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abstract

PURPOSE Chromosomal aberration and DNA copy number change are robust hallmarks of cancer. The gold
standard for detecting copy number changes in tumor cells is fluorescence in situ hybridization (FISH) using
locus-specific probes that are imaged as fluorescent spots. However, spot counting often does not perform well
on solid tumor tissue sections due to partially represented or overlapping nuclei.

MATERIALS AND METHODS To overcome these challenges, we have developed a computational approach called
FrenchFISH, which comprises a nuclear volume correction method coupled with two types of Poisson models:
either a Poisson model for improved manual spot counting without the need for control probes or a homo-
geneous Poisson point process model for automated spot counting.

RESULTS We benchmarked the performance of FrenchFISH against previous approaches using a controlled
simulation scenario and tested it experimentally in 12 ovarian carcinoma FFPE-tissue sections for copy number
alterations at three loci (c-Myc, hTERC, and SE7). FrenchFISH outperformed standard spot counting with 74%
of the automated counts having, 1 copy number difference from the manual counts and 17% having, 2 copy
number differences, while taking less than one third of the time of manual counting.

CONCLUSION FrenchFISH is a general approach that can be used to enhance clinical diagnosis on sections of
any tissue by both speeding up and improving the accuracy of spot count estimates.
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INTRODUCTION

Chromosomal instability coupled with defective DNA
repair can cause loss or duplication of DNA, a charac-
teristic attribute of cancer cells.1 Interrogation of DNA
copy number aberrations is critical for diagnosis2 and
understanding tumor etiology.1 Technologies for mea-
suring DNA copy number have evolved from optical
profiling of single loci3 through to sequencing of
the entire tumor genome.4 However, determining the
absolute number of copies from bulk sequencing data
remains difficult because of normal cell contamina-
tion and intratumor heterogeneity,5 and the results are
generally reported in terms of loss or gain of DNA
relative to an assumed diploid or median estimate of
ploidy. Information from methods that assay single loci
is often required to validate these estimates of absolute
copy number.6,7

Fluorescence in situ hybridization (FISH) of interphase
nuclei is the most widely established technique for
interrogating single locus copy number. Fluorescent
probes are hybridized to a specific genomic region of
interest and appear as discrete foci when visualized

with fluorescent microscopy.8 The standard analysis of
FISH data relies on time-consuming manual counting
of spots in these images.9 Automated systems to quan-
tify foci using nuclei recognition and spot counting
algorithms (reviewed in ref. 10 ) aim to make the
analysis of FISH data less labor-intensive, faster, and
more objective. However, the accuracy of most sys-
tems is limited to identification of spots in intact and
separated nuclei.11 These systems have high utility
and accuracy for specimens from hematological ma-
lignancies as good cell separation can be achieved.
However, diagnostic sections of solid tumor tissue
pose a significant challenge for both automated and
manual analyses. Accurate identification of single
nuclei either by eye or by automatic image segmen-
tation can be hard when nuclei cluster closely and
overlap (Fig 1). Arbitrary cut points between grouped
nuclei are typically used to separate these clusters,
leading to noisy estimates of spot counts. Additionally,
tissue sections are typically 3-5 mm, which is smaller
than the diameter of most tumor nuclei, and thus, the
majority of nuclei are not captured completely in the
volume of the section.12,13
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MATERIALS AND METHODS

Simulation

Simulated tissue sections were generated using the fol-
lowing procedure:

1. Fix tissue section height h at 3 mm and the nuclei radius
r to 9 mm.

2. For C = 50 cells per simulated tissue section,
estimate d (the distance from the midline of the nucleus
to the top of the tissue section):

dc ∼ Uniform
�
0, r −

2
h

�

3. For each dc, calculate the fraction of the nucleus
contained in the section,

Vfrac

�
dc

�
�
Vseg

�
9,dc3

�
Vsphere

�
r
�

4. Using Vfrac as the prior probability for seeing a spot
sampled from a Poisson distribution, generate observed
spot counts

nctrl
c ∼ Poisson

�
nctrl
c × Vfrac

�
and nc

∼ Poisson
�
nc × Vfrac

�
, for nc �� nctrl

c (1)

