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ABSTRACT

Conformation capture-approaches like Hi-C can elu-
cidate chromosome structure at a genome-wide
scale. Hi-C datasets are large and require specialised
software. Here, we present GENOVA: a user-friendly
software package to analyse and visualise chromo-
some conformation capture (3C) data. GENOVA is
an R-package that includes the most common Hi-
C analyses, such as compartment and insulation
score analysis. It can create annotated heatmaps to
visualise the contact frequency at a specific locus
and aggregate Hi-C signal over user-specified ge-
nomic regions such as ChIP-seq data. Finally, our
package supports output from the major mapping-
pipelines. We demonstrate the capabilities of GEN-
OVA by analysing Hi-C data from HAP1 cell lines
in which the cohesin-subunits SA1 and SA2 were
knocked out. We find that �SA1 cells gain intra-
TAD interactions and increase compartmentalisa-
tion. �SA2 cells have longer loops and a less com-
partmentalised genome. These results suggest that
cohesinSA1 forms longer loops, while cohesinSA2

plays a role in forming and maintaining intra-TAD
interactions. Our data supports the model that the
genome is provided structure in 3D by the counter-
balancing of loop formation on one hand, and com-
partmentalization on the other hand. By differentially
controlling loops, cohesinSA1 and cohesinSA2 there-
fore also affect nuclear compartmentalization. We
show that GENOVA is an easy to use R-package, that
allows researchers to explore Hi-C data in great de-
tail.

INTRODUCTION

The organization of the genome inside the nucleus can be
measured using proximity ligation assays such as Hi-C (1),
which has led to a detailed picture of the genome inside
the nucleus. Chromosomes are structured by two oppos-
ing forces (2,3). Compartmentalization leads to the forma-
tion of microenvironments that segregate active and inactive
chromatin (4). On the other hand, cohesin mediated loop
formation results in the establishment of CTCF-anchored
chromatin loops and Topologically Associated Domains
(TADs) (2,5–8). TADs are thought to be the regulatory
units of the genome for at least a subset of mostly devel-
opmentally regulated genes (9,10).

The mechanism by which cohesin forms these loops, and
by extension TADs, is loop extrusion (11). In this model,
cohesin processivily increases the size of chromatin loops.
Extrusion is halted when cohesin encounters the CCCTC-
binding factor (CTCF) bound to DNA. The orientation
of the CTCF consensus-motifs is important for the abil-
ity of CTCF to act as a boundary-element for chromatin
loops (12). The majority of stable loops observed in Hi-
C maps brings together CTCF motifs in opposite orienta-
tion (the ‘convergency rule’) (12,13). We and others have
shown that stabilising chromatin-bound cohesin, by deplet-
ing the cohesin-release factor WAPL, leads to more and
longer loops (2,14). These loops follow the convergency
rule less strictly, and are generally extensions of wild-type
loops, suggesting that loop-anchors collide in the absence
of WAPL (2,15). These observations show that by regulat-
ing the cohesin complex we can critically influence the or-
ganization of the genome inside the nucleus. The cohesin
complex is a multimeric complex consisting of the core pro-
teins SMC1, SMC3, RAD21/SCC1 and a STAG/SA sub-
unit. There are two different cohesin variants, that con-
tain either SA1 or its homolog SA2. Recent studies sug-
gested that cohesinSA1 forms long CTCF-anchored loops
(16–18), whereas cohesinSA2 is involved in the formation of
promoter-enhancer loops (16,19).
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Many recent discoveries concerning the organisation of
the 3D genome and the role of cohesin in this has been
learned from Hi-C, which is an all-versus-all chromosome
conformation capture method (1). Visualising individual
chromatin loops requires Hi-C maps with resolutions of
at least 20kb (20). Since Hi-C data is a pairwise analysis
method, increasing the resolution requires a quadratic in-
crease in reads. For this reason, Hi-C datasets are often very
large. More recently, higher-resolution methods like micro-
C (21) have emerged, resulting in even larger datasets. These
large amounts of data call for purpose-built and highly pow-
erful computational methods.

Several software-packages for Hi-C analysis and visual-
isation have been described in recent years (22). Some of
these focus on generating tracks or snapshots of regions
of interest (23,24). Another powerful feature is aggregating
Hi-C data on specific features like loops, also referred to as
pile-ups (2,25–28). By averaging the limited signal of many
features, one can surmise general changes in nuclear orga-
nization from changes in signal distribution. These aggre-
gations are conceptually similar to metaplots in ChIP-seq
and ATAC-seq analyses. The Hi-C analysis methods refer-
enced above are currently scattered over many packages and
programming languages. This dispersed landscape of tools
is cumbersome for many experimentalists, as it forces them
to spend time learning how to use each of these tools and
to become versed in multiple programming languages. Here
we present GENome Organisation Visual Analytics (GEN-
OVA): an R-software package for Hi-C data-analysis. It fea-
tures all of the key Hi-C analyses and works with all major
mapping-pipelines. GENOVA can be downloaded and in-
stalled from github.com/dewitlab/GENOVA.

GENOVA has previously been used to study the role of
the ChAHP in nuclear organization (29), to investigate the
loss of all CTCF anchored loops in a CTCF point mu-
tant (30) and other studies (31,32). In the current study, we
present GENOVA in detail and use it to chart the roles of
SA1 and SA2 in genome organisation. We generated knock-
outs of each homolog in human HAP1 cells. GENOVA
enabled the integration of published Hi-C data of knock-
downs and acute depletions (16–18,33). Using GENOVA
we were able to determine the contribution of cohesinSA1

and cohesinSA2 to genome organization.

METHODS

The basic principle in Hi-C data analysis is identifying lig-
ations between non-contiguous restriction fragments. This
is achieved by performing paired-end sequencing of a Hi-C
template. Hi-C mapping pipelines have the following steps
in common. First, paired-end sequence reads are mapped
to a reference genome. When the paired ends fall on dif-
ferent restriction fragments this amplicon is identified as
a valid interaction pair. Next, the valid pairs are summed
over equally-sized (e.g. 10 kb) interaction bins. Finally, the
resulting contact matrix is normalized to account for bi-
ases using iterative correction (34) or matrix balancing (35).
The most common pipelines (Hi-Cpro, juicer and cooler)
perform these steps but produce different output formats
(26,36,37). Data from Hi-C alternatives, such as micro-C
(38) or tiled Capture-C (39) can also be loaded into GEN-

OVA, provided it is stored in one of the aforementioned
data formats. It should be noted that for high-resolution
methods such as micro-C the memory requirements may be
greater than for a typical Hi-C experiment.

