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Abstract

In this paper we describe an evaluation of the potential of classical information extraction methods 

to extract drug-related attributes, including adverse drug events, and compare to more recently 

developed neural methods. We use the 2018 N2C2 shared task data as our gold standard data set 

for training. We train support vector machine classifiers to detect drug and drug attribute spans, 

and pair these detected entities as training instances for an SVM relation classifier, with both 

systems using standard features. We compare to baseline neural methods that use standard 

contextualized embedding representations for entity and relation extraction. The SVM-based 

system and a neural system obtain comparable results, with the SVM system doing better on 

concepts and the neural system performing better on relation extraction tasks. The neural system 

obtains surprisingly strong results compared to the system based on years of research in 

developing features for information extraction.

1 Introduction

Adverse drug events (ADEs) describe undesirable signs and symptoms that occur 

consequent to administration of a medication. ADEs may be identified in randomized 

controlled trials (RCTs), observational studies, spontaneous reports such as those gathered in 

the Food and Drug Administrations (FDAs) Adverse Event Reporting System (FAERS), or 

manual chart review of data in electronic health records (EHRs). RCTs have notable 

limitations for pharmacoepidemiology, including strict inclusion and exclusion criteria that 

limit their generalizability, small cohort sizes that make them under-powered for detecting 

rarer ADEs, and time-limited study periods that prevent detection of ADEs that occur with 

longer drug administration (Sanson-Fisher et al., 2007; Sultana et al., 2013; McMahon and 

Dal Pan, 2018). Although drug manufacturers are required to submit postmarket adverse 

event reports to the FDA, this information is not uniformly available to clinicians (Maxey et 

al., 2013). Therefore, the 21st Century Cures Act directs the FDA to use real-world data 

(RWD) in the drug approval process.
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Use of RWD is particularly important for medications that are commonly used off-label, for 

example, those targeted for treatment of rare diseases such as pulmonary hypertension in 

children (Maxey et al., 2013). Electronic health records (EHRs) provide an opportunity to 

capture such data reflecting real-world use of approved medications. Most studies of 

pharmacovigilance using RWD are based on health care insurance claims—for instance, the 

FDAs Sentinel program—because claims data contains longitudinal information about 

medication dispensing and clinical diagnoses (Platt et al., 2018). However, claims data may 

lack sensitivity for identification of ADEs, since not all signs and symptoms are submitted to 

insurers for billing purposes (Nadkarni, 2010). Reliance on claims data may also lead to 

incongruous results, such as a Mini-Sentinel study that found—contrary to data from several 

large RCTs—that dabigatran was associated with a lower risk of gastrointestinal bleeding 

than warfarin (Sipahi et al., 2014).

Limiting studies using RWD to structured data alone neglects the rich data that may be 

found in the unstructured, free text portion of the EHR. However, this data is not readily 

available for computation. Extracting this information requires natural language processing 

(NLP) methods. The NLP sub-task of information extraction is concerned with finding 

concepts in text and the relations between them (Jurafsky and Martin, 2014). Examples of 

information extraction are named entity recognition (e.g., finding the names of people, 

organizations, etc.) and relation extraction (e.g., determining whether the employment 

relation holds between a detected person like Tim Cook and a detected organization like 

Apple). A recent National NLP Clinical Challenge (n2c2)-hosted shared task annotated 

ADEs in clinical text in a style that is amenable to an information extraction approach. 

Specifically, annotations for things like drug names or drug attributes, including dosages, 

routes, and adverse events are entity-like spans, while the pairing of attributes and drugs are 

naturally represented as relations to be extracted. The benefit of framing the ADE task as an 

information extraction task is that decades of research in information extraction can be 

brought to bear on the task, before even considering the specifics of the domain or the task. 

In this work, we sought to evaluate a number of standard information extraction methods, 

including both standard clinical NLP tools and general domain methods, with the goals of 

setting strong baselines, learning how much performance is dependent on domain 

knowledge, and comparing classical machine learning to new deep learning approaches.