5. If the probability of overlap P is . 0, merge with
neighboring nucleus c + 1, recalculating the overlapped
nuclei area a:

a � πr2 − 2r2 cos−1
�
b
2r

�
−
d
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2 − d2

q
(2)

where b is the distance between nuclei centrepoints
sampled from d ∼ Uniform((0, 0.3]) and updated spot
count:

nc � nc + nc+1 (3)

6. If error e is �� 0, then update spot count:

nc �

(
nc + 1 if e ≥ 0

nc − 1 if e ≤ 0
(4)

CONTEXT

Key Objective
How can we account for noise and the overlap of nuclei when counting probes in images of tissue sections prepared with

fluorescence in situ hybridization (FISH)?
Knowledge Generated
We developed FrenchFISH, a nuclear volume correction method, comprising two types of Poisson models: The first model

improves manual spot counts without the need for control probes, and the second improves spot counts generated
automatically by specialized computer vision software.

Relevance
Our work provides a method for improving the accuracy of FISH copy number estimates, thereby improving clinical outcomes
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FIG 1. Tissue section FISH. (A) A schematic of a tissue section cutting through a cell nucleus. The highlighted quantities are used for calculating
the volume of nucleus appearing in the tissue section. (B) Three probe fish were applied to high-grade serous ovarian carcinoma. (C) Automatic
image segmentation and spot recognition applied to the image in B. Note the difficulty in accurately separating overlapping nuclei. FISH,
fluorescence in situ hybridization.
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7. Repeat the above steps 10 times for all possible com-
binations of e 2 {−0.2, −0.1, −0.05, 0, 0.05, 1, 0.2}, p 2
{0, 0.1, 0.3, 0.5, 0.8}, nctrlc 2 {1, 2, 3, 4}, and nc2 {1, 2, 3,
4, 5, 6, 7, 8, 9, 10}.

FISH on ovarian carcinoma tissue sections

Patient Sample Selection. Eight high-grade serous ovarian
carcinoma samples were selected and reviewed by a pa-
thologist who marked the area of each tumor on the H&E
sections. In addition, four samples from two cases of
ovarian squamous cell carcinoma arising in mature cystic
teratoma were also selected.

Details of these cases (patients 7 and 11) have been
published previously.17 All paraffin blocks were sectioned
at 3 mm on positively charged microscope slides.

Fluorescent In Situ Hybridization. FISH was performed on
3-mm tissue sections on positively charged slides using the
probe cocktail composed of hTERC (3q26), c-Myc (8q24),
and SE7 Triple color (KBI-10704, Leica Microsystem).
Tissue digestion and probe hybridization was performed
according to the manufacturer’s recommendations using
Poseidon Tissue Digestion Kit I (KBI-60007 Tissue Di-
gestion Kit I, Leica Microsystem) with the following modi-
fications: tissue was pretreated in solution A (LK-110B) at
96 °C to 98 °C for 10 minutes and digested using pepsin
solution (LK-110B) for 5 minutes. FISH digital images were
captured by using a Nikon Eclipse fluorescence inverted
microscope equipped with a charge-coupled device
camera (Andor Neo sCMOS), using filter sets for DAPI/
YGFP/TRITC/CY GFP with an objective lens (Plan Apo VC
100×, Nikon). All images were captured with 100× mag-
nification of the objective and a pixel size of 0.07 mm. For
each selected field, 21 Z sections were taken with a step
size of 0.3 mm. Large images of 7 × 7 fields were auto-
matically captured from each tissue section, and the 5 best
fields of view with adequate tumor tissue, free of optical
artifact, were chosen for further analysis with the exception
of JBLAB-178 where only 2 fields of view were suitable.

Image Processing. FISH of tissue sections are noisy and
display a number of recurring artifacts, which can be miti-
gated using image preprocessing methods. The main arti-
facts are bright error spots outside the nucleus that reduce
true spot signal, precipitation that causes faint, erroneous
spots within the nucleus, and autofluorescence of areas
outside the nucleus. To overcome these issues, the following
procedure was followed, which forms part of FrenchFISH
image preprocessing:

1. Using Fiji:
• for each field of view, the position in the z-stack with the
best focus was detected using Vollath’s F4 measure.18

• The 4 stacks below and 5 stacks above were retained.
• A maximum intensity projection was taken across the
stacks to generate a single image for further processing.