Loading and representation of Hi-C data

In GENOVA, the contact matrices are loaded into contacts-
objects, which stores the matrices in a compressed sparse
triplet format and the user-added metadata (e.g. colours
and sample-names) of one Hi-C dataset (Figure 1A). There
is also the option to calculate Z-score normalised values.
These scores express data in units of standard deviation
relative to other values at equal distance. This can be of
use when exploring small (i.e. 1 by 1 bin) far-cis features,
as the increase in sparsity at these distances means that it
is more difficult to separate noise from true local contact-
enrichment. Data from the Juicer, Cooler and HiC-pro
pipelines can all be loaded with the same function inside
GENOVA. The Juicer pipeline produces .hic-files that are
parsed with the strawr-package. The Cooler pipeline pro-
duces ‘.cooler’-files that stored in the HDF5 standard. The
Rhdf5-package enables the loading of these into R.

After contacts-objects are made, the user can analyse
these with the tools (R-functions to analyse Hi-C data) in
GENOVA. All tools have a similar syntax and standard-
ised output: the discovery object. An added benefit of us-
ing contacts- and discovery-objects is that they are portable:
they contain all the information of a Hi-C dataset or re-
sult, including metadata. This averts common errors, like
swapping labels and facilitates sharing (raw) data of analy-
ses with collaborators. The user can visualise the discovery-
objects, as well as quantify them for further analysis (Figure
1A).

The main benefit of using GENOVA is that it comprises
a large set of available tools, that are otherwise distributed
over a number of different software packages and pro-
gramming languages. The tools in GENOVA can perform
quality-control, generate tracks, visualize contact matrices
and aggregate Hi-C data over genomic features (Figure 1B,
Supplementary Table S1). This has resulted in a package
that can be used to run the majority of analyses currently
used in the literature within a single programming environ-
ment. We will discuss these tools in detail below.

Quality control

The first analysis-step after loading the data is to perform
quality control to check the integrity of the Hi-C experi-
ment. A good indicator of the quality of a Hi-C library
is the percentage of reads mapping in cis. Previous work
has shown that the expected amount of intra-chromosomal
contacts is in the 90–93% range in both mouse embryonic
stem cells and in human K562 cancer cells (40). Many fac-
tors can influence the number of interchromosomal liga-
tions, which generally is the sum of (i) true proximity lig-
ations and (ii) debris DNA fragments (41). We advise for in
nucleus or in situ Hi-C dataset to have percentages of in-
trachromosomal ligations >75%. To test this, users can run
the cis trans-tool, which computes this percentage genome-
wide (Figure 2A).
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Figure 1. GENOVA is a pipeline-agnostic R-package and includes the majority of Hi-C analyses. (A) Data from the three major pipelines can be loaded
with the load contacts tool into a contacts-object. Quality control and other analyses can then be performed on these objects: all tools generate the results
in the form of a discovery-object. The user can print, visualise and quantify these objects. (B) An overview of the tools and options in GENOVA and other
Hi-C software. The majority of the available software focus on a subset of the possible analyses and are often restricted to specific mapping pipelines.

In studies with translocation-prone (cancer-)genomes,
the Hi-C data of sites surrounding the breakpoints will be
misleading. The same is true when the reads are aligned
to draft genomes that may still contain assembly er-
rors, which can be the case for uncommon model sys-
tem or strains. In the case of structural variation, the re-
gions around a breakpoint will have increased amounts
of––seemingly––trans-contacts, which are in reality cis-
contacts of two translocated pieces of chromosome. In
the case of a misassembly, actual wild-type cis-interaction
will appear as translocations. The result in both cases is
the appearance of merged and/or deleted TADs and un-
expected changes in compartment-scores. It is therefore
recommended that translocated chromosomes are omitted
from further analyses. GENOVA can compute the enrich-
ment of cis-interactions between chromosomes with chro-

mosome matrix. Moreover, this tool generates an overview-
plot for checking for translocations (Figure 2B).

Tracks and matrices

Hi-C data analysis often focusses around comparing fea-
tures like TADs and compartments. Identifying the lo-
cations of these features first requires that the two-
dimensional Hi-C data is reduced to a quantitative lin-
ear track. GENOVA provides tools to distil Hi-C into lin-
ear tracks on compartment- and domain-level. Aside from
calling features on these tracks, users can also use them
for matrix-annotation, alignments on regions (e.g. tornado-
plots) and viewing in genome-browsers.

To generate a matrix overview for an entire chromosome
or chromosome arm (i.e. far-cis interactions) we devised the
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Figure 2. The GENOVA-package contains a complete suite of tools for Hi-C analyses. (A) Quantification of the percentage contacts in cis of WT and
ΔWAPL made with the cis trans tool. (B) Enrichments of contacts between all pairs of chromosomes with chromosome matrix. Both the reciprocal 9–22
translocation and the addition of a fragment of chromosome 15 on chromosome 19 lead to a high enrichment-score. (C) Whole-arm chromosome matrices
with compartment-scores for WT (top right) and ΔWAPL (bottom left). The matrix can either be the Pearsson-matrix (shown) or the contact-intensity.
(D) The hic.matrixplot tool allows for the plotting of a regions of interest, including annotations. Signal-tracks, gene-models and ChIP-seq peaks can be
used for the annotation-tracks above and to the left, while loops and TADs can be plotted on top of the matrix. All annotations can be customised on
placement and colour. (E) Additionally, a second contacts-object can be added to the bottom-left half of the matrix (top triangle) or can be subtracted from
the first contacts-object to produce a differential matrix (bottom triangle). (F) Features of the Hi-C data (top) can be summarised with the aggregation-
tools of GENOVA (middle) to produce genome-wide averages of the features (bottom). (G) C-SCAn of pairwise combinations of CTCF ChIP-seq peaks
on forward and reverse binding motifs in convergent (top row) and divergent (bottom row) in WT and ΔWAPL.
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cis.compartment.plot function. The resulting plot shows a
heatmap of one or two contacts-objects. In the case of two
experiments either experiment occupies a triangle in the
matrix (top or bottom). The plot can show both the ab-
solute Hi-C signal or the observed over expected (i.e., the
distance-dependent average) scores. Above and to the side
of the heatmap the compartment-scores are plotted (Fig-
ure 2C). This matrix is thus a useful way to get an overview
of the far-cis landscape and even directly compare two
samples.

