Skip to main content
. 2021 May 7;9(5):e27172. doi: 10.2196/27172

Table 5.

The characteristics of detection performance achieved by various ensembles of distance metric–based classifiers using the evaluation data set and the independent data set. Ten combinations with the highest performance as determined by the criterion C2 are displayed.a

Combination of distance metrics Sensitivity (%) Specificity (%) Accuracy (%) Balanced accuracy (%) Error (%) Precision (%) C2
MAHb , MANc , CANd 85.71 72.73 75.86 79.22 24.14 50.00 1.649
CAN, EUCe, MAH, MAN, MINKf 85.71 68.18 72.41 76.95 27.59 46.15 1.627
EUC, MAH, CAN 85.71 68.18 72.41 76.95 27.59 46.15 1.627
MAH, MINK, CAN 85.71 68.18 72.41 76.95 27.59 46.15 1.627
EUC, MAH, MAN, CAN 85.71 68.18 72.41 76.95 27.59 46.15 1.627
EUC, MAH, MINK, CAN 85.71 68.18 72.41 76.95 27.59 46.15 1.627
MAH, MAN, MINK, CAN 85.71 68.18 72.41 76.95 27.59 46.15 1.627
MAH, MAN 71.43 86.36 82.76 78.90 17.24 62.50 1.503
EUC, MAH 71.43 81.82 79.31 76.62 20.69 55.56 1.481
MAH, MINK 71.43 81.82 79.31 76.62 20.69 55.56 1.481

aThe best performing combination of the distance metrics is highlighted in bold.

bMAH: Mahalanobis.

cMAN: Manhattan.

dCAN: Canberra.

eEUC: Euclidean.

fMINK: Minkowski.