model of the SCE or its reversal.

Here, we generalize a process-based model of word-referent binding by Samuelson, Smith, 

Perry, and Spencer (2011) to both the original SCE and its reversal. The model uses dynamic 

neural fields (DNFs) to simulate both effects at the level of neural population dynamics. The 

dynamic field approach is a neurally-grounded process model that has, like Bayesian 

models, entered broadly into the mainstream cognitive literature in the last two decades 

(Erlhagen & Schöner, 2002; Erlhagen & Bicho, 2006; Faubel & Schöner, 2008; Johnson et 

al., 2009; Johnson et al., 2014; Lipinski et al., 2012). Our model explains the SCE as a result 

of local neural interactions that occur between representations of objects that are close in 

space, time, and feature values under simultaneous conditions – interactions that differ when 

items are presented sequentially.

At a broader level, the DNF account opens the door to compare a Bayesian model with a 

process-based model head-to-head. There have been several efforts to evaluate the broad, 

relative merits of Bayesian and process-based approaches (Brighton & Gigerenzer, 2008; 

Chater, 2009; Jones & Love, 2011; Sakamoto et al., 2008), and Bayesian and process 

theories have addressed similar phenomena in the past (McClelland, 2013; Xu & 

Tenenbaum, 2007b; A. J. Yu & Cohen, 2009). Rarely are head-to-head, fully implemented 

1For an earlier discussion of ‘suspicious coincidences’, see Barlow (1985).
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model comparisons performed, however, despite the scientific importance of such 

comparisons. This is, in part, because significant obstacles exist to performing quantitative 

comparisons. For instance, the language of Bayesian theory—likelihoods and posterior 

probabilities—is difficult or impossible to apply to many process models (Jones & Love, 

2011). Conversely, the Bayesian approach has rarely interfaced with the low-level cognitive 

details that are central to many process-level models (Chater et al., 2003; Griffiths & 

Tenenbaum, 2006). Indeed, the feasibility of low-level implementation of Bayesian models 

is hotly debated (Baddeley et al., 1997; Brighton & Gigerenzer, 2008; Deneve, 2008; 

Feldman, 2010; Knill & Pouget, 2004; Kover & Bao, 2010).

One model comparison option is to qualitatively compare models by comparing each 

model’s ability to capture patterns of effects. Another option is to use quantitative measures 

of data fit such as the Akaike Information Criterion (AIC) or Bayesian Information Criterion 

(BIC). These measures are useful in that they penalize complex models which often have 

more ‘free’ parameters. A third option is to fit the models to one data set and then generalize 

them to another while holding model parameters constant. Here, we adopt all three of these 

approaches. We proceed as follows. In the next section, we explain the behavioral data to be 

modeled: two variants of the “suspicious coincidence” effect in the domain of hierarchical 

word learning. We next discuss the details of the Bayesian model and its account of the 

behavioral data. We introduce a more flexible version of Xu and Tenenbaum’s model 

(2007b) that includes the same capabilities as the 2007(a) version but adds a new parameter 

that makes it theoretically better suited to account for the distinction between simultaneous 

and sequential presentation. We then provide an overview of the DNF model and how it 

captures the SCE. Next, we use both models to simulate data from three experiments from 

Spencer et al. (2011): a replication of Xu and Tenenbaum’s (2007a) original findings with 

simultaneous exemplar presentation, the reversal of this effect with sequential presentation, 

and a generalization dataset with sequential presentation but changes in spacing and number 

of exemplars designed for concessions to the Bayesian theory. We compare the model 

simulations head-to-head qualitatively and using quantitative metrics (AIC/BIC). This serves 

as the basis for our more general evaluation of Bayesian and DNF models in the General 

Discussion.

1.1 The Suspicious Coincidence Effect

An important question in the word learning literature is how people are able to learn 

overlapping or hierarchical categories without explicit definitions. A single object, for 

example a dog, can often belong to a number of different categories at once (“animal,” 

“mammal”, “dog,” “Labrador”, “Rover”). When a learner hears a novel word applied to an 

object, how can the learner determine which of these possible categories is the correct 

referent for that novel word? Process of elimination is one commonly cited strategy for 

dealing with word learning ambiguity (Golinkoff et al., 1992; E. M. Markman, 1991). For 

example, if a cluttered scene has many objects with known labels and one unfamiliar one, 

then a novel label is more likely to apply to the unknown object. This does not help with 

hierarchical categories, however, because knowing something is a “dog” does not rule out 

also having a label at a different hierarchical level, like “Labrador.” Another possibility is 

that word learners have a bias to assume that most novel words refer to basic-level categories 
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( like “dog,” as opposed to “Labrador” or “mammal”; Markman, 1991; Rosch & Mervis, 

1975). This bias does not help in hierarchical situations either, because by definition, 

hierarchies involve categorization at more than just the basic level.

Xu and Tenenbaum (2007a) suggested that rational Bayesian inference could offer a 

solution. After seeing novel labels applied to some number of objects, a learner can calculate 

the relative probabilities of every possible meaning and use these to infer the correct 

meaning. For example, when a single Labrador is labeled “fep,” the evidence is consistent 

with any of the possible meanings for “fep” that includes Labradors (Rover, Labrador, dog, 

mammal, animal, etc.). However, certain categories are more or less likely. The chance of 

seeing a Labrador from the category of Labradors is 100%, whereas the chance of seeing a 

Labrador from all species and breeds of animals is lower. Xu and Tenenbaum claim that 

children (3.5–5-year-olds) and adults follow Bayesian principals, are sensitive to these 

probabilities, and that they use this information to make inferences about word meanings.

One prediction of Xu and Tenenbaum’s theory is particularly important, because it was 

initially a unique prediction relative to other theories of word learning: if three exemplars of 

Labradors in a row are labeled “fep”, then it would seem more likely for “fep” to refer to 

“Labrador” than to all dogs relative to a case when just one exemplar is labeled. According 

to Xu and Tenenbaum, this is because as more Labradors are seen and labeled with the same 

word, the hypothesis that the word refers to Labradors is no less reasonable, but the 

hypothesis that the word refers to dogs becomes less and less plausible. In other words, it 

would be an increasingly “suspicious coincidence” as two, three, or more Labradors in a row 

were drawn randomly from the set of all dogs, whereas the first Labrador is not more or less 

likely than any other breed. Xu and Tenenbaum tested this prediction of the Bayesian 

approach empirically and confirmed the suspicious coincidence effect: both children (3.5- to 

5-year-olds) and adults generalized three identical exemplars more narrowly than one 

exemplar of a novel label. Xu and Tenenbaum captured these results in their Bayesian model 

and demonstrated that several other models of word learning do not show this pattern (see 

Xu & Tenenbaum, 2007b).

Spencer, Perone, Smith, and Samuelson (2011) later provided an alternative non-rational 

explanation of the suspicious coincidence effect based on low-level cognitive processes. 

Process-based models have a long history of explaining behavioral consequences of 

proximity of objects in time and space. When similar items are near each other in time and 

space, they are easier to align and compare, and their relationships are easier to remember 

(Gentner & Namy, 2006; Hahn et al., 2005; Samuelson et al., 2009). Narrower 

generalization may therefore be a result of fine-grained attention or more robust memory for 

fine-grained features created because the simultaneous comparison in Xu and Tenenbaum’s 

task make the stimuli highly alignable. Spencer and colleagues hypothesized that the inverse 

might also be true: exemplars separated in time or space might yield broader category 

extensions, because the experiences are harder to directly compare.

Spencer and colleagues replicated Xu and Tenenbaum’s (2007b) methodology and results in 

an initial experiment. In two subsequent experiments, however, participants showed a 

reverse-suspicious coincidence effect when stimuli were presented sequentially. That is, 
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participants generalized novel names more broadly when shown three exemplars 

sequentially than when shown a single Labrador.

In the present report, we focus on the empirical data from Spencer et al. (2011) (including 

the replication experiment), because they offer a broad empirical range of effects for this 

theoretically important phenomenon. We consider whether a more flexible version of the 

Bayesian model (Xu & Tenenbaum, 2007a) can explain the new empirical findings. We also 

present a new account of the SCE by generalizing a DNF model of early word learning 

(Samuelson, Smith, Perry, & Spencer, 2011) to this task. We then ask whether this model 

offers novel insights into why the SCE is modulated by seemingly low-level task details (i.e., 

simultaneous versus sequential stimulus presentation). Our central goal is to compare these 

models head-to-head in an effort to understand the SCE and to clarify the strengths and 

weakness of Bayesian and process-based models. We proceed by describing the details of 

each model in turn.

1.2 Xu and Tenenbaum’s Bayesian Model

We used Xu and Tenenbaum’s 2007(a) model for fitting data in the present report. This 

model is identical to the 2007(b) version except with an extra parameter described below 

that allowed it to distinguish between simultaneous and sequential exemplar presentation.

The Bayesian model combines three main ingredients to arrive at a prediction about how a 

word learner will generalize a novel word: the set of hypotheses the learner will consider for 

that word’s extension, the likelihood of each hypothesis, and the prior probability of each 

hypothesis. Together, these lead to a set of posterior probabilities:

p(ℎ ∣ X) = p(X ∣ ℎ)p(ℎ)

∑ℎ′ ∈ H
p X ∣ ℎ′ p ℎ′

Here, h = a given hypothesis about a word’s extension, h’ = each of the individual 

hypotheses that the learner is considering in turn within the sum, X = the set of exemplars 

that have been labeled with the novel word being learned, and H = the space of all 

considered hypotheses.