In order to determine A- and B-compartments, users can
also generate compartment-scores using a separate func-
tion (compartment score). The compartment score is deter-
mined by first computing an observed over expected matrix
for a chromosome (arm). From this matrix one is subtracted
and an eigen decomposition is performed. The first eigen-
vector of the matrix is multiplied by the square root of the
corresponding eigenvalue (34). To ensure that positive val-
ues are corresponding to euchromatin, we advise correlat-
ing the arm-wise compartment-score to the ChIP-seq data
of an active histone mark (e.g. H3K4me1). This can be done
from within GENOVA: when this correlation is negative,
the compartment-score is multiplied by –1 (42).

In addition to compartments, chromosomes can be sub-
divided into TADs. Two common TAD-level metrics are the
directionality index and the insulation score (5,43). GEN-
OVA includes tools for computing these two separate met-
rics for TAD-level tracks. It goes beyond the scope of this
study to discuss the various downsides and benefits of ei-
ther method, for a more detailed discussion we refer the
reader to (44). These tracks can be used to call TADs and
align on genomic features, like genes or precomputed TAD-
boundaries (Supplementary Figure S1A).

The insulation score reflects the differences of contact
density of every Hi-C bin with its surrounding bins (43).
Briefly, the insulation score tool uses a sliding window to
compute the average signal intensity per Hi-C bin. This
score is then divided by the genome-wide average signal
to produce the insulation-score. To plot the Hi-C ma-
trix and the corresponding insulation score, users can call
plot insulation. At the boundary between two TADs there
is a clear dip in the insulation score. This feature is exploited
in the call TAD insulation tool to call TAD-boundaries
at local minima, which uses the output of the insula-
tion score tool as input. To prevent insulation boundary
calling on spurious dips a threshold is set (min strength),
which can be adjusted to increase or decrease the number
of boundaries that are determined. For the TAD calling
performed on WT, �SA1 and �SA2 Hi-C maps we used
20kb matrices, with a window size of 25 and a min strength
of 0.01.

The second TAD-level track, the directionality index,
quantifies the bias between upstream and downstream in-
teractions for each Hi-C bin. This score is low just upstream
of a TAD-boundary and high just downstream of a TAD-
boundary, as has been extensively described by Dixon et al.
(2012). The direct index tool will, in short, average the sig-
nal in a set region upstream and downstream of a Hi-C bin.
Afterwards it is normalized in a similar matter as comput-
ing the � 2 metric, where a score of zero means that there is
no bias. A bin where this score suddenly crosses zero means

that interactions are biased up- or downstream, which is the
case at TAD-boundaries.

Plotting Hi-C data in user-specified regions in combi-
nation with genomic features or data can be done with
hic.matrixplot (Figure 2D). It accepts multiple sources of
annotations: linear features such as ChIP-seq peaks and
gene information can be plotted above and to the left of the
matrix. TADs and chromatin loops are are plotted over the
Hi-C matrix heatmap. Furthermore, linear tracks in bigwig-
and bedgraph-format can be plotted to add quantitative
information about protein-DNA interactions or gene ex-
pression. Two samples can be plotted in a mirrored fashion
alongside the diagonal (i.e. the top and bottom triangles of
the matrix) or the difference can be plotted by subtracting
one experiment from the other (Figure 2E).

Chromosome-level analyses

The relative contact probability can be used to investi-
gate distance-dependent contact frequencies (1,45). Be-
cause chromosomes are subject to polymer physics (34) the
probability of two regions on a chromosome interacting
in 3D decreases as function of the linear distance. When
comparing two Hi-C experiments, a change in the relative
contact probability (RCP) in the 1–5Mb range is indicative
of a change in contacts in TAD-level, for example. More-
over, Gassler et al. (46) have shown that the derivative of
the RCP can be used to estimate the average extruded loop
size. The RCP tool in GENOVA can be used to calculate
genome-wide RCP score or for a user-defined set of regions
or chromosomes. In addition to the standard methods of
plotting the RCP decay as a function of distance for every
sample, GENOVA offers the option to compute the fold-
change over a control sample (18) (Supplementary Figure
S1B).

While the RCP can give insight into the far-cis interac-
tions, it is not designed to reveal changes in the strength
of the compartmentalisation, which is measured as the de-
gree in which A and B compartments segregate in the nu-
cleus. For this, users can use the saddle-tool, which is based
on the work of Imakaev et al. (34). In brief, the tool first
stratifies each genomic bin on the quantiles of the com-
partment score. The number of quantile bins can be chosen
by the user. Pairwise interactions are then allocated to the
combination of their compartment-score quantiles. Next,
it computes the average of the observed over expected Hi-
C score for each quantile-combination. This results in a
Nquantile × Nquantile sized matrix, which can be visualised as a
heatmap, a so-called saddle plot. The name of this method
comes from the fact that the resulting plot resembles a sad-
dle, with strong interactions at A–A and B–B and weaker
interactions between A and B.

A related measure is the compartment strength, which
computes the strength of compartmentalisation as the prod-
uct of the observed over expected (O/E) scores in A/A
and B/B (i.e. within compartment) interaction bins divided
by the square of the O/E scores in the A/B (i.e. between
compartment) interaction bins. A score of one means that
the within-compartment interactions are as common as
between-compartment, whereas a higher score means that
within-compartment interaction are more prevalent.
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Data aggregation

De novo TAD and loop calling relies on a sufficiently se-
quenced dataset (at least 108 reads for the human genome).
However, when data is sparse (e.g. <25 million reads) we
can still extract meaningful information from these datasets
through the aggregation over genomic features. GENOVA
can perform several forms of aggregation analysis (Figure
2F).