2 Methods

2.1 Data

This work describes methods for participating in the National NLP Clinical Challenge 

(n2c2) Track 2 shared task: Adverse Drug Events and Medication Extraction in EHRs. The 

data consists of 500 discharge summaries from the MIMIC (Medical Information Mart for 

Intensive Care) III database (Johnson et al., 2016). The n2c2 data was labeled with eight 

concept types: Drugs, Strengths, Dosages, Durations, Forms, Routes, Reasons, and ADEs. In 

addition, seven relations are labeled, between Drug mentions and the other seven concept 

types.

We participated in all three tracks of the shared task: entity recognition, relation 

classification given entities, and end-to-end relation extraction.
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2.2 Methods

Our methods explore how well standard information extraction methods perform. One of our 

primary motivations is the prevalence of neural network methods in recent work, often 

motivated by their elimination of resource-intensive manual feature engineering, and thus 

judged superior to classical machine learning methods even if accuracy is similar. 

Unfortunately, in work comparing neural networks to classical methods, baseline classical 

machine learning systems can appear to be under-developed, while one is left wondering 

how much effort was actually required to engineer the network architecture and tune 

hyperparameters for the neural system. We used this dataset and task as an opportunity to 

invert that dynamic. We design a comparison that uses well-engineered features in a simple 

linear classifier without actually doing the engineering ourselves – we use features 

engineered over years of research in information extraction, and packaged in open source 

software such as Apache cTAKES (Savova et al., 2010) and ClearTK (Bethard et al., 2014). 

We then complete the comparison by comparing against off-the-shelf neural network tools 

and architectures for information extraction.

2.2.1 Entity extraction—To classify entities, we used a BIO tagger over tokens with a 

support vector machine classifier, with one classifier for each entity type. These classify 

every token in a document as the [B]eginning, [I]nside, or [O]utside of the entity type that 

classifier handles. We used Apache cTAKES (Savova et al., 2010) default pipeline to pre-

process the data and the ClearTK (Bethard et al., 2014) machine learning API to extract 

features and train the models with Liblinear (Fan et al., 2008). The features used by the 

classifiers are standard features from information extraction, including:

• The previous token’s BIO classification decision

• Word identity and part of speech for the current token

• Word identities and parts of speech in the surrounding context

• Sub-word character type features

• Word semantic features

For token and token context features, we represent features in two forms, first as bags of 

words within a window and also with relative positional information. Character type features 

extract the character sequence in both the target token and the context tokens to model the 

fact that many attributes are typically numbers, or include numbers. This feature maps 

tokens to strings representing character types inside the token—for example, lower case 

characters map to l, upper case to u, punctuation to p, and digits to d, so the phrase Mar 10, 

2019 would map to Ull ddp dddd. Finally, we used semantic type information of the current 

token, as extracted with the cTAKES dictionary lookup module, to create a feature 

representing whether a token is a sign/symptom, disease/disorder, procedure, drug mention 

(as detected by cTAKES), or anatomical site, as well as the UMLS (Bodenreider, 2004) Type 

Unique Identifier (TUI).

During development, we manually partitioned the data so that we could empirically optimize 

the value of C in the linear SVM classifier on held out data. We tuned a single value of C 
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that optimized the micro-F score on the held-out part of the training data. It may be possible 

to squeeze out slightly better performance by tuning C separately for each classifier, but the 

classifiers were pretty stable in the range we experimented with. We compare this system to 

an off-the-shelf neural network-based system called Flair (Akbik et al., 2018). This system is 

pre-trained using one billion words of text (Chelba et al., 2013) to learn a multi-layer Long 

Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) network language model. 

Given the pre-trained network, this system passes in the tokens for an input sequence, and 

receives back the values at the deepest hidden layer at each index of the multi-layer LSTM, 

and this sequence of vectors is called contextual embeddings. Like regular word embeddings 

(Turian et al., 2010; Mikolov et al., 2013; Pennington et al., 2014), there is one vector per 

input token, but since they are extracted from the output layer of the pre-trained LSTM they 

are expected to contain more information about the surrounding sentence context.