1.2.1 Hypotheses

A hypothesis in the Bayesian model is a set of one or more categories that represent one 

guess about the extension of the novel word. For example, [Labrador, penguin, Terrier] is a 

hypothesis representing the possibility that a novel word refers to the set of animals covered 

by any of the English categories “Labrador,” “penguin” and “Terrier.” Hypotheses that may 

be considered for a novel label are chosen before the model sees any labeled exemplars. In 

Xu and Tenenbaum’s model, the choice of hypotheses is based on pairwise similarity ratings 

collected in a separate task. They are expressed in the form of a hierarchical cluster tree, 

where each cluster is a hypothesis (Figure 1). After gathering similarity data for a set of 

objects, an experimenter makes a cluster tree by first joining the two most similarly rated 

objects into a cluster. Then, the experimenter forms another cluster with the next highest 
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possible internal similarity, either by pairing off two unassigned objects, pairing an 

unassigned object onto a cluster, or pairing two clusters. This process is repeated until all 

objects are included in at least one cluster. The final cluster tree shows the order that 

linkages were formed. In addition, the height of each cluster represents the average 

dissimilarity between objects within that cluster. An example for animal stimuli from Xu 

and Tenenbaum’s study is shown in Figure 1.

1.2.3 Likelihood

Another input to the Bayesian model is the set of one or more exemplars of the novel word it 

is trying to learn. Likelihood, p(X | h), is the probability of having received these particular 

exemplars, given a hypothesis h. For example, a Labrador might be given as an example of 

“fep.” The likelihood of this exemplar for broad hypotheses like “all animals” would be 

lower than for narrower hypotheses like “all dogs,” because a Labrador exemplar from 

amongst the set of dogs is more likely than a Labrador exemplar from amongst the set of 

animals. In the case of three Labrador exemplars, the likelihood depends on whether the 

additional Labradors are new individuals or not. In Xu and Tenenbaum’s earlier model 

(2007b), both likelihoods of “all animals” and “all dogs” always become exponentially 

lower with more exemplars. Mathematically, this was due to the following likelihood 

equation:

p(X ∣ ℎ) = 1
size(ℎ)

n

n is the number of exemplars seen, and the size of the hypothesis’ extension is approximated 

by cluster height plus a small constant to avoid division by zero. Hypotheses that are missing 

any exemplars automatically receive a likelihood of 0. Xu and Tenenbaum call this 

likelihood function the “size principle.”

In their 2007(a) model, Xu and Tenenbaum specify that the size principle applies only in 

“strong sampling” conditions, where additional exemplars are assumed to be unique objects 

drawn representatively from the category. The size principle does not apply in “weak 

sampling” conditions, where the exemplars are repeats or not necessarily representative. The 

weak sampling version of the likelihood in the Bayesian model is as follows:

p(X ∣ ℎ) = 1
size(ℎ)

This equation holds regardless of the number of exemplars.

The distinction between strong and weak sampling lends itself to a possible interpretation of 

data from Spencer et al. (2011). If the learner interprets multiple “exemplars” in the 

sequential presentation task as simply different views of the same object, this might lead to 

weak sampling assumptions. Thus, in simulations below, we included a free parameter that 

would turn strong vs. weak sampling on or off across conditions. In practice, this was 

equivalent to fitting both likelihoods to all data and choosing the best-fitting version per 
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experiment to account for ambiguity in whether participants saw exemplars as unique 

instances or not (i.e., strong sampling vs. weak sampling).

1.2.4 Prior Probability

The prior, p(h), is a learner’s pre-existing bias to favor a given hypothesis prior to seeing any 

exemplars labeled. Xu and Tenenbaum’s priors were based on the same data as their 

hypothesis set—pairwise similarity ratings. In the cluster tree defined by these ratings 

(Figure 1), the prior probability of each is proportional to that hypothesis’ cluster height 

subtracted from the height of the next highest (parent) cluster:

p(ℎ) ∝ ℎeigℎt(parent[ℎ]) − ℎeigℎt(ℎ)

The larger the difference between cluster height and parent cluster height, the more 

informational content is held by that hypothesis (in the sense of Rosch, 1978; Rosch & 

Mervis, 1975), and the more likely it is to be the most appropriate hypothesis for any new 

object, a priori.

1.2.5 Basic Level Bias

Basic level bias is an important sub-component of calculating the final priors. Xu and 

Tenenbaum included this term because earlier work suggests early word learners have a bias 

towards the basic level (Golinkoff et al., 1994; Markman, 1989).2 The basic level bias is a 

scalar, which multiplies the prior probability for basic level hypotheses only. A “basic level 

hypothesis” is one that aligns with adult English basic-level categories—for example, a 

hypothesis that includes all dogs and nothing else. Basic level bias is a free parameter, set to 

best match simulated and behavioral data.

1.2.6 Output

The model outputs a posterior probability for each of the hypotheses given in the input tree, 

as discussed above. These posterior probabilities are then converted to generalization 

probabilities by averaging the predictions of all hypotheses weighted by their posterior 

probabilities:

p(y ∈ C ∣ X) = ∑
ℎ ∈ H

p(y ∈ C ∣ ℎ)p(ℎ ∣ X)

Note that p(y ∈ C|h) is 1 if y ∈ h, and 0 otherwise, and p(h|X) = 0 unless the examples X are 

all contained with h. Thus, the generalization probability can be written as:

2Xu and Tenenbaum (2007b) investigated both adult and child word learners, and modeling the distinction was their motivation for the 
basic level bias parameter. Xu and Tenenbaum ultimately found that the basic level bias was most useful for fitting adult behavior, 
however, and we therefore still consider the parameter here.
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p(y ∈ C ∣ X) = ∑
ℎ ⊃ y, X

p(ℎ ∣ X)

In this equation, the probability that the novel word C will be generalized to the test object y, 

given the exemplar(s) shown, is equal to the sum of the posterior probabilities of all 

hypotheses that include both the exemplar(s) and the test object. These probabilities can then 

be compared to the proportion of time participants generalized a novel name for a labeled 

exemplar (or set of exemplars) to a generalization set.

1.3 A Dynamic Neural Field Model of Early Word Learning

The process-based model we used is a generalization of a DNF model proposed by 

Samuelson, Smith, Perry, and Spencer (2011). The original model captured the roles of 

space and time in binding novel labels to referents and has been used to capture data from a 

variety of word learning tasks (Samuelson, Jenkins & Spencer, 2013). Thus, this model is 

appropriate for simulating the word learning behaviors captured by Xu and Tenenbaum’s 

(2007b) model. Moreover, because the model captures how children bind labels and 

referents even when they are separated in time, we thought the DNF model might shed light 

on why the sequential stimulus presentation condition in Spencer et al. (2011) reversed the 

suspicious coincidence effect. In the sections below, we describe the architecture of the 

model and how we adapted it to capture performance in the suspicious coincidence task.

1.3.1 Architecture of the DNF Model

Figure 2 shows the DNF model (note: for a full mathematical description of the model, see 

the appendix, full model code and all reported results are available at https://github.com/

developmentaldynamicslab/Jenkins_Samuelson_Learning_Words, see Supplemental 

Materials). The model consists of two 2-dimensional dynamic neural fields—a space-feature 

field and a label-feature field (Figure 2, A and B). Each field consists of a set of neural units 

whose activation is depicted by the color scheme in Figure 2 (warmer colors = higher 

activation). Each unit is receptive to stimulation along two metrically-organized dimensions, 

and the graphical location of a unit represents the values it is maximally receptive to along 

each dimension. Space is in the frame of the task with the linear position of exemplars along 

a horizontal axis, as they would be shown to participants along the bottom of a computer 

monitor. Label is a dimension of lexical entries where positions along the dimension 

represent different words. In Samuelson et al. (2011), the other dimension in each field 

mapped to specific features, color and shape. In the current model, the other dimension (the 

vertical in Figure 2) still represents object features, but with naturalistic stimuli, exact 

feature dimensions are unknown. Instead, the feature dimension is derived from a 

multidimensional scaling (MDS) solution of the data from Xu and Tenenbaum’s (2007b) 

hierarchical cluster trees (Figure 1) fit to a single dimension. We will refer to the fields in 

our model specifically as space-MDS and label-MDS fields.
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1.3.2 MDS Dimension Algorithm

The MDS dimension in the DNF model was derived from the tree plot similarity data of Xu 

and Tenenbaum (2007b) seen in Figure 1, fit to a single dimension. The algorithm first 

chooses a subordinate level object and places it at an arbitrary zero point along a dimension. 

As an example, it might start with the leftmost Labrador in Figure 1. The algorithm then 

searches up the tree plot to the next node of the tree. Each additional object is placed on the 

one-dimensional solution such that the distance between it and the average of already-placed 

objects is proportional to the height of the node that connects the new object to the previous 

ones. The left/right relationship between previously and newly placed objects is determined 

randomly.

If a node connects several units at once, like the last two clustered items on the right in 

Figure 1, it recursively solves this sub cluster as if it were a tree of its own. The recursive 

solution is then added to the main solution as if it were one object at the average position of 

the new objects in the recursive solution. The total solution is then scaled to fit into the DNF 

model’s field size. The result of the algorithm is one of many possible fits of hierarchical 

tree data to a single dimension that meets the constraints on data implied by the tree. The 

algorithm was run once per simulated participant in our modeling experiments. Thus, each 

simulation had a different pattern of inputs, ensuring that the performance of the model 

reflects the general constraints of the similarity data and not the details of one particular 

instantiation of the MDS algorithm.