GENOVA has a family of tools for aggregating contacts
at features of interest, like peaks, loops and TADs. Users
can aggregate the regions around one-dimensional features
(e.g. ChIP-seq peaks or transcriptional start sites, TSS) at
the diagonal with the Aggregate Region Analysis (ARA).
Since subtle changes can be obscured by the high contact-
intensity of the diagonal, the tool computes an observed
over expected score. This expected score is generated by cal-
culating the same aggregate matrix for the same features,
but shifted 1Mb downstream, and averaging per distance.
This also ensures that subtle changes in the average con-
tact probability are normalised. The Aggregate Peak Anal-
ysis (APA) averages the signal surrounding the pixels mak-
ing up the loop taking by default a region 21 bins around
the feature (Figure 2F). To aggregate TADs, the ATA-tool
extracts both the regions of interest (i.e. TADs), including
the regions up- and downstream of half of the TAD-size.
We average the matrices, after resizing through bilinear in-
terpolation of the individual matrices, to show the aver-
age contact-distribution of all TADs and their surroundings
(Figure 2F).

All three aggregation-tools have customisable thresholds
for the sizes of the feature and its surrounding region to
include. Setting the feature-size threshold allows for strat-
ification of specific sizes, such as large versus small loops,
but can also be used to remove features that are not in
the expected size-range. Users can set a threshold on pixels
(i.e. interaction-bins) with extreme values, which are often
considered outliers. When a pixel has a higher signal than
the threshold, the pixel-intensity will be set to the value of
the threshold. This approach keeps all features, regardless of
outliers, but limits the influence of the outliers on the final
average. Afterwards, the visualise- and quantify-methods
allow for comparisons between feature-sets and samples.

Another possibility to visualise aggregates is to generate
a tornado-plot, in which the enrichment is plotted for every
individual feature (i.e., loop). We calculate the enrichment
of each feature with the pixels surrounding it with the same
distance (Supplementary Figure S1C). Afterwards, we sort
and k-means cluster the features––both the samples to sort
on and the number of clusters can be set. As is the case for
all discovery-objects and plots in GENOVA, the output of
the tornado contains the raw data, which allows users to
further analyse these features, stratified on the clustering.

Aside from Hi-C features, GENOVA also enables the ag-
gregation of contacts between two one-dimensional regions,
like ChIP-seq peaks (Figure 2F). PE-SCAn (27) creates vir-
tual loop anchors by combining pairs of features within cer-
tain distance-thresholds and calculates the enrichment. C-
SCAn is an extension of PE-SCAn and allows multiple sets
of peaks (e.g. enhancers and promoters or positively and
negatively oriented CTCF motifs). It then creates virtual

loops based on combinations of these sets. The discovery-
object of PE-SCAn and C-SCAn can be visualised and
quantified in the same way as the APA, ARA and ATA.

Genome editing and cell culture

Hap1 cells were cultured in Iscove’s Modified Dulbecco’s
Medium (IMDM) supplemented with 10% FCS (Clon-
tech), 1% Penicillin/Streptomycin (Invitrogen) and 0.5%
UltraGlutamin (Lonza). Hap1 SA1 and SA2 knock-
out cells were generated using gRNA’s targeting SA1
exon 2 (ACTACTGCCCATTCCGATGC) and SA2 exon
3 (TGATGACCATTCATTCGGTT), which were cloned
into PX330. Cells were transfected with PX330 and
pDonorTia containing a puromycin resistance gene. Clones
were selected using puromycin (2 �g/�l). Colonies were
screened for the loss of SA1 and SA2 using PCR and west-
ern blot analysis. Used antibodies for the western blots
were ab4457 (SA1) from Abcam, 158a (SA2) from Bethyl,
sc365189 (WAPL) and sc13119 (HSP90) from Santa Cruz.
Rad21 immunofluorescence was performed with Millipore
05-908 (Rad21) antibodies in 1:250 dilution.

Hi-C from Hap1 SA1 and SA2 knockouts

We performed in-situ Hi-C, as described in Haarhuis et al.
(2017). Sequencing was done on the HiSeq X sequencing
platform and mapped with hic-pro 2.11.1. We performed
loop calling with HiCCUPS 1.9.9.

Previously published Hap1 data (WT and ΔWAPL) was
included in this manuscript (2). We used both the ice-
normalised Hi-C matrices and generated z-normalised ma-
trices during loading. TAD- and loop-calls from the same
manuscript were also included. To compare our results to a
different cell line, we downloaded the sequencing-reads and
juicer-files for the siControl, siSA1 and siSA2 of MCF10A
from Kojic et al. (16). We mapped the reads with hic-pro
2.11.1 (36) to the hg19 reference genome with default set-
tings.

RESULTS

Performance and benchmarking

We have developed GENOVA on the premise that it com-
bines all the key Hi-C analysis tools for the most com-
mon Hi-C data formats. To illustrate that contacts-objects
from different formats can be compared in GENOVA, we
mapped the data of Kojic et al. (16) with HiC-pro and com-
pared it to .hic files mapped with TADbit and converted
with Juicer-tools. The relative contact probabilities between
the two formats are similar for both siSA1 and siSA2 (Sup-
plementary Figure S1D). This shows that the different for-
mats give nearly identical output and that these different
outputs can be compared inside GENOVA.

Because Hi-C maps are often large and complex datasets,
the speed of these tools is key to many of the analyses.
Therefore, we use key-based binary searches (47), which has
the benefit that the speed of the analyses is no longer lin-
early proportional to the number of regions queried (47).
To test the performance of our method, we performed an
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Aggegrate Peak Analysis on Hap1 Hi-C data of Haarhuis
et al. (2) with both GENOVA and Juicer (26). Our analy-
sis showed that, irrespective of resolution, the absolute in-
crease in calculation time is less with more loops queried
in our implementation (Supplementary Figure S1E). These
results indicate that GENOVA’s implementation of region-
lookups is robust and quick enough to handle large queries.

Aggregation enables the gathering of information from
dataset that have a higher level of sparsity. To investigate
how sparse the data can be and still be used in aggregation-
analyses, we downsampled the HAP1 data of Haarhuis et al.
(2). The RCP analysis shows that there is little to no de-
viation of the full dataset up to 90Mb at 1 million reads
(Supplementary Figure S1B). Both the APA and ATA show
good signal-to-noise, even at 5 million reads––20% of the
output of a current Illumina MiniSeq (Supplementary Fig-
ure S1F, G). These results indicate that aggerate analyses
can be faithfully performed on low-coverage datasets.