• The contrast of each spot channel was normalized and
adjusted, allowing a saturation of up to 40% of the

image. This allowed the weaker spot signals to be
matched to the stronger, extranuclear noise spots.

2. Using R:
• Nuclear staining is segmented using the FISHalyzer19

package.
• Spot channel images are masked using nuclear

segmentation.
• The image is filtered and normalized retaining on the
top 10% of signal intensity to remove remaining
autofluorescence.

• A two-stage Gaussian blurring and automatic
thresholding approach is applied using the
Intermodes20 method for channels with a precipita-
tion signal, and the Renyi Entropy21 method for those
without precipitation, found in the autothresholdr
package.22 This combines and removes any small
spot artifacts.

• A size-based filter is applied for final spot
segmentation.

Manual Spot Counting. Manual spot counting was per-
formed using IMARIS8 software following this procedure:

• Import nd2 image (21 z-stacks).
• Display in 3D.
• Display DAPI channel and switch off all other channels.
• Print image.
• Identify nuclei suitable for manual spot counting (none
or minimal nuclear overlap cell nuclei for signal
counting), circle them on the 2D image on the paper,
and give them numbers. Move the 3D image around to
see if the nuclei are nicely separated.

• Set up an aqua channel so that artifacts are removed
and dots are clearly visible.

• Set up a red channel so that artifacts are removed and
dots are clearly visible.

• Set up a green channel so that artifacts are removed
and dots are clearly visible.

• For every selected nucleus, perform the following
steps:
• Measure the size of the nuclei (x- and y-plane

diameters).
• Count spots in the aqua channel and record.
• Count spots in the red channel and record.
• Count spots in the green channel and record.

To address these challenges, both manual and automated
analyses have been improved by using control probes that
bind to a specific locus with the known copy number state
nctrl.10 Two commonly used approaches are as follows:

1. Only nuclei containing the expected number of control
probes (usually nctrl = 2) are used to estimate the copy
number of other loci. The underlying assumption is that
if a nucleus contains the expected number of control
probes, then it is likely that the majority of the nucleus is
captured by the section, and hence, other spots will be
well-represented.
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2. The spot count for the locus of interest is scaled by the ratio
of expected over observed control probe copy number:

n �
nexp
ctrl

nobs
ctrl

× nobs (5)

In this case, the underlying assumption is that the number
of observed control spots is linearly correlated with the
number of spots observed for the locus of interest.

However, there are significant limitations associated with
both of these methods. For example, a 3-mm-thick tissue
section containing cells with a nuclear diameter of 9 mm
will, on average, have only 41% of each nucleus repre-
sented in the section (Fig 1A). Therefore, for method 1, it
is unlikely that the section will contain many nuclei with a
complete control probe count, and the locus of interest is
likely to be undersampled. Using thicker tissue sections
can overcome this limitation; however, as the thickness of
the section increases, the image quality decreases, and
many more overlapping nuclei are captured, which further
complicates identification of single nuclei. Method 2 per-
forms well when the control probe is at the expected copy
number. However, in tumors with significant aneuploidy, it
is difficult to identify a control probe with constant copy
number, even when using centromeric probes.

Thus, new automated approaches are required that gen-
erate robust and reproducible results from fixed tumor
sections. Ideally, new methods should account for the
three major challenges in FISH analysis of tissue sections:
(1) nucleus subsampling, (2) control probe aneuploidy,
and (3) overlapping nuclei. We have addressed these chal-
lenges by developing FrenchFISH, a computational pack-
age that comprises three major computational innovations
for improved spot counting: volume adjusted spot counting,
which accounts for partial nucleus representation without
the need for control probes; Poisson estimated spot counts
from manually counted nuclei, which account for uncer-
tainty in spot counts; and a homogeneous Poisson point
process model, which facilitates automated spot counting
and circumvents the need for single nucleus image seg-
mentation. Here, we show the derivation of the FrenchFISH
model and show that it outperforms standard spot count-
ing approaches and is significantly faster than manual spot
counting.

RESULTS

The FrenchFISH Model

The goal of the analysis is to estimate the copy number of
a locus denoted by n, which we will achieve by volume-
adjusting observed spot counts and using Poisson models.