To train an entity extractor in Flair, we again model the task as a BIO tagging task, but 

instead of using linguistic features we simply pass the contextual embeddings for each token 

to a standard LSTM tagger. This LSTM has a hidden state with 256 dimensions, and is 

optimized with Adam (Kingma and Ba, 2014). We train for 50 epochs, and the model that 

performs best on the held out validation set during training is used to prevent overfitting.

2.2.2 Relation Extraction—We built relation extraction classifiers relating each 

extracted attribute to drug mentions. Relation candidate pairs were extracted by comparing 

all drug mentions with the relevant attribute mention within the same paragraph, where 

paragraphs were defined to be delimited by two newline characters. We use the same feature 

set as previous work extracting relations to find anatomical site modifiers (Dligach et al., 

2014). In the end-to-end version of the task, we considered drug mentions discovered both 

by the BIO tagger model and by cTAKES’s dictionary lookup module, which increased our 

recall. Any drug mentions discovered by cTAKES but not used in a relation were not output 

as Drug entities.

Finally, during preliminary work, we found that ADE and Reason entities actually behave 

more like relations, since they typically needed a nearby drug argument and some trigger 

words to be annotated. Therefore, instead of trying to detect ADE and Reason entities 

directly, we first train Drug-ADE and Drug-Reason relation classifiers, where the candidates 

for ADE and Reason arguments are all signs/symptoms and disease/disorders detected by 

cTAKES. If the relation classifier classifies a candidate pair as a Drug-ADE relation, we not 

only create the Drug-ADE relation but we create an ADE entity out of the non-Drug 

argument (and the Reason entity detector works the same way).

For relation extraction with the Flair neural model, we use a representation based on 

previous work on extracting temporal narrative container relations from sentences (Dligach 

et al., 2017). For each relation candidate consisting of a (Drug, Attribute) tuple, we insert 

xml-like start and stop tokens into the sentence around each of the candidate arguments 

indicating their position. For example, the sentence: He does feel episodes of hypoglycemia 
if he does not eat following insulin becomes: He does feel episodes of <ADE> 
hypoglycemia </ADE> if he does not eat following <Drug> insulin </Drug>. This 

augmented sentence representation is then passed into the pre-trained Flair bi-directional 
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LSTM sequence model, and the final states in each direction are concatenated into a feature 

vector. This feature vector is then passed through a linear layer to a softmax function over 

the output space to classify the relation.

For Track 3 (end-to-end relation extraction), the entity pairs found by the system in Track 1 

were used to create candidate relations during training and testing. For Track 2, we used the 

gold standard entity pairs to create the candidate relations.

Results are scored with the scoring tool distributed by the organizers of the challenge. This 

tool reports scores for precision (#TruePositives
#Predictions ), recall ( #TruePositives

#GoldPositives ), and F1 score 

(2 * precision * recall
precision + recall ). For concepts, true positives can be strict (the system concept span must 

match a gold concept spans begin and end exactly) or lenient (a system concept span must 

overlap a gold concept span). For relations, a true positive is one where the gold set has a 

relation where both arguments match, and the relation category is the same. For both 

concepts and relations, we report micro-averaged results of the lenient evaluation, since that 

was the metric used to score the shared task.

3 Evaluation

The tables show results on the concept extraction (Table 1), relation classification (Table 2), 

and end-to-end relation extraction (Table 3). In the concept extraction task, the systems 

perform very similarly on average, with the SVM feature-engineered approach obtaining a 

micro-averaged F-score of 0.91 and the neural system scoring 0.90 (final row). By 

comparison, the best performing system at the n2c2 shared task scored 0.94 on the concept 

extraction task. The middle rows of Table 1 show the performance for different concept 

types. The two systems perform similarly across concept types, except that the SVM-based 

system performs much better on Route, while the neural system is much better at extracting 

Reason and Duration concepts.

For relation classification with gold standard concepts given as input (Table 2, top), the 

neural system is at least as good as the SVM-based system for every relation type, and the 

micro-averaged neural system is 0.93 compared to the 0.91 for the SVM-based system. Most 

improvement is seen in the Drug-Duration and Drug-Frequency categories. By comparison, 

the best performing system in the n2c2 challenge scored 0.96 on Track 2.