C-SCAn and loop clustering

In GENOVA we have implemented two novel tools, C-
SCAn and loop clustering. The first is an extension of the
previously published Paired-End Spatial Chromatin Analy-
sis (PE-SCAn) method (48), that aggregates of all pairwise
combinations of a genomic feature such as gene promot-
ers or super enhancers (49). C-SCAn builds on this by per-
forming aggregation of pairwise combinations of two differ-
ent genomic features, for instance gene promoters and distal
enhancers, but excluding the homotypic pairwise combina-
tions. We tested our method by aggregating over combina-
tions of forward and reverse oriented CTCF binding sites.
Our analysis showed, as expected, that there was a clear in-
creased contact frequency between CTCF binding sites in a
convergent orientation (Figure 2G). This contact frequency
was further increased in the absence of WAPL, consistent
with the observation that cohesin is bound more stably to
DNA (2). Note that the C-SCAn function allows the user
to analyse genomic features in a specific direction, like with
the forward and reverse CTCF sites, or in a direction agnos-
tic manner, as with promoters and enhancers. The C-SCAn
function is a powerful new method to elucidate features that
shape the 3D genome.

A powerful method to visualise ChIPseq data is a
heatmap of the signal around, for instance, peaks, also re-
ferred to as tornado plots. We realised that, for obvious rea-
sons, no such method existed for Hi-C data. We have there-
fore developed a method that selects diagonals from the Hi-
C matrix that overlap with specific points in said matrix,
such as chromatin loops or putative chromatin loops, rep-
resented as a one-dimensional array of values. These arrays
can be stacked together in a heatmap, similar to ChIPseq
tracks. Visualization of the heatmap enables the assessment
of global versus specific changes in loop changes (Supple-
mentary Figure S1C). The organisation of the loop data
into a matrix also enables the user to perform k-means clus-
tering, to identify specific subsets of loops (discussed in
more detail below). These are two additions to a roster of
analysis tools that can be used to analyse Hi-C. Below we
will use these tools to analyse the role of different cohesin
variant in nuclear organisation.

Differing far-cis landscapes of cohesinSA1 and cohesinSA2

The cohesin-complex has been shown to play a major role
in the formation of CTCF-anchored loops and contacts
within TADs (8). There are two variants of the complex,
containing either the SA1 (STAG1) or SA2 (STAG2) ho-
mologs, that are suggested to have specialised functions
(Figure 3A) (18,19,33). To elucidate the differences of
cohesinSA1 and cohesinSA2 with regard to genome organi-
sation, we made knock-outs of either SA1 or SA2 by insert-
ing a puromycin resistance cassette in-frame in HAP1 cells
(Supplementary Figure S2A). We confirmed the knockouts
by PCR (Supplementary Figure S2B) and western blot (Fig-
ure 3B). We refer to these knock-out lines as �SA1 and
�SA2.

To reveal the effects of knocking out SA1 or SA2 on chro-
mosome organization, we generated high-resolution Hi-C
maps (Supplementary Figure S3A). When inspecting whole
chromosome-arms, we saw that the two knockouts had dif-
ferent effects on the intrachromosomal interaction land-
scape. In �SA1 cells there were more far-cis interactions,
indicated by the stronger ‘plaid’-pattern in the Hi-C map.
On the other hand, in �SA2 cells there are more interac-
tions at the sub 5Mb-scale, which can be seen as a stronger
diagonal (Figure 4A, Supplementary Figure S3B). This dif-
ference was confirmed in the relative contact probability
(RCP) plots, where the �SA2 has increased interactions in
the close-cis range (1–10Mb), compared to the WT. The
�SA1 cells show a general increase in contacts compared
to WT for regions more than 5Mb apart. (Figure 4B, Sup-
plementary Figure S3C). We found that the technical repli-
cates show extremely similar distributions, and thus com-
bined the replicates in all subsequent analyses (Supplemen-
tary Figure S3C). Our results indicate that cohesinSA1 and
cohesinSA2 affect chromosome organization differently.

The observation that �SA1 has increased far-cis inter-
actions compared to �SA2 brings up an interesting pos-
sibility that cohesinSA1 inhibits compartmentalisation (i.e.
more intra-compartment contacts) to a larger extent than
cohesinSA2. This difference in compartmentalisation can al-
ready be seen in the compartment-score tracks of Figure
4A: the amplitude of the B-compartment score (blue) is in-
creased in the �SA1 compared to both the WT and �SA2.
Since a higher compartment-score amplitude is an indi-
cation of more homotypic compartment interactions (i.e.
between two A compartment bins or two B-compartment
bins), we quantified these differences genome-wide. To vi-
sualise the changes in the compartment strength we gener-
ated saddle-plots, in which the amount of self-interaction
of A- and B-compartments is quantified (34,50). These
plots show that �SA1 has increased B–B (and less A–
B) interactions compared to control (Figure 4C). This
can be further quantified using the compartment strength
(34), which corresponds to the proportion of intra- ver-
sus inter-compartment contacts and is calculated for ev-
ery chromosome arm separately (34). We found that the
�SA1 overall has significantly stronger compartmentalisa-
tion, while �SA2 has weaker compartmentalisation, com-
pared to wild-type (Figure 4D). These results show that
cohesinSA1 and cohesinSA2 differ in their propensity to re-
strict compartmentalisation.
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Figure 3. Generation of Hap1 SA1 and SA2 knockouts. (A) The two cohesin-variants differ in their SA subunits. (B) Western blot analysis confirms SA1
knockout in �SA1 cells and �SA2 knockout in �SA2 cells.

Figure 4. Far-cis differences between the cohesin-variants. (A) Hi-C matrices of chromosome 2p of wild-type, �SA1 and �SA2. Compartment-scores are
plotted on top. Bars in matrices denote 5mb and 10mb distances in red and blue, respectively. (B) Relative contact probabilities compared to wild-type
in log2-space, with blue denoting �SA1 and red denoting �SA2. (C) Saddle-plots (top) and differential saddles (bottom), with purple denoting more
interactions in the sample compared to the wild-type. Annotated values are the average enrichment in the 2 × 2 squares of the respective corners. (D)
Boxplot of the compartmentalisation-strength per chromosome-arm (dots). *** indicates paired t-test P < .005.