1.3.3 Model Dynamics

Neural sites within each field interact according to a local excitation/lateral inhibition 

function (Spencer et al., 2012), a common form of interaction in neural models of cortical 

function (Durstewitz et al., 2000) where units excite their nearest neighbors strongly, and 

inhibit a broader range of neighbors more weakly. In our implementation of the Samuelson 

et al. model, this form of interaction was implemented across two layers—a layer of 

excitatory neurons and a layer of inhibitory interneurons (see appendix). Only neural sites 

that are sufficiently activated participate in interactions. This is implemented using a 

sigmoidal function (a type of step function) with the activation threshold set to zero 

activation. This type of neural interaction allows stable “peaks” of activation to form within 

the excitatory layer shown in Figure 2D—stable patterns of above-threshold activation that 

maintain themselves through local excitation and avoid expanding uncontrollably due to 

lateral inhibition. For instance, when presented with a red color at a leftward location, the 

space-MDS field would build a peak representing that this hue value is present on the left.

The fields shown in Figure 2 also pass activation between one another along the shared 

MDS dimension. In particular, at each time step, above-threshold activation within the 

space-MDS field is summed along the spatial dimension. The resulting sum is then weighted 

with a Gaussian kernel (Fig 2E) and projected into the label-MDS field, sending a “ridge” of 

activation horizontally across the label dimension (Fig 2F). The label-MDS field also 

projects above-threshold activation back to the space-MDS field in the same manner (see 

green arrow in Fig 2).
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1.3.4 Simulating Behavior in the Suspicious Coincidence Task

To perform the suspicious coincident task, the model receives three external inputs: (1) 

labels, (2) exemplar objects, and (3) test objects. Labels (such as a “fep”) are specified as a 

Gaussian input pattern (Fig 2G) that are projected as vertical ridges into the label-MDS 

field. Exemplars are defined as 2-dimensional Gaussian input patterns, specifying both the 

position and MDS values of each exemplar object (Fig 2H). This input feeds into the space-

MDS field in a 1:1 pattern, representing visual input from hypothesized lower-level visual 

fields. Note that the three green circles seen at Figure 2D reflect the same pattern shown in 

Figure 2H but viewed from above such that ‘hot spots’ of activation take on a greener and 

then redder color. The final input—the test objects—are defined by their MDS values only 

(see Fig 2I). These are projected into the label-MDS field as horizontal ridges (Fig 2J). 

Conceptually, the lack of spatial localization of the test inputs reflects the nature of the task: 

each test input is considered individually and appears in its own unique (retinal) space 

separate from other test items and from the exemplars. A more complete model would 

specify how the test input is mapped from a retinal space into the task space depicted in 

Figure 2. We have proposed such a model (see Schneegans et al., 2016). In this model, 

features are mapped from a retinal space into a task space using an attentional layer that 

projects a horizontal ridge into a feature-space field like the one shown in Figure 2. To save 

computation time in the current simulations, we did not include this spatial mapping process.

The first three rows in Figure 2 show the sequence of events that unfold in a single trial of 

the suspicious coincidence task. Row 1 shows the model just a few time steps after 

initialization. Noise is relatively strong, and input has not yet raised stable peaks in either 

field (activation patterns have no yellow red in them). Rather, weak influences are evident 

from all three sources of input: the exemplars can be seen in field A, vertical label ridge in 

field B (e.g., ‘fep’), and the horizontal test object ridge in field B. Row 2 shows the model 

after 40 time steps. The input-driven peaks and ridges have begun to stabilize. More 

activation is flowing between fields as well. The two-humped activation profile shown in Fig 

2K projects two ridges (Fig 2L) to the label-MDS field: the upper ridge at K is stronger, 

because there are two objects with the same MDS values in the visual field, while the faint 

lower ridge reflects the third exemplar. In Row 3, activation has grown, creating a peak in 

the label-MDS field (Fig 2M) at the interaction of the label ridge, the test object ridge, and 

the projection from the space-MDS field. This above-threshold peak (i.e., above zero 

activation) indicates that the model has generalized the test object to the novel label (‘yes, 

this is a fep’). The bottom of panel of Fig 2 (see Row 4) shows a simulation of an alternate 

test object. This test object is less similar to the exemplars (i.e., there is a bigger difference 

along the MDS dimension). Even at the same point late in the simulation, the model has not 

formed a peak in the label-MDS field—it does not think the test object is a “fep.”

The DNF model captures the suspicious coincidence effect due to a narrowing of neural 

activation patterns when three simultaneous, virtually identical exemplars are presented. 

Figure 3 shows an example. Three simultaneously presented subordinate-level exemplars 

(i.e., three Labradors) are shown in the top row in the space-MDS field (Fig 3A). In this 

three-subordinate-exemplars condition, the peaks are close together in MDS space, so the 

broad ring of inhibition from each peak overlaps with the neighboring peaks. This mutually 
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shared inhibition narrows and sharpens all three peaks. A Gaussian kernel is applied (result 

in Fig 3B) which projects a narrow ridge (Fig 3C) to the label-MDS field. The ridge is too 

narrow to overlap with the ridge from the test object (Fig 3D), so activity does not interact 

strongly enough to form a peak, and the model does not generalize the novel label to the test 

object. When a single item is presented (i.e., one dog; middle row of Figure 3), the peak in 

the space-MDS field (Fig 3E) is sharing no inhibition and is thus broader than in the three-

subordinate-exemplars condition, as is the activation pattern (Fig 3F) that projects a ridge 

(Fig 3G) to the label-MDS field. Consequently, a peak forms (Fig 3H), and the model 

generalizes the novel label to the test object. Thus, the DNF model shows the suspicious 

coincidence effect: three nearly identical exemplars result in narrower generalization than a 

single exemplar.

The bottom row of Figure 3 demonstrates the reversal of the suspicious coincidence effect 

with sequential presentation. Each of the insets I1, I2, and I3 show the contents of the empty 

spot in the space-MDS field (Fig 3I) over sequential time. As can be seen in the figure, 

sequential presentation is analogous to presenting a single exemplar: since the three objects 

are never seen at the same time, no mutual narrowing occurs within the space-MDS field, 

and generalization is broad. In fact, because the three exemplars are not perfectly identical 

(slight vertical differences between peaks in panels I1, I2, and I3 of Figure 3), the model 

generalizes even more broadly than with a single exemplar, because any of the three slightly 

different exemplars can overlap with the test object and lead to a generalization.

To highlight the origin of the suspicious coincidence effect in the DNF model, Figure 4 

shows typical projections from the space-MDS field to the label-MDS field superimposed 

across all conditions. In the three-subordinate-exemplars simultaneous condition, three 

nearly identical exemplars were presented at position 30 along the x-axis (i.e., along the 

MDS dimension), yielding the narrow, green projection (curves are color-coded the same 

way in Figures 2 and 3). In the single-exemplar condition and in the three-subordinate-

exemplars sequential condition, the exemplars were once again placed at position 30, but 

now the projection was broader, yielding the blue projection. In the three-basic-exemplars 

condition (simultaneous and sequential versions act similarly from here on), the three 

examples were separated along the x-axis (see red dots), yielding the broad red projection. 

Finally, in the superordinate condition, the three examples were very spread apart along the 

x-axis (see black dots), yielding the very broad, two-humped black projection. If the 

activation threshold for a field were set at the dotted line, then the coverage of each curve at 

that line would be a good approximation of breadth of generalization in the suspicious 

coincidence task.

Below, we examine whether the DNF model can capture the full array of behaviors observed 

in the suspicious coincidence task, and we compare this model head-to-head with Xu and 

Tenenbaum’s Bayesian model. Before moving to this head-to-head comparison, however, we 

acknowledge that some readers might see similarities between the DNF model and the 

Bayesian account because they both use Gaussian functions. We contend this is a surface 

similarity, rather than a deep similarity. There is a long history using Gaussian receptive 

fields in neurophysiology. Gaussians have been used to fit receptive field profiles (radial 

basis functions, which are built from Gaussians). Similarly, wavelets are often used which 
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are built from Gaussians and sinusoidal functions. In this context, Gaussians are convenient 

approximate descriptions of connectivity patterns. The exact pattern of connectivity, 

however, does not matter too much in DNF models. The logic here is really one of 

“topological” equivalence, that is, even a distorted Gaussian would have the same qualitative 

properties as the original Gaussian. Thus, the use of Gaussians in our theory is convenient in 

that they produce the key qualitative features we desire including the stability properties 

central to DFT (i.e., the non-linear transitions from the resting state to the ‘peak’ state and 

the resistance of each state to, for instance, neural noise). But Gaussians do not play a 

central theoretical role in DFT as they do in the Bayesian approach.

2.0 Modeling Experiment 1

We compared the Bayesian and DNF models by asking whether both models could capture 

the suite of effects reported in Experiments 1 and 2 of Spencer et al. (2011) from both 

simultaneous and sequential exemplar presentation conditions. This served as an initial 

head-to-head comparison of the models. It also allowed us to fix parameters of both models 

for the second modelling experiment where we probed the ability of each model to 

generalize to a third experiment.

2.1 Methods

2.1.2 Bayesian methods.—The Bayesian model is deterministic and has two free 

parameters: basic level bias and the distinction between weak and strong sampling. Xu and 

Tenenbaum’s cluster trees were used as input to the model. The model was run several 

times, once each for weak vs. strong sampling and at each of a variety of basic level bias 

values from 1 to 100. The posterior probabilities of different hypotheses were taken to be 

proportional to the percent of trials where participants would generalize a novel label to a 

test item (see Xu and Tenenbaum, 2007b). Thus, posterior probabilities were compared to 

behavioral data and the best fit recorded.

To determine “best fit,” we used root mean square error (RMSE) compared to results from 

Experiments 1 and 2 from Spencer et al. (2011), across test trial types. Specifically, there 

were twelve test trial types for RMSE analysis: exemplars were single (such as one 

Labrador), three subordinate (three Labradors), basic (three different dog breeds), or 

superordinate (three different animals). Test items were divided into groups based on their 

closest match to any exemplar being identical (subordinate), basic-level, or superordinate-

level. These were the same twelve test trial types reported by both Xu and Tenenbaum 

(2007b) and Spencer et al. (2011) for all results. Although the Bayesian model was allowed 

to vary in free parameters across experiments, parameters were not allowed to change 

between the test conditions or trial types. That is, if the best fit assumed strong sampling for 

the sequential condition, we fixed this choice even though weak sampling might fit an 

individual test trial type better.