In the end-to-end relation extraction task (Table 3, bottom), the neural system is again two 

points better than the SVM in F1 score. The SVM performs better on Drug-Route and Drug-

ADE, while the neural system performs better in Drug-Duration and Drug-Reason. The best 

performing system in the n2c2 challenge scored 0.89 on Track 3.

4 Conclusion

Despite minimal engineering effort, neural systems pre-trained on non-medical text obtain 

similar performance to feature engineered systems with features specific to clinical text. 

This is perhaps somewhat surprising, and provides some evidence that standard neural 

architectures for sequence tagging and relation extraction tasks are already quite mature. 
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One caveat to these results is that, while our feature-based approach used standard feature 

sets with history of success in the literature, one could argue that to mirror the tuning that is 

done with neural networks we could have done more extensive tuning of feature 

hyperparameters, by, for example, testing configurations where certain groups of features are 

turned on or off.

While the performance of the neural system in this work is impressive, one might expect 

them to perform even better if they could be pre-trained on clinical text. Future work will 

investigate language model pre-training in Flair and other neural architectures on large 

amounts of clinical data from electronic health record systems. The code developed to 

participate in the n2c2 challenge and run these experiments is available open source.1
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Table 1:

Results of entity recognition experiments with SVM vs. Neural systems.

Track 1 Precision Recall F1

SVM Neural SVM Neural SVM Neural

Drug 0.96 0.96 0.92 0.90 0.94 0.93

Strength 0.98 0.97 0.95 0.97 0.97 0.97

Duration 0.82 0.91 0.63 0.65 0.71 0.76

Route 0.96 0.95 0.91 0.83 0.94 0.89

Form 0.97 0.93 0.92 0.95 0.95 0.94

ADE 0.66 0.58 0.20 0.18 0.31 0.27

Dosage 0.94 0.92 0.88 0.92 0.91 0.92

Reason 0.78 0.71 0.38 0.56 0.51 0.63

Frequency 0.98 0.98 0.93 0.95 0.95 0.96

Average 0.95 0.94 0.86 0.87 0.91 0.90
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Table 2:

Results of relation classification experiments (gold standard entity arguments) with SVM vs. Neural systems.

Track 2 Precision Recall F1

SVM Neural SVM Neural SVM Neural

Drug-Strength 0.93 0.99 0.96 0.98 0.94 0.98

Drug-Duration 0.81 0.93 0.83 0.86 0.82 0.89

Drug-Route 0.93 0.97 0.95 0.94 0.94 0.96

Drug-Form 0.96 0.99 0.97 0.95 0.97 0.97

Drug-ADE 0.75 0.77 0.78 0.80 0.76 0.79

Drug-Dosage 0.95 0.98 0.96 0.93 0.95 0.95

Drug-Reason 0.74 0.91 0.76 0.65 0.75 0.76

Drug-Frequency 0.90 0.98 0.92 0.94 0.91 0.96

Average 0.90 0.97 0.92 0.90 0.91 0.93
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Table 3:

Results of relation extraction experiments (system-generated entity arguments) with SVM vs. Neural systems.

Track 3 Precision Recall F1

SVM Neural SVM Neural SVM Neural

Drug-Strength 0.92 0.96 0.91 0.94 0.91 0.95

Drug-Duration 0.73 0.83 0.51 0.57 0.60 0.67

Drug-Route 0.92 0.94 0.86 0.77 0.89 0.85

Drug-Form 0.95 0.94 0.89 0.89 0.92 0.91

Drug-ADE 0.60 0.50 0.18 0.15 0.28 0.23

Drug-Dosage 0.92 0.92 0.84 0.84 0.88 0.88

Drug-Reason 0.66 0.65 0.31 0.46 0.42 0.54

Drug-Freq 0.90 0.96 0.86 0.87 0.88 0.92

Average 0.90 0.90 0.76 0.78 0.82 0.84
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