CohesinSA2 promotes intra-TAD contacts

Depletion of the cohesin loading/extrusion factor
Scc2/Nipbl or loss of the cohesin loading factor
SCC4/MAU2 leads to an increase in compartmentali-
sation, whereas cohesin stabilization on DNA reduces
compartmentalization (2,3). From this, it has been postu-
lated that cohesin loops actively counter compartmentali-
sation (51). We thus investigated chromosome organisation
at the level of chromatin loops. TADs are thought to
be an average representation of cohesin-mediated chro-
matin loops. Therefore, a difference in loop formation
activity should be visible at this level of resolution. We
indeed observed a striking difference in TADs between
both cohesin-variants (Figure 5A, Supplementary Figure
S4A,B). In �SA2, TADs show an increased signal at the

edges (i.e. corner peaks, quantified in Figure 5B) and di-
minished intra-TAD signal. We used the TAD-calling tool
in GENOVA, which is based on the insulation score (43),
to identify TAD-boundaries in all samples. The number
of TAD-boundaries between WT and �SA1 was similar,
whereas the �SA2 has a decreased number of boundaries
(Figure 5C). The largest subset of boundaries was identified
in all three genetic backgrounds (1972). However, when we
compared the TAD boundaries that were found in two out
of three genetic backgrounds, we found that the boundaries
found in WT and �SA1 (n = 699) were more than two and
a half times as numerous as the boundaries found in com-
bination with �SA2 (n = 268 246). These results suggest
that cohesinSA2 plays a role in the formation of intra-TAD
contacts, which in turn leads to a stronger insulation of
TADs.
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Figure 5. CohesinSA1-only cells have diminished intra-TAD contacts. (A) Snapshots of two regions on chromosome 5 and chromosome 9, showing �SA1
in top-right and �SA2 in bottom-left triangle. (B) Aggregate Peak Analysis on TAD-corners in wild-type, �SA1, �SA2 and �WAPL (top). Differential
APA compared to wild-type (bottom), with red denoting increased interactions in the specific sample. (C) Intersections of called TAD-boundaries in
wild-type, �SA1 and �SA2. (D) Aggregate TAD analysis of Hap1 TADs in wild-type, �SA1, �SA2 and �WAPL (top). Differential ATA compared to
wild-type (bottom), with blue denoting loss of interactions in the specific sample. (E) TAD-neighbour analysis: interactions between TADs, stratified on
the number of TADs in between, compared to wild-type.

Our observations regarding TADs in �SA2 cells were
reminiscent of loop formation in �WAPL. Stabilisation of
cohesin by loss of WAPL also leads to more-pronounced
corner peaks at TAD boundaries, and fewer intra-TAD in-
teractions (2,14). To further explore the consequences on
TADs, we performed an Aggregate TAD Analysis (ATA)
on TADs called in Haarhuis et al. (2). The ATA shows that
the aforementioned loss of intra-TAD contacts in �SA2
is found genome-wide (Figure 5D, Supplementary Figure
S4C). Moreover, the quantification of the ATA indicates
that �SA1 have increased intra-TAD off-diagonal contacts
(Supplementary Figure S4D). Loss of SA2 by RNAi in

MCF10A cells (16) results in a similar phenotype (Supple-
mentary Figure S4E).

The similarity at the level of TADs between �SA2
and �WAPL prompted us to investigate the contacts over
boundaries. The intra inter TAD tool in GENOVA enables
this comparison a systematic manner. As shown previously
(2), there are more interactions between (maximal 5) neigh-
bouring TADs in the �WAPL, while the intra-TAD score is
decreased (Figure 5E). On the other hand, intra-TAD con-
tacts are decreased even more in �SA2 cells and inter-TAD
score increases as far away as 10 TADs. These findings again
suggest that cohesinSA2 is required for intra-TAD contacts.
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CohesinSA1 creates longer CTCF-anchored loops

FRAP experiments have recently shown that cohesinSA1 is
more stably associated with chromosomes than cohesinSA2

(17). We hypothesize that a longer residence time of cohesin
on chromatin leads to the formation of longer loops. One
way to measure this is to investigate a feature of Hi-C maps
called ‘stripes’, which are formed at CTCF sites and thought
to be a manifestation of one-sided loop extrusion by co-
hesin. We measured stripe formation in our Hi-C data by
performing an ARA on CTCF-sites with a specific orien-
tation (Supplementary Figure S5A). We observed a pattern
that is reminiscent of insulation consistent with the func-
tion of CTCF. Furthermore, a clear stripe pattern is found
in the direction of the CTCF site. In �SA1 cells the stripe
signal decays more rapidly compared to the wild-type (Sup-
plementary Figure S5B). In contrast, the �SA2 cells show
hardly any decay compared to the wild-type over the dis-
tances we measured. In addition to this, we also see an in-
crease in contacts upstream of the CTCF-site in cells that
only have cohesinSA1 (Supplementary Figure S5B). This in-
crease of upstream contacts at CTCF-sites is in line with
the presence of bidirectional anchors due to loop-extension,
as anchors of extended loops are combinations of CTCF-
loops themselves (52).

Upon further inspection of the Hi-C matrices we in-
deed observed loops over larger distances in the �SA2
cells, which only have cohesinSA1 (Figure 6A, Supplemen-
tary Figure S5C). To systematically investigate these differ-
ences, we called loops with HICCUPS and calculated the
size-distribution per genotype (Figure 6B). We find that the
average loop-size is increased in the �SA2 from 410 to 500
kb. Conversely, in the �SA1 the average loop length is de-
creased to 320 kb. To quantify the effect of cohesin variant
loss on loop strength of different lengths we stratified WT
loops (2) according to their length. We find that in �SA2
loops below 400kb show a decrease in contact frequency,
compared to wild-type. Conversely, in �SA1 there is a de-
crease in contact frequency for loops longer than 500 kb
(Figure 6C). Inspection of the Hi-C maps reveals that the
�SA2 specific longer loops connect loop anchors already
found in wild-type (Figure 6A). We systematically analysed
this using a function in GENOVA that enables the calcula-
tion of average contact frequency between extended loops,
that are formed between the 5′ and 3′ anchors of loops called
in wild-type cells. The APA for these extended loops showed
that �SA2 cells show an increase in the contact frequency
(Figure 6D), which is reminiscent of results we previously
observed for �WAPL cells (2). We also observed this in
the data of Kojic et al. (16), where the SA2-depletion us-
ing siRNAs showed an increased signal at extended loops
(Supplementary Figure S5D). To exclude that the effect on
loop length that we are seeing is an indirect effect of lower
WAPL levels, we performed Western blot analysis. This con-
firmed that the WAPL protein level was unaffected (Supple-
mentary Figure S5E). Together, these analyses support the
notion that the stability of a cohesin-variant on chromatin
determines the length of the loops that can be produced.