Xu and Tenenbaum’s Bayesian model mathematically must show a SCE when operating 

under strong sampling assumptions, but not under weak sampling assumptions. The size 

principle under strong sampling requires that the likelihood of the model be lower for basic 

level hypotheses when multiple identical exemplars are observed than one exemplar, since 
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all hypotheses have nonzero “size”, and the subordinate exemplars (one or three) are always 

consistent with basic-level hypotheses. Under weak sampling, however, the size principle 

does not hold, so increasing the number of exemplars leads to no suspicious coincidence 

effect.

2.1.3 DNF methods.—Simulations with the DNF model matched the timing, spacing, 

and MDS values of the two experimental conditions. In Spencer et al.’s (2011) tasks, stimuli 

stayed visible for the entire trial while participants chose category matches from an array of 

generalization choices on the screen, and sequential exemplars cycled continuously at a rate 

of one per second. In the model, we simulated participants’ passive viewing of a full 

presentation of stimuli before making any choices, and then their consideration of each test 

item for 1 second each (125 time steps). For example, in the three-subordinate-exemplars 

sequential condition, the DNF model was presented with two full sequences of stimuli 

across 6 seconds (750 time steps). Then, the model considered one test item per second, 

while the exemplars changed at the same rate. Simultaneous versus sequential presentation 

conditions were simulated with the same parameter values, except for changes to the timing 

of the specific events necessary to simulate these two conditions.

For maximum consistency with the Bayesian model, we used Xu and Tenenbaum’s cluster 

trees to determine the featural details of the exemplar and test inputs. Recall that Xu and 

Tenenbaum showed participants pairs of items and asked them to rate the item similarity on 

a 1–9 scale. These data were then used to construct a hierarchical cluster tree where clusters 

were, on average, more similar to each other than other nearby objects, and the height of 

each branch reflected the average similarity. Thus, these data were not in any way intrinsic 

to the Bayesian account a priori. As such, we don’t see any conflict in using data from this 

separate task as the base “input” to the DNF model (and the Bayesian model).

We applied the 1D MDS algorithm described above to map the cluster tree data onto the 

MDS dimension in the model. The position of the three labels was randomly determined. 

Since labels do not interact on any one trial in the suspicious coincidence task, exact 

positions along the label dimension are not important. We conducted 60 simulation runs of 

the full behavioral task. Each run included the same number and type of trials used in the 

experiment (see Spencer et al., 2011), but a different mapping to the 1D MDS dimension.

Generalization to a particular test object was determined based on whether the model formed 

a peak at the location of the test object in the label-MDS field (see Fig 2). A peak was 

defined as any activation above threshold (i.e., above zero) in the label-MDS field at any 

point during a trial. If a peak was formed while the test object was presented, the model 

generalized the label to this item. If no peak formed during presentation of a given test item 

(which lasted for about a second), the model did not generalize the label to this item. We 

report average model responses below. Note that it took approximately 12 hours of 

simulation time to complete a full batch of simulations (60 simulation runs x 2 experiments).

2.1.4 DNF Parameter Tuning.—The DNF model has many parameters. Each layer has 

a strength parameter and a width parameter that determines how quickly neural interactions 

fall off between neighboring units for self-excitation and lateral-inhibition. There is also a 
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global inhibition strength, a beta parameter (how sharp the sigmoidal function is), and a 

resting level for each layer. Moreover, the connections between fields in each direction have 

a beta, strength, and width parameter. Each input to the model (exemplars, test items, and 

labels) has a strength and a width parameter. There are also global parameters for noise and 

granularity of simulation steps (the mapping from time steps in the model to milliseconds in 

the experiment).

Although all of these parameters are free to vary in principle, in practice the model is not fit 

to data through a comprehensive search of the parameter space. There are two reasons. The 

first is theoretical: parameters must systematically co-vary with one another to maintain 

plausible neural dynamics and these constraints are difficult to specify formally. For 

instance, excitatory and inhibitory parameters must remain in balance, otherwise activation 

peaks will not arise, or the entire field will become active, essentially simulating a seizure. 

The second reason is practical: the parameter space cannot be searched broadly due to 

constraints on computation time. For instance, sampling just two values for each of 19 

parameters (the number we tuned in our model) would take immense computation time (12 

hours per batch of simulations x 219 parameter combinations = 6,291,456 hours of 

simulation time). An alternative to such a ‘grid’ search is to use an optimization procedure. 

For instance, Markov Chain Monte Carlo methods ( MCMC; see Valderrama-Bahamóndez 

& Fröhlich, 2019) have been successfully used to optimize the parameters of some classes of 

dynamical models. Unfortunately, it is unclear whether such approaches can be used with 

the family of integro-differential equations that contain DNF models.

Given this, tuning a DNF model is instead done ‘by hand’. Overall, 19 parameters were re-

tuned from the initial Samuelson et al. (2011) model of word-object binding from which our 

model was derived. These are listed in Table 1. Note that the same values were used for 

simulating both simultaneous and sequential data.

The first goal in the re-tuning process was to get the model to simulate the appropriate task 

details like stimulus timing and to roughly match the behaviors of interest. We created a 

simulator and mimicked the stimulus presentation and timing details from the Spencer et al. 

(2011) experiments. Next, we adjusted global details of the model to approximate the types 

of behaviors we thought might conceptually underlie performance in the SCE task. We walk 

through these changes below.

The hypothesis made by Spencer et al. (2011) that led to testing sequential exemplar 

presentation in the SCE task centered on simultaneous memory representations of nearby, 

similar objects interacting with one another neurally. The Samuelson et al. model simulated 

data from experiments where a single item was presented on each familiarization trial, and it 

was not tuned to investigate the details of simultaneous interactions. The global inhibition 

parameter in the space-MDS field was thus too strong, enforcing a single clear peak as 

appropriate to the Samuelson et al. task. We began by reducing this global inhibition to 

allow multiple peaks to form and interact (see Table 1 for a list of all changes). At the same 

time, we increased local inhibition to allow ‘close’ peaks to sharpen one another through 

shared inhibition. Self-excitation and a more excitable resting level for the field also 

balanced stronger local inhibition.
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Similar adjustments were made to the label-MDS field (see Table 1). In this field, local 

neural interactions were again more important than global interactions for the task, since test 

items were compared to multiple ridges at once in simultaneous exemplar conditions. 

Increased excitation, a higher resting level, and weaker global inhibition balanced the 

increase in local inhibition strength as in the space-MDS field. Additionally, the higher 

overall inhibition and excitation from the space-MDS field must be generally matched by the 

label-MDS field; otherwise, activation in one field will overwhelm the other. We also 

discovered that the width of lateral inhibition in the Samuelson et al. model was too broad. 

Unlike in the Samuelson et al. model, we wanted this model to consider generalizing a label 

to multiple exemplars or sets of exemplars during a trial, and this requires narrower 

inhibitory interactions. Thus, we decreased the width from a value of 60 (very broad) to a 

value of 6. Finally, inputs used in the Samuelson et al. model were generally too weak. Thus, 

we increased the strengths of all inputs, including the input from the space-MDS field to the 

label-MDS field.

With these changes in place, the revised version of the Samuelson et al. model started to 

show the right qualitative behaviors. It built peaks when exemplars and test items were near 

enough in similarity, allowing for basic competence in the SCE task, and allowing for 

nearby peaks (in space and features) to locally interact and sharpen one another via shared 

inhibition. The remaining initial parameter tuning focused largely on the width parameters in 

the model, especially the widths of inputs and the widths of the projections between the 

space-MDS and label-MDS fields. Widths in the model correspond to breadth of 

generalization in the SCE task—wider peaks overlap more easily even when objects are less 

similar and lead to broader parameters. The scale of the spatial dimension in the model is 

abstract, so spacing of inputs covaries with other width parameters. The only consideration 

here was to choose a spacing that allowed sufficient resolution between peaks (i.e., the peaks 

were distinct when visualized).

Once we arrived at a set of parameters that generally showed the right qualitative pattern 

across test trial types, we entered a final round of parameter tuning where we fine-tuned the 

model in an effort to maximize fit. This process cannot be exhaustive since there are too 

many possible parameters to probe. Thus, we targeted a few candidate parameters that were 

known to be most influential and that therefore merited detailed exploration based on our 

experience working with the model. Specifically, we focused on the space-MDS width 

parameters for exact generalization breadth and the resting level of this field to modulate the 

overall level of excitability. These parameters were adjusted across batches of many 

simulations, and we picked the parameter value that yielded the best match to the empirical 

data (lowest RMSE).

We note that hand tuning a model is unlikely to result in optimal model performance; the 

goal is to identify parameters that provide a fit to the data that is ‘good enough’ given the 

time constraints, while also performing the task in a manner that is consistent with the 

theory (e.g., forming a peak to select an item at test). In addition, it is important to evaluate 

whether the model’s performance is robust to parameter changes, that is, to check whether 

the modeler has found a local minimum where the model does well, but only with a narrow 

set of parameter values. This was not the case with our final parameters. Despite the fact that 
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the final round of parameter tuning took between one and two months to complete, the 

model was already performing the different tasks in qualitatively the right way before we 

entered the final adjustment phase. Concretely, just before the final fine-tuning phase, the 

RMSE fit of the DNF model to data from the simultaneous presentation experiment was 

0.23, and the RMSE fit to data from the sequential presentation experiment was 0.21. Table 

2 shows that these pre-fine-tuning values were comparable to the Bayesian model’s final 

performance.

2.1.5 Model comparison metrics.—To compare the quantitative fit of the models, we 

calculated AIC and BIC values. AIC and BIC are commonly used in the cognitive literature 

and provide an indication of the accuracy of the model fit while penalizing models that are 

more complex.

The log-likelihood, L(i), of subject i’s data under a binary/Bernoulli response model is given 

by

L(i) = ∑
s = 1

s

∑
j = 1

J

∑
k = 1

K

∑
n = 1

Nk

ysjkn
i logpjk + 1 − ysjkn

i log 1 − pjk

where s=1..S indexes the broad stimulus category (S=3: vegetables, vehicles, other), j=1..J 

indexes the stimulus test type (J=4: single cue, three subordinate cues, three basic cues, three 

superordinate cues), k=1..K indexes the hierarchical level (K=3: subordinate, basic, 

superordinate), n=1..Nk indexes the valid items that could be selected (N1=2, N2=2, N3=4), 

yi
sjkn is subject i’s binary response (i.e. the behavioural data; 1 if item was selected, 0 if not), 

and pjk is the probability of item selection under a given model (e.g. DNF or Bayesian 

model).

The above equation can be rewritten as follows

L(i) = ∑
j = 1

J

∑
k = 1

K

Tk qjk
i logpjk + 1 − qjk

i log 1 − pjk

where Tk is the total number of trials at level k (i.e., summing over s and n to give T1=6, 

T2=6, T3=12) and qi
jk is subject i’s response probability (percent generalization from 

Figures 5 and 6 divided by 100). This equation is in a more convenient form as data from 

Figures 5 and 6 can be entered directly.

The model selection criteria can then be computed as

L = ∑
i = 1

I

L(i)
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N = IJ∑
k = 1

K

Tk

AIC = − 2L + 2b

BIC = − 2L + blogN

where L is total log likelihood, b is the number of model parameters, and N is the total 

number of binary responses (number of data points). In Table 3 below, b = 19 for the DNF 

model and 2 for the Bayesian model. We also fit a uniform model for comparison (all 

response values for this model = 50%) with b = 0 (i.e., zero free parameters). This gave us 

baseline AIC and BIC values from a neutral, theory-free model.

2.2 Results

We explored the free parameter space of the Bayesian model and chose the parameterization 

that minimized RMSE when fitting all data from Experiments 1 and 2 from Spencer et al. 

(2011). The DNF model was tuned ‘by hand’ as described above. Once the DNF model 

qualitatively reproduced the basic patterns, RMSEs to all data were used to arrive at the final 

parameters. Table 2 shows RMSEs for final model fits across all 24 test trial types (12 each 

between two experiments). The DNF model was only tuned once for both experiments and 

thus has only one value. This value was low, generally outperforming the RMSE values from 

the Bayesian model. The RMSEs for the Bayesian model are shown for the best fitting basic 

level bias value in each cell (1–100 tested) across strong and weak sampling assumptions, 

for the simultaneous and sequential experiments, as well as both sets of experimental data 

combined. The strong sampling assumption for the Bayesian model fit the data more closely 

for each individual experiment and when both are combined. Thus, we focus on simulation 

results from the strong sampling model fit to both conditions since this minimized RMSE. 

The best-fitting basic level bias parameter in this case was 19.

The best fits of the Bayesian and DNF models are shown in Figure 5. The blue bars show 

best-fitting data from the DNF model; the red bars show best-fitting data from the Bayesian 

model. The black bars show the empirical data, that is, the proportion of trials on which 

participants generalized the novel name to test objects at the subordinate, basic, or 

superordinate level in the single-exemplar condition (far left), three-subordinate-exemplars 

condition (middle left), three-basic-exemplars condition (middle right), and three-

superordinate-exemplars condition (far right). Data from the simultaneous experiment are in 

the top panel, and data from the sequential experiment are in the bottom panel.

We have highlighted the bars relevant to the SCE in yellow. These bars were not the sole 

basis of fit, and either model could fit them more closely than seen here if not considering 

the full set of data. As can be seen in the top panel, participants generalized the novel label 
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(“Fep”) to other basic level test items (i.e., other dogs) when a single item (Labrador) was 

shown, but not when three subordinate-level exemplars (three Labradors) were shown. As 

can be seen in the figure, both models capture this effect. The DNF model fits the magnitude 

of the difference across exemplar conditions better in the 1-Exemplar condition of the 

simultaneous experiment. In the sequential condition, the DNF model fits the direction of 

the reverse suspicious coincidence effect and most closely approximates the data, while the 

Bayesian model shows a strong positive SCE and fits the individual bars more poorly.

More generally, the qualitative fit of the DNF model to the whole pattern of data is better 

than that of the Bayesian model. In Figure 5, test trial types where one model’s fit was 5% 

closer to the data than the other model are marked with letters. In the simultaneous 

condition, the DNF model fits the data more closely on two test trial types (A, B), and the 

Bayesian model fits the data more closely on two (C, D). In the sequential condition, the 

DNF model fits the behavioral data more closely on four test trial types (E, G, H, K), while 

the Bayesian model fits the data more closely on three test trial types (F, I, J). Note that the 

DNF model is generally under-performing on the 3-Superordinate-Exemplars condition. 

Given the good fits to the data pattern otherwise, we did not attempt to optimize this aspect 

of the model further.

Table 3 reports the quantitative metrics comparing the model fits. The DNF model has the 

lowest AIC/BIC values for both the Simultaneous and Sequential experiments (recall that 

lower AIC/BIC values indicate better performance). Note that the DNF model outperforms 

the Bayesian model, even with the penalty for having more ‘free’ parameters.

2.3 Discussion

Results indicate that the DNF model captures hierarchical word learning across conditions 

more effectively than the Bayesian model: the DNF model fares better both qualitatively and 

in terms of quantitative measures of fit. Most critically, the model explains the presence—

and reversal—of the SCE across the conditions reported by Spencer et al. (2011). In 

particular, simultaneous presentation yields sharper neural activation peaks due to shared 

inhibition between object representations and, consequently, narrower generalization. By 

contrast, sequential presentation yields broader neural activation peaks and broader 

generalization as peaks spread out in space and time.

The Bayesian model did not account for these differences across conditions. We thought that 

the distinction between weak versus strong sampling might effectively modulate the strength 

of the SCE and capture differences between simultaneous and sequential presentation. In 

particular, we reasoned that participants might interpret exemplars as one object in the 

sequential condition and, thus, as not instructive evidence for a category. However, when we 

fit the weak sampling model to the data, this model did not provide better fits to the data in 

any condition. Rather, the Bayesian model showed the best overall fits with strong sampling 

assumptions.

Note that we did not modify either model’s architecture from previous models. The 

Bayesian equations were from Xu and Tenenbaum (2007b; strong sampling) and Xu and 

Tenenbaum (2007a; strong and weak sampling). The DNF architecture was adapted from 
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Samuelson et al.’s (2011) word learning model. Nevertheless, the DNF model has more 

parameters and, therefore, potentially greater flexibility, leaving open the possibility that we 

over-fit data from these two experiments during the parameter tuning process. Although 

hand tuning likely yielded a non-optimal fit of the DNF model, it is useful to examine this 

issue directly in Modeling Experiment 2 by asking whether the best-fitting models 

generalize to capture data from a third experiment reported by Spencer et al. without re-

fitting.

3.0 Modeling Experiment 2

We selected the best-fitting models from Modeling Experiment 1 and asked whether these 

models captured data from a third experiment from Spencer et al. (2011). In Spencer and 

colleagues Experiment 3, exemplars were presented sequentially, but in the multiple-

exemplars trials, six exemplars were shown instead of three, and their positions were 

superimposed at a single location to highlight differences between the objects. This 

manipulation was explicitly designed to reduce the likelihood that a Bayesian weak 

sampling assumption would apply. Spencer and colleagues found a behavioral trend toward 

a reverse SCE. Unlike with three sequentially presented exemplars, there was no statistically 

significant difference between a single exemplar trial versus a six subordinate-level 

exemplars trial in the behavioral data, and the reversal effect was one half the magnitude 

with six exemplars.

3.1 Methods

All parameters were fixed relative to Modeling Experiment 1. The only changes in the 

simulations reflected the difference in the stimulus inputs. The Bayesian model was able to 

simulate this new experiment by changing n to 6 instead of 3 in its likelihood equation, 

reflecting the increased number of exemplars. The DNF model was presented with six 

exemplar inputs, one second for each presentation, all at the same spatial position. There 

was no guarantee that either model would capture data from this third experiment as both 

models were sensitive to the experimental change in procedure.

3.2 Results and Discussion

The RMSE fits of the two models are listed in Table 2 and the simulated data are shown in 

Figure 6. Similar to the first two conditions, the DNF model outperformed the Bayesian 

model with a lower RMSE. Note that the RMSE value was lower for the DNF model in the 

present experiment, even though the model was not tuned to this particular set of data. This 

shows impressive generalization given that the stimulus presentation details—something that 

the DNF model is quite sensitive to—differed considerably. Qualitative comparison of bars 

in Figure 6 shows four test trial types where the DNF model fits are more than 5% closer to 

the behavioral data than the Bayesian model (points A, B, C, and F) and the same two where 

the Bayesian model fits more than 5% closer than the DNF model (D, E). The SCE is 

reversed in the behavioral data, but only weakly. The DNF model accurately captures these 

data. The Bayesian model, by contrast, shows a very large SCE because there were 6 

exemplars which magnifies the effect of the size principle.
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Quantitative comparison of the models for the Generalization experiment is shown in Table 

3. As in the previous simulation experiment, the DNF model showed the lowest AIC/BIC 

values. The Bayesian model performed poorly in this experiment, with AIC/BIC values 

higher than the uniform ‘baseline’ model. This was driven primarily by low log likelihoods 

in the two conditions central to the suspicious coincidence. In particular, the log likelihood 

at the basic level for the 1-Exemplar condition was −0.98, while the log likelihood at the 

basic level for the 3-Subordinate Exemplars condition was −1.83. By contrast, the log 

likelihood for all conditions for the uniform model was −0.67.