Loss of WAPL also leads to increased stability of cohesin
on DNA and an increase in loop length. This is accom-
panied by a striking ‘vermicelli’ chromosome phenotype in

which a thread-like staining of cohesin is seen. Because of
the increased loop size in �SA2 we investigated whether
the vermicelli phenotype is also found in our �SA2 cells.
To this end, we stained the cohesin subunit SCC1 in WT,
�SA1, �SA2 and �WAPL cells. Whereas the �WAPL cells
showed a clear vermicelli phenotype, the �SA2 cells lack
vermicelli chromosomes (Figure 6E). These results show
that, although the absence of WAPL and SA2 correlate
with an increase in loop size and the formation of extended
loops, further differences in cohesin stability likely deter-
mine whether vermicelli chromosomes are formed (see Dis-
cussion).

Extended loops form at bidirectional anchors

Because both �SA2 and �WAPL cells show extension of
loops, but result in different chromosome organization at
the ultrastructural level, we looked in more detail at the ex-
tended loops in these different genotypes. To quantify and
cluster the underlying loops of the APA, we used the aggre-
gate tornado tool. Running this tool on our data showed
that there are three clusters, of which cluster 3 (containing
674 pairwise sites) has a strong enrichment in the �SA2
only (Figure 6F). All three clusters had comparable num-
bers of CTCF-motifs at the anchors (Supplementary Figure
S5F). This enrichment in �SA2 thus shows that cohesinSA1

can form extended loops when cohesinSA2 is absent at pre-
viously identified loop-anchors.

Casual observation of extended loops in Figure 6A al-
ready revealed that not all loop anchors have the same
propensity to form extended loops. To determine whether
there are any predictive features for extension in the �SA2,
we compared the signal in the WT-cells of these anchors
in the different clusters, as well as the complete set of WT-
anchors. We performed an ARA on the anchors in the wild-
type Hi-C data (Figure 6G). The anchors of all three clus-
ters show the expected stripe in the downstream direction
(i.e. the direction of the called loop). Surprisingly, however,
we observed a difference in contact enrichment in the up-
stream direction. The quantification of the signal upstream
of the anchors (i.e., loop-flanking regions) showed that clus-
ter 3 anchors have a stronger upstream signal and showed
stripe-like behaviour in the opposite orientation (Figure
6H). These results suggest that bidirectional anchors (which
have both up- and downstream loops in the wild-type) are
more likely to gain extended loops in the �SA2.

DISCUSSION

Here we present GENOVA, an R package that combines
the most important Hi-C data analyses and which can be
run on commodity hardware. GENOVA has powerful vi-
sualization tools for a suite of analyses, ranging from rela-
tive contact probability plots to compartmentalisation anal-
yses and aggregations of TADs and loops. While visualiza-
tion is an important aim in Hi-C data analysis, GENOVA
also provides tools to quantify the underlying data for spe-
cific analyses. For instance, when the user runs an analysis
to check the average contact frequency for a set of loops,
the result can be visualized. However, the relevant pixel in-
formation can also be extracted using quantification tools.
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Figure 6. Extended loops in �SA2 are formed at bidirectional loop-anchors. (A) Pyramid-plots of wildtype, �SA1, �SA2 and �WAPL at chromosome
12. Predicted loop-extensions, based on wild-type anchors, are indicated in blue circles. (B) Length-quantification of loops called by HICCUPS in wild-
type, �SA1, �SA2 and �WAPL. Dashed line denotes median. (C) Contact-enrichment of loops versus surrounding 250kb at different loop-lengths. Grey
line denotes wild type average signal. (D) Aggregate peak analysis of the predicted extended loops in wild-type and the three knockouts (top). Differential
plots comparing knockouts to wild-type are shown in the bottom row, where red indicates an enrichment in the knockout. (E) Immunofluorescence of
DNA-bound SCC1, showing the vermicelli-phenotype in �WAPL. (F) The aggregate tornado-plot extracts the signal around and at every individual loop
visualises them as a heatmap, with a loop at every row (left). A K = 3 clustered tornado on the APA-discovery object of Figure 6D. Cluster 3 harbors
�SA2- and �WAPL-specific extended loops. (G) Aggregate region analysis on wild-type data, using upstream anchors of all loops (primary) and those of
the extended loops from the clusters found in Figure 6E. (H) Quantification of the upstream regions from the ARA of Figure 6G.
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These data can then be visualised and analysed with one
of the many visualisation and statistical tools available in
R. Specifically for this reason the package does not contain
options to automate null-hypothesis testing. Due to that the
sheer number of possible tests and comparisons we leave it
up to user to choose the statistical test that matches their
data type. We are confident that running the quantify-tool
on the discovery-objects of the aggregations, provides the
user with enough options to pursue these tests outside of
GENOVA.

The aggregation analyses also enable the analyses of more
sparsely sequenced datasets. The costs of sequencing Hi-C
matrices to kilobase resolution can be quite daunting, es-
pecially when replicates are involved. By performing aggre-
gation analyses, relevant information can be extracted from
datasets that are sequenced at relatively low depth. Impor-
tantly, this also opens the door for performing analyses on
replicate experiments, which are now often combined into
a single dataset to boost the visualization. Obviously, these
analyses work only for perturbations that have a general ef-
fect on 3D genome organization. For perturbations that af-
fect only a handful of loops in the genome, deeper sequenc-
ing will still be required.

A number of tools have been developed that enable the
browsing of Hi-C data such as Juicebox (26) and HiGlass
(53). These tools also enable adding one-dimensional tracks
for ChIPseq and RNAseq data, for instance. Although
GENOVA does not allow interactive browsing of Hi-C data,
it does offer the creation of publication-ready Hi-C ma-
trix plots that can be annotated with genomic features and
genomic data tracks. A powerful suite of tools that has
an overlapping feature set with GENOVA is HiCexplorer
(54). This is a command line tool that is written in Python,
we command structure that is similar to the popular deep-
tools package (55).There is a large number of dependencies,
which makes this package difficult to install on an operating
system such as Windows. Because GENOVA is written in R
it is largely platform agnostic and we have confirmed instal-
lation on Linux, Windows and MacOS. With the increasing
popularity of R with in the genomics and broader life sci-
ences community we believe that GENOVA can serve as an
important go-to package for Hi-C data analysis for experi-
mentalists and bioinformatics-specialists alike.