4.0 General Discussion

The DNF model presented here is the first process-oriented account of the suspicious 

coincidence effect, previously captured only by Xu and Tenenbaum’s (2007b) Bayesian 

model. The work presented here contributes to both our understanding of word learning by 

elucidating the processes by which people learn multiple hierarchical labels for categories 

and by providing a direct comparison between rational and process-oriented cognitive 

accounts on common ground with same phenomenon. Both of the models we tested received 

the same inputs—hierarchical cluster trees from Xu and Tenenbaum’s (2007b) data. Both 

models were also compared to behavioral data from the same three experiments from 

Spencer et al. (2011), including a replication of Xu and Tenenbaum’s (2007b) original 

effect. Both models had means by which to theoretically distinguish between all three 

experiments we simulated. In particular, differences between simultaneous versus sequential 

exemplar presentation can be explained by neural interactions in the DNF model or by 

strong versus weak sampling assumptions in the Bayesian framework (Xu & Tenenbaum, 

2007a). The difference in performance found in the generalization experiment can be 

captured by the timing and spacing of representations in the DNF model or by the exemplar 

repetition parameter in the Bayesian model’s “size principle” likelihood equation.

Critically, the DNF model captured a meaningful qualitative effect that the Bayesian model 

does not: a reversal of the suspicious coincidence effect with sequential presentation. The 

use of a weak sampling assumption in the Bayesian framework can reduce the strength of 

the suspicious coincidence effect and could potentially have allowed quantitatively closer 

fits across conditions compared to the DNF3. A fully reversed effect, however, is a 

qualitative achievement that holds meaning beyond its contribution to an overall quantitative 

fit. This is because the reverse suspicious coincidence effect calls into question the 

theoretical foundation of the Bayesian model. This has implications for the concepts used by 

each theoretical approach.

A separate qualitative question in model evaluation is whether models generate novel, 

testable predictions. On this front, the Bayesian model fares well. Recall that Xu and 

Tenenbaum (2007b) initially predicted the suspicious coincidence effect based on a rational 

analysis of hierarchical word learning. Although the DNF model reported here captures the 

suspicious coincidence effect, it is important to note that these were post-hoc model fits to 

3The Bayesian model cannot show a reverse SCE. However, a positive to zero SCE change due to sampling assumptions could still 
potentially fit the data better than the DNF model. Even a DNF model that can show a reverse SCE can overshoot its reversal, only 
show reversal in all conditions at once, be generally noisier, etc.
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the replication condition. That said, Spencer and colleagues were inspired by DNF-style 

thinking when they initially tried to “break” the suspicious coincidence effect by 

manipulating the nature of stimulus presentation (see Spencer et al., 2011). Spencer et al.’s 

(2011) experiments were based on the fact that in the DNF framework peaks can be 

sharpened with interaction such as when similar items are presented together in space and 

time, similar to phenomena we had observed in studies of visual working memory (Johnson, 

Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009). Thus, the DNF 

model also led to a confirmed novel prediction and an empirical discovery.

Yet another metric for comparing models is generality. Models can be general in at least two 

senses: the model can be considered one example of a more general modeling framework, 

and the specific model can capture multiple phenomena without substantial modification. In 

the former sense, the Bayesian model fares well. There has been an explosion of Bayesian 

accounts of different phenomena in the literature, ranging from the Bayesian account of 

word learning highlighted here, to Bayesian accounts of visual perception (de Lange et al., 

2018; Yuille & Kersten, 2006), syllogistic reasoning (Oaksford & Chater, 2001), or people’s 

estimates of duration and extent (Griffiths & Tenenbaum, 2006). Clearly, the Bayesian 

framework is a powerful general modeling approach within the cognitive sciences.

In the sense of capturing a variety of phenomena, evaluating generality is trickier. Bayesian 

models have been used to capture several novel findings in word learning, including how 

children generalize novel names depending on the pedagogical context (Xu & Tenenbaum, 

2007a,b) and children’s bias to extend novel names to objects based on shape similarity 

(Kemp et al., 2007). Although these different phenomena have been modeled using a 

Bayesian framework, it is not clear whether this is a case of the same model being 

generalized across conditions. Rather, we contend that the strongest theoretical claims from 

Xu and Tenenbaum (2007a) are specified not in the model simulations, but by the modeler. 
For example, the modeler chooses strong versus weak sampling assumptions in Xu and 

Tenenbaum’s 2007 (a and b) models prior to the start of simulations. There is a claim that 

some psychological process—which is not specified—causes children to treat information 

differently in the teacher and learner conditions and which justifies the equation change.

What about with the DNF model? Does this model generalize at the levels of the modeling 

framework and the specific model? At the framework level, dynamic field theory (DFT) has 

been used to capture a host of phenomena ranging from neural population dynamics in 

visual cortex (Jancke et al., 1999; Markounikau et al., 2010), to visual looking and learning 

in infancy (Perone & Spencer, 2012, 2013; Perone et al., 2011), to aspects of spatial 

cognition (Schutte & Spencer, 2009, 2010), to visual working memory (Johnson, Spencer, 

Luck, & Schöner, 2009; Simmering & Spencer, 2008), and into higher-level cognition 

including dual-task performance (Buss et al., 2013) and autonomous behavioral organization 

in robots (Sandamirskaya et al., 2013; Steinhage & Schöner, 1997). Our sense is that this 

level of generality is comparable to the generality evident within the broader Bayesian 

framework.

At the level of the specific model architecture examined here, the model also generalizes, at 

least to the degree of the Bayesian model. The DNF architecture presented here has been 
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used to simulate how children use space to bind words to objects (Samuelson et al., 2011), 

as well as developmental changes in children’s bias to generalize novel names based on 

shape similarity (Perone et al., 2020). At the level of task-specific details, there are 

differences across studies: for example, we used a single MDS dimension to accommodate 

the unknown features in our naturalistic stimuli versus the controlled color and shape 

features in Samuelson et al. (2011). Although this is the case, the architecture of the DNF 

models are comparable (see Appendix; Samuelson et al., 2011). Additionally, Samuelson, 

Spencer, and Jenkins (2013) showed a version of our present model was able to capture a 

suite of different effects in early word learning including differences in comprehension, 

production, novel noun generalization with both yes/no and forced choice response modes, 

and referent selection.

To summarize, both the Bayesian model and the DNF model fare relatively well on different 

model evaluation metrics. Both have generated novel predictions, and both capture some 

sense of generality, although there are differences on this front. The fact that both models 

fare well on these metrics, however, makes the head-to-head comparison reported here all 

the more important. It shows that at least one set of results clearly favored one model over 

another in specific qualitative and quantitative ways, where other forms of analysis have not 

drawn such sharp distinctions. This sort of substantial, concrete evaluation between models 

is relatively rare, but in this case, it proves to be quite informative.

4.1 Rational and Process Accounts

Head-to-head comparison of the Bayesian and DNF models provides insight into theoretical 

issues regarding rational and process accounts in general. Here, we see two key points of 

contrast. First, DFT – the general framework of which the DNF model reported here is a 

member – embraces neural grounding and assumes that neural details are important for 

understanding behavior; the Bayesian approach espoused by Xu and Tenenbaum does not 

explore this level of processing and, instead, commits to a computational level description. 

Second, these approaches appear to have different end goals which we characterize as deep 

(DFT) versus broad (Bayesian) integration. We discuss each of these points of contrast 

below.

DFT uses simulated real-time neural population dynamics within artificial cortical fields to 

capture the processes hypothesized to underlie behavioral decisions in-the-moment, as well 

as how neural processes change over learning and development (for reviews, see Schöner, 

2009; Spencer, Perone, & Johnson, 2009). For instance, Schöner, Erlhagen and colleagues 

developed an approach to directly link simulated activation dynamics in neural field models 

to single- and multi-unit neurophysiology (Bastian et al., 1998; Erlhagen et al., 1999; Jancke 

et al., 1999), enabling researchers to test a theory of response preparation both behaviorally 

and neurally with non-human primates (A Bastian et al., 1998; Annette Bastian et al., 2003). 

This approach has also been extended to studies of visual cortical processing using voltage-

sensitive dye imaging (Markounikau et al., 2010). Several studies have probed the link 

between DFT and ERP measures with humans, testing dynamic neural field accounts of 

motor planning (McDowell et al., 2002) and multi-object tracking (Spencer et al., 2012). 

Finally, recent efforts have used a local-field potential measure from dynamic neural field 
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models to simulate changes in the hemodynamic response over learning from an fMRI study 

of dual-task performance (Buss et al., in press).

Xu and Tenenbaum (2007b), by comparison, explicitly disavow any strong assumptions 

about the neural realism of the Bayesian model:

We make no claim that Bayesian computations are implemented exactly in the 

mind or brain, with explicitly represented probabilities. On the contrary, it is more 

likely that the details of mental or neural processing correspond to some efficient 

approximation to the Bayesian computations we propose here (p. 270).

Explanations of Bayesian computations at a neural level are being actively pursued (Deneve, 

2008; Friston et al., 2017; Kover & Bao, 2010), although the efficiency and plausibility of 

Bayesian neural mechanisms have been questioned (Baddeley, et al., 1997; Brighton & 

Gigerenzer, 2008; Feldman, 2010).

Clearly, DFT makes strong claims about neural realism, while Xu and Tennenbaum’s 

Bayesian approach does not. Is this an important distinction? In our view, neural grounding 

is a useful evaluation metric. First, neurally-grounded models are open to more empirical 

constraints—they can, in theory, capture both behavioral and neural data (conversely, they 

can also fail to capture data in multiple ways). Second, neural grounding forces the modeler 

to be fully attentive to the multiple timescales at work in any given task: the real-time 

dynamics that underlie changes in neural activation patterns from second-to-second, and the 

changes that occur in these neural dynamics over learning in a task. In short, neural models 

force attention to task-specific details. In the context of the present report, this detail-

oriented mindset led to our discovery that simultaneous versus sequential presentation 

matters (Spencer et al., 2011).

Our sense is that task-specific details are less emphasized within the Bayesian perspective. 

Rather, experiments are a means to a more general end—to demonstrate the rational 

principles that underlie and organize human cognition. This is explicit in the computational 

perspective offered by Xu and Tenenbaum (2007b):

Our analysis of word learning focuses on what Marr (1982) called the level of 

computational theory. We have tried to elucidate the logic behind word learners’ 

inductive inferences, without specifying how that logic is implemented 

algorithmically in the mind or physiologically in neural hardware (p. 270).

Clearly, then, the goals of these theoretical perspectives differ. The question is: does this 

difference matter? In our view, these different perspectives create challenges that both 

perspectives must overcome. Ultimately, to explain human thinking, theories will have to 

bridge levels of analysis to explain how the brain gives rise to behavior (see Samuelson et 

al., 2015). Similarly, theories must be sufficiently general to extrapolate away from the 

details of behavior-in-context to identify the more abstract principles around which behavior 

is organized.

Although both perspectives are important, we contend that there is a deep challenge in trying 

to infer a computational-level theory from an inherently non-linear, complex, and emergent 
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system (Samuelson, Jenkins, & Spencer, 2015). Emergence—the idea that behavior arises 

through the interaction of many self-organizing components over time—plays a central role 

in learning and development (e.g., Elman et al., 1996; Thelen & Smith, 1994). The challenge 

with emergence is that there are often non-obvious causes of behavior that elude rational 

analysis. One of our favorite examples comes from the domain of early word learning. For 

decades, researchers approached the challenge of figuring out the referents of words from a 

largely philosophical perspective, debating questions such as innateness of grammar or other 

hardwired constraints (Chompsky, 1965; Quine, 1960; Wittgenstein, 1967). Researchers 

focused on early word learning, however, have recently gained greater appreciation for the 

child’s perspective and the multiple dynamic supports provided to reduce referential 

ambiguity. For example, Yu and Smith (2012) discovered that at the moment when a parent 

says a novel word, it is often the case that children have one object in view. Why? Because 
children have short arms: when they hold objects, the objects are close. Conveniently, 

parents also tend to name objects that children hold. Thus, the problem of determining the 

referent of a novel word is not solved entirely by constraints in the head. The solution is 

leveraged at least in part by dynamics of the typical naming situations presented to children 

(for discussion, see Spencer, Blumberg, McMurray, Robinson, Samuelson & Tomblin, 2009; 

Kucker, McMurray & Samuelson, 2015). Is there an inner logic here that might resonate 

with a Bayesian analysis? Certainly, there is. But we think it is telling that this aspect of 

word learning was discovered by attention to in-the-moment details and eluded a rational 

analysis of behavior for decades.

This leads to the final contrast between the rational and process-based perspectives—the end 

game. Our sense is that the Bayesian approach has broad integration as the goal—to bring 

together many phenomena under the same theoretical umbrella. The upside of this approach 

is that one can see connections between phenomena that were previously thought to be 

completely unrelated. This is certainly part of the reason why the Bayesian perspective has 

been embraced so enthusiastically (Baker et al., 2009; Chater et al., 2006; Körding & 

Wolpert, 2006; Norris, 2006; Rao, 2005). The downside is that sometimes details come 

along that don’t quite fit a rational explanation—such as our data showing that simultaneous 

versus sequential presentation of stimuli can reverse the suspicious coincidence effect 

(Spencer et al., 2011), that less knowledgeable children show stronger suspicious 

coincidence effects than more knowledgeable ones (Jenkins et al., 2015), or other work 

addressing when and why humans behave irrationally or suboptimally in general (Derks & 

Paclisanu, 1967; Gainsbury et al., 2014; Kahneman & Tversky, 1979; Tversky, 1977). It is 

critical that these exceptions-to-the-rule be treated seriously, because they place limits on 

how broadly the theoretical framework generalizes.

By contrast, process-based approaches tend to seek deep integration—to weave together the 

details of how processes come together in different tasks and across different contexts to 

create behavior. The upside of this approach is that deep integration can be quite robust 

when successful—if the processes are well described, they can explain behavior in detail 

across many different situations. The downside is that process-level theories can get mired in 

the weeds, so focused on the details of particular paradigms that the theory loses contact 

with how behavior is organized in the real world.
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Where do these points of contrast leave our evaluation of the Bayesian and DNF models of 

hierarchical world learning? In the context of the suspicious coincidence effect, the DNF 

model gets more of the local details correct, and it does so while retaining neural-grounding 

and generalizing to other phenomena in early word learning. Future efforts will be needed to 

more fully explore the range of behaviors that each model can explain and predict. Such 

efforts are important given the healthy debate taking place between the rational and process-

based perspectives in cognitive science (Brighton & Gigerenzer, 2008; Chater, 2009; Jones 

& Love, 2011). In the end, such debates will undoubtedly sharpen our understanding of the 

contrasts that exist between these very different approaches to the study of cognition.
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Appendix

Model and Simulation Details

Below we define the equations for the two dynamic neural fields in the model used to 

capture the suspicious coincidence effect: the label-MDS field (lmf) and the space-MDS 

field (smf). Each field consists of reciprocally coupled excitatory, u, and inhibitory, v, layers. 

Field equations specify the rate of change of neural activation, u̇ or v̇, over two field 

dimensions. We adopt the following convention for the dimensions: x refers to the label 

dimension, y refers to the MDS dimension, and z refers to the space dimension.

Activation in the excitatory layer of the label-MDS field, ulmf, is governed by the following 

equation:

τexciteu̇lmf(x, y) = − ulmf(x, y) + ℎlmfu + St(x, y) (1)

+∬ Guu x − x′, y − y′ Λ ulmf x′, y′ dx′dy′ (2)

−∬ Guv x − x′, y − y′ Λ vlmf x′, y′, t dx′dy′ − kix, lmf

∬ Λ vlmf x′, y′ dx′dy′
(3)

+∫ dz′∫ Guu y − y′ Λ usmf z′, y′ dy′ (4)
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+q∬ Gq x − x′, y − y′ ξt x′, y′ dx′dy′ (5)

where u̇lmf(x, y) is the rate of change of the activation level across the label dimension, x, 

and the MDS dimension, y, as a function of time, t. The constant τ excite sets the time scale 

of the dynamics. The current activation in the field is given by ulmf (x, y). This component is 

negative so that activation changes in the direction of the neuronal resting level, hlmfu. The 

term in line (1), St(x,y), signifies task-specific contributions, specifically the label ridge and 

test item ridges. Note that inputs to the field took the form of localized, two-dimensional 

Gaussian distributions (see (6) below) for exemplars in the space-MDS field, and one-

dimensional Gaussian distributions for label and test item ridges in the label-MDS field.

The next term in the equation (line 2) specifies locally-excitatory interactions within the 

label-MDS field. These excitatory interactions are given by the convolution of a two-

dimensional Gaussian kernel with a sigmoidal threshold function.The Gaussian kernel in 

equation (2), for example, was specified by:

Guu x − x′, y − y′ = ce, x, lmfexp − x − x′ 2

2σe, x, lmf2 + ce, y, lmfexp − y − y′ 2

2σe, y, lmf2 , (6)

with excitatory strengths, ce, and excitatory widths, σe. The level of activation required to 

enter into the interaction was determined by the following generic sigmoidal function:

Λ(u(x, y)) = 1
1 + exp[ − βu(x, y)] , (7)

where β is the slope of the sigmoid. The slope determines whether neurons close to 

threshold (i.e., 0) contribute to the activation dynamics with lower slope values permitting 

graded activation near threshold to influence performance, and higher slope values ensuring 

that only above-threshold activation contributes to the activation dynamics.

Line 3 specifies contributions from the inhibitory layer of the field, vlmf, to the excitatory 

layer, ulmf, leading to lateral or surround inhibition in the field. This component is specified 

by the convolution of a Gaussian kernel with a sigmoidal function, where the sigmoid 

operates on the activation level of the inhibitory layer. That is, inhibition is only passed from 

units in the inhibitory layer that are active above threshold. The widths of the inhibitory 

interactions in the Gaussian kernel, σi, are larger than corresponding excitatory widths, σe 

(Table 1). In addition to inhibition from the sigmoided inhibitory layer, the excitatory layer 

is also globally inhibited based on the overall summed activation in the inhibitory layer, 

shown as the second term on line 3. Global inhibition is scaled by a strength parameter, kix.

The fourth term in the excitatory field equation specifies the contribution of above-threshold 

activation in the space-MDS field (smf) to the label-MDS field (lmf). All above-threshold 

activation in the space-MDS field is integrated across the MDS feature dimension, y, and 

projected uniformly across the label dimension in the label-MDS field. This interaction 

occurs between excitatory layers of the two fields. Note that this projection is via the 
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convolution of a Gaussian kernel with the integrated activity. This enables perceived 

exemplar features to pass to the label-MDS field to be compared to test items for a 

generalization match.

The fifth contribution to the field dynamics on line 5 is spatially correlated noise. This is the 

convolution of a Gaussian kernel with a field of white noise sources scaled by the noise 

strength parameter, q.