Cohesin variants differently contribute to 3D genome organ-
isation

Recent studies have analysed the role of cohesinSA1 and
cohesinSA2 in genome organization. In MCF10A breast
cancer cells knock-down of SA1 leads to increased inter-
actions between B-compartments, whereas knock-down of
SA2 leads to increased interactions in the 100 kb to 2 Mb
range (16). Similar results were obtained in serum-grown
mouse embryonic stem cells (mESC) (33). It was shown in
these cells that cohesinSA2 contributes to the formation of
interactions between Polycomb bound genomic regions. It
should be noted that a complete loss of cohesin leads to an
increase in this specific type of interaction, suggesting that
cohesin also plays a role in preventing these interactions
(56). Knock-out of SA2 in mESCs does not lead to a specific
down-regulation of Polycomb specific genes (57). However,

super-enhancer regulated genes were down-regulated sug-
gesting a gene regulatory role for cohesinSA2. This is recapit-
ulated in results mouse haematopoiesis, where loss of both
SA1 and SA2 disrupted blood cell development, but loss of
SA2 alone resulted in changes in expression of lineage speci-
fying genes (19). From these data, a model emerges in which
SA1 and SA2 have highly overlapping functions in genome
organization, but with important differences in loop forma-
tion properties, which can translate into differences in the
gene expression programme.

Our Hi-C analysis in HAP1 cells knocked out for either
SA1 or SA2 confirmed the previously described roles of
cohesinSA1 and cohesinSA2 in genome organization. We find
that cohesinSA1 produces longer loops, while cohesinSA2 is
biased towards shorter loops. The stronger compartmental-
isation in cohesinSA2-only cells is consistent with a decrease
in loop extrusion, as suggested by (2,14,51). The analy-
sis tools in GENOVA enabled us to systematically analyse
a number of other features. For instance, we find as sug-
gested previously that cohesinSA2 is biased toward generat-
ing intra-TAD contacts. Furthermore, we were able to show
that cohesinSA1 is involved in the formation of extended
loops, similar to cells that lack the cohesin release factor
WAPL (2,14). Both observations are consistent with a dif-
ference in affinity of SA1 and SA2 with WAPL (17,33). It
should be noted in this respect, however, that loss of SA2
does not result in vermicelli (see below). Our k-means clus-
tering method enabled us to identify different subsets of ex-
tended loops. The loop anchors showing the strongest ex-
tension in the �SA2 cells were found enriched among loop
anchors that showed interaction signal in both directions,
i.e. bidirectional anchors. This could indicate that these re-
gions act as strong boundaries for cohesin-mediated loop
extrusion, which would result in longer loops if cohesinSA1

would be associated with chromatin for a longer time.
The differences in loop length are consistent with re-

cent FRAP experiments that surveyed the residence time
of the two cohesin variants by measuring cohesin associ-
ation with DNA in the absence of either SA1 or SA2 (17).
CohesinSA1 was shown to have a longer chromatin residency
time, which was suggested to result in longer extrusion and
longer loops. Interestingly, co-depletion of CTCF with SA2
diminished cohesinSA1 residence time to wild-type levels, in-
dicating that cohesin binding to chromatin is stabilised by
CTCF. If CTCF leads to long-term stabilisation of cohesin
the observed differences in loop length may also be the re-
sult of differences in extrusion kinetics between the cohesin
variants. If cohesinSA2 would be slower to extrude, fewer co-
hesin complexes would reach a distal CTCF site and ulti-
mately result in cohesin complexes stably associated with
DNA. Recent advances in in vitro single molecule imaging
experiments of cohesin-mediated DNA extrusion (58,59)
offer an exciting opportunity to measure these parameters.
Alternatively, measuring loop formation kinetics using Hi-
C following mitosis (60) or rapid reconstitution of RAD21
proteins levels (8) in an SA1 or SA2 null background should
be able to address this question.

Finally, it has been speculated based on the loss of intra-
TAD contacts and the overlap with enhancer marks that
cohesinSA2 plays a role in enhancer-promoter interactions,
while cohesinSA1 is thought to be responsible for looping
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together CTCF binding sites (16,18,19). Our current results
suggest that this distinction is too strict, as we show that
CTCF-anchored loops are still present in the �SA1 cells
This is further supported by the fact that other reports also
show that CTCF-loops are still present in SA1-depletion
lines (16–18,33). It should be noted that cohesin’s CTCF
binding pocket is conserved in both SA1 and SA2 (61). It
therefore is likely that CTCF can bind and regulate both
cohesin variants. Our current results show that the differ-
ent cohesin variants contributed differently to genome or-
ganization. Varying the levels of SA1 and SA2 relative to
each other could therefore be an important mechanism to
regulate genome organization and gene expression. How
these variants contribute to or counteract the function of
the other variant in the wild-type situation will be an im-
portant question for the future.

Vermicelli versus extrusion

As described previously and again in this study, SCC1-
staining during WAPL depletion leads to a thread-like dis-
tribution of cohesin in interphase nuclei as measured by
immunofluorescence, known as the vermicelli phenotype
(62). This––and the fact that loops become extended––had
been attributed to the increased stability of cohesin onto
chromatin (2). In the �SA2 cells we found extended loops,
but not a vermicelli phenotype. An explanation could be
the model above, in which the cohesinSA1-only cells have
increased cohesin-stability, but not enough compared to
�WAPL to form sufficient numbers of loop-collisions to be
visible as vermicelli. Multi-contact analyses are necessary
to determine whether in the absence of SA2 loop collisions
are indeed not formed (15). Further research into the forma-
tion of loop-extension and the vermicelli phenotype is also
needed to provide evidence for this model or uncoupling of
the two phenotypes.

Concluding, we propose a model in which cohesin-
variants have differing loop formation kinetics, which leads
to the changes in nuclear architecture that we observe. This
points towards another layer of chromatin-regulation: bal-
ancing of the loops formed between specific anchors to en-
sure a proper chromatin landscape.
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