The inhibitory layer of the label-MDS field, vlmf, is governed by the following equation:

τinhibv̇lmf(x, y) = − vlmf(x, y) + ℎlmfv (8)

+∬ Gvu x − x′, y − y′ Λ ulmf x′, y′ dx′dy′ (9)

+q∬ Gnoise x − x′, y − y′ ξt x′, y′ dx′dy′ (10)

This equation specified the rate of change of activation of the layer of inhibitory 

interneurons over the time scale specified by τ inhib. The rate of change is influenced by the 

negative of the current state to ensure that the system has an attractor at the resting level, h 
(line 8). The inhibitory layer receives positive input from the excitatory layer, via the 

convlution of a Gaussian kernel and a sigmoid function over activation in the excitatory 

layer (line 9). Thus, the inhibitory layer only receives input around sites that are active in the 

excitatory layer. Finally, line (10) specifies a contribution from spatially correlated noise.

The equations for the excitatory and inhibitory layers of the space-MDS field, usmf and vsmf, 

are identical to the equations for the label-MDS field except that the x dimension is swapped 

with the z dimension, and the task-specific inputs St(x,y) refer to exemplar inputs instead of 

label and test object ridges.
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Figure 1. 
A representation of Xu and Tenenbaum’s (2007a) hierarchical cluster tree. Objects (bottom 

dots) are grouped together in clusters. The algorithm begins with the most similar (lowest 

connecting horizontal bars) and progresses by joining the next most similar object or other 

cluster in order until all objects are a member of at least one cluster. Each cluster 

corresponds to a hypothesis in Xu and Tenenbaum’s Bayesian model.
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Figure 2. 
The DNF model’s architecture. The model has two fields, one (A) organized by space and a 

dimension formed from an MDS solution of Xu and Tenenbaum’s (2007a) cluster trees, the 

other (B) by label and the same MDS dimension. Each unit (e.g., C) is tuned most strongly 

to a particular value along its fields’ two dimensions. Objects are represented by peaks of 

activation (D) in the space-MDS field, that after being weighted by a Gaussian kernel (result 

E) project ridges (F) in the label-MDS field. External inputs to the model are Gaussian 

patterns representing labels (G) that project vertical ridges of their own into the label-MDS 

Jenkins et al. Page 33

Cognition. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



field, two dimensional Gaussian patterns representing exemplars (H) that drive the formation 

of the peaks in the space-MDS field (D), and Gaussian patterns representing test objects for 

generalization (I) that project additional horizontal ridges (J) into the label-MDS field. 

Following the model through a test trial to Row 2 after 40 time steps, the exemplar peaks 

have strengthened, projecting activation (K) into a stronger ridge (L), which is almost 

forming a peak with the overlap of the test object ridge. 40 time steps later in Row 3, the 

model has built a generalization peak (M). In an alternative trial with a different test item 

(Row 4), the test item is in between the features of the exemplars, and does not overlap 

enough to raise a generalization peak.
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Figure 3. 
In the top row, three, subordinate, simultaneous exemplars interact (A) to cause mutual 

narrowing and project activation (B) as a narrow ridge (C) into the label-MDS field, 

becoming less likely to overlap with test object ridges (D). In the middle row, a single 

exemplar (E) does not experience mutual narrowing, so its activation is projected (F) as a 

broader ridge (G), which is more likely to overlap with test item ridges to form peaks (H). 

This leads to more broad generalization decisions than in the three simultaneous exemplars 

(overall, this is the suspicious coincidence effect). In the bottom row, sequentially presented 
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exemplars appear at location I at different time points (I1, I2, and I3), thus each behaving as 

if it were a single exemplar. Each therefore sends a broad ridge. Since, over time, the 

sequential exemplars vary slightly along the MDS dimension (vertical), the overall chance of 

overlapping test item ridges and generalizing is slightly broader than for a single exemplar. 

This relationship represents a reverse suspicious coincidence effect.
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Figure 4. 
A side view of activation ridges in the DNF model, as they are projected from the space-

MDS field to the label-MDS field (fields not shown) in different experimental conditions. 

Single exemplars project short, broad ridges, as do multiple exemplars presented 

simultaneously (both blue). Multiple sequential exemplars can achieve broader 

generalization, but only over time. The three-subordinate-exemplars trials create peaks that 

interact with one another in the space-MDS field, creating a narrower ridge (green) at the 

dotted threshold and thus narrower generalization. The difference between green and blue 

ridges represents the suspicious coincidence effect. Groups of exemplars matching at the 
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basic (red) or superordinate (black) levels show shifted and/or broader ridges and 

generalizations. Colored dots depict positions along the MDS dimension of exemplars that 

would project these ridges.
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Figure 5. 
The top panel shows experimental data from Spencer et al.’s (2011) simultaneous exemplars 

experiment in black. DNF model and Bayesian model fits are shown in blue and red, 

respectively. The larger denominations along the x-axis refer to experimental conditions, and 

the smaller denominations refer to test trial types. The two sets of bars relevant to the 

suspicious coincidence effect are highlighted in yellow, with a decrease from left to right 

between these bars corresponding to a positive suspicious coincidence effect. The bottom 

panel shows behavior and fits for Spencer et al.’s (2011) sequential three-exemplars 
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experiment. Letter labels indicate those test trial types where one model fit more than five 

generalization percentage points (y axis units) better to behavior than the other model. Blue 

letters (A,B,C,F,G,H,I) indicate the DNF model fits at least this much better, and red letters 

(D,E,J,K) indicate the Bayesian model fits better.
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Figure 6. 
Behavioral data and model fits for Spencer, et al.’s (2011) six-exemplars sequential 

presentation experiment. The format of this figure follows that of Figure 5.
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Table 1

DNF model paramters re-tuned from the initial Samuelson et al. (2011) model of word-object binding.

Parameter Original Value Our Value Description In Appendix (L=Line)

Space-MDS Field

Local excitation strength .08 6 How strongly neighbors are locally excited. ce and σe, in G() of L2, smf

Lateral inhibition strength / 
width

.03/18 40/15 How strongly closely neighbors are 
laterally inhibited.

ci and σi, in G() of L3, smf

Global inhibition 0.18 0.06 Strength of global inhibition. kix, L3, smf

Resting level −6.35 −4 Baseline level of activation. hlmfu, L1, smf

Label-MDS Field

Local excitation strength 1.6 4 same as above as above, but in lmf

Lateral inhibition strength 3 22.5

Global inhibition 0.35 0.004

Inputs

Noise width 1 4 Spatially-correlated noise added to fields. q in L5

Label ridge strength 0.4 8 The strength of the ridge projected into the 
label-MDS field from a label.

St(), L1, lmf

Label ridge width 1 5 The width of the label ridge. St(), L1, lmf

Test object ridge strength 0.162 16 The strength of the MDS ridge for the test 
object.

St(), L1, lmf

Exemplar object peak 
strength

0.162 11.1 The strength of the exemplar inputs. St(), L1, smf

Exemplar object peak width 3 3.25 The width of the exemplar inputs. St(), L1, smf

Spread of exemplars in space N/A 10 to either 
side

How far apart the three exemplar positions 
were in the model.

St(), L1, smf

Field interactions

Beta space-MDS to label-
MDS

1 .8 Beta is the sharpness of a sigmoid function 
for gating activation.

β in Λ() of L4, lmf

Strength space-MDS to label-
MDS

0.06 or 0.2 0.6 The weighting of the projection from the 
space-MDS field to the label- MDS field.

Ce in G() of L4, lmf

Width space-MDS to label-
MDS

10 or 3 1 The spread of the projection along the share 
MDS dimension.

βe in G() of L4, lmf

Strength label-MDS to space-
MDS

0.06 or 0.2 0.01 (same as above) Ce in G() of L4, smf
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Table 2

RMSE fits of the Bayesian and DNF models for modeling experiments 1 and 2.

RMSE (basic bias) Bayesian Model DNF Model

Sampling Assumption

Exp. Fitted Strong Weak

Simultaneous 0.17 (6) 0.24 (4)

Sequential 0.22 (71) 0.24 (11)

Both 0.21 (19) 0.24 (7) 0.17

Generalization 0.21(19) 0.14

Lower AIC/BIC values indicate a better quantitative fit

Cognition. Author manuscript; available in PMC 2022 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jenkins et al. Page 44

Table 3

Quantitative metrics compairing the model fits for modeling experiments 1 and 2. Metrics for a uniform model 

that had all response values set to 50% are provided as a baseline.

AIC (BIC) Best-fitting Bayesian Model DNF Model Uniform Model

Simultaneous 1379.49(1390.51) 1238.20 (1342.87) 2456.36 (2456.36)

Sequential 1784.64 (1795.66) 1489.10 (1593.76) 2456.36 (2456.36)

Generalization 2518.94 (2529.96) 1639.46 (1744.13) 2456.36 (2456.36)

Cognition. Author manuscript; available in PMC 2022 May 01.


	Abstract
	The Suspicious Coincidence Effect
	Xu and Tenenbaum’s Bayesian Model
	Hypotheses
	Likelihood
	Prior Probability
	Basic Level Bias
	Output

	A Dynamic Neural Field Model of Early Word Learning
	Architecture of the DNF Model
	MDS Dimension Algorithm
	Model Dynamics
	Simulating Behavior in the Suspicious Coincidence Task

	Modeling Experiment 1
	Methods
	Bayesian methods.
	DNF methods.
	DNF Parameter Tuning.
	Model comparison metrics.

	Results
	Discussion

	Modeling Experiment 2
	Methods
	Results and Discussion

	General Discussion
	Rational and Process Accounts

	Appendix
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1
	Table 2
	Table 3