Observed spot counts. FISH of a probe specific to the locus
allows us to observe copy number in terms of spot counts
inside the nucleus. Here, we assume that a FISH image has
C 2 N = {1, 2, …} cell nuclei and the number of observed

spots in cell c 2 [C] = {1,…, C} is nobs. The average number
of observed copies of the locus in the tissue section is

nobs �
1
C
�
C

c�1
nobs
c (6)

Volume adjusted spot counting. Figure 1A displays a
schematic of a nucleus subsampled as a result of tissue
section cutting. For simplicity, we assume that all nuclei are
spherical with radius r (r is typically estimated from image).
Their volume is calculated by

Vsphere

�
r
�
�
4
3
πr3 (7)

For a specified section thickness h, we can express the
volume of the nucleus sampled by a section in terms of d,
the distance of the section edge from the nucleus
midline:

Vseg

�
d
�
� πh

�
r2 − d2 − hd −

1
3
h2

�
(8)

By integrating over d and dividing by h, we can compute the
average volume sampled:

Vavg �
1
h
−
Z h

0
Vseg dd � πh

�
2
3
r2 +

rh
3

−
h2

6

�
(9)

This quantity can be used to scale the observed number of
spots to get an estimate of the true number of spots:

nvoladj �
Vsphere

Vavg
× nobs (10)

Modeling uncertainty in manual spot counts. As the ob-
served spot counts are subject to both hybridization and
image signal processing noise, we use a probabilistic model
that accounts for this uncertainty. We model the counts as
coming from a Poisson distribution with rate λ. Given this,
the likelihood of our data can be expressed as

P
�
nvoladj

��λ� � YC
c�1

e−λλn
voladj
c

nvoladj
c !

(11)

To compute the posterior of λ given the data, we use Bayes’
rule to transform the likelihood into

P
�
λ
��nvoladj

�
� P

�
nvoladj

��λ�$P�λ� (12)

Using the conjugate gamma prior as P(λ) and the likelihood
of Eq. 11, we sample from the posterior with Markov
Chain Monte Carlo (MCMC) to generate λt 2 [T] values fit
to the data after a burn-in of 1,000 iterations. We
use the MCpoissongamma function from the MCMCpack
package14 in R to achieve this. From this sampling chain,
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we then compute the expected rate that is equal to the
expected spot count:

E
�
n
	
� E

�
λ
	
�
1
T
$�

T

t�1
λt (13)

Modeling uncertainty in automatic nuclear segmentation.
Although segmentation of single nuclei in tumor sections is
difficult, separating nuclear staining from background and
accurately defining spots remains relatively easy. Our ap-
proach exploits this fact in the framework of a
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FIG 2. Performance assessment on sim-
ulated spot counts with varying levels of
noise. (A) Box plots showing the distribu-
tion of unadjusted observed spot counts
(y-axis) compared with the true spot
counts (x-axis), for varying noise levels
(y facets). (B) Spot count estimates for the
standard control probe adjusted method
(ControlAdjusted) and FrenchFISH. All
simulated tissue sections in these plots
had an accompanying diploid control
probe count. (C) Spot count estimates for
tissue sections with nondiploid controls.
(D) A heatmap showing the accuracy of
spot counting (shading) for each method,
noise level, and control probe count. The
integers inside the heatmap boxes show
the mean absolute error. FISH, fluores-
cence in situ hybridization.
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homogeneous Poisson point process. A Poisson process
models a continuous series of events across space or time.
In our setting, we consider spots as events and nuclear area
a measured in mm2 as space. The number of spots in an
area a is denoted by N(a) and modeled by a Poisson
process with intensity λPP:

P
�
N
�
a
�
� n

�
�
1
n!

�
λPPa

�n
e−λ

PP
a (14)

and using the fitPP.fun from the NHPoisson package15 in
R, we obtain a maximum likelihood estimate for λPP.

As λPP is a spot count estimate per mm2 of an observed
nuclear area, to get the estimated number of spots per
nucleus, we first multiply by the average area of a nucleus,
πr2, and then scale by the average nuclear volume rep-
resented in the tissue section to get an estimate of the
number of copies n:
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simulated spot counts with varying levels
of overlapping nuclei. (A) Box plots
showing the distribution of unadjusted
observed spot counts (y-axis) compared
with the true spot counts (x-axis), for
varying levels of probability of over-
lapping nuclei (y facets). (B) Spot count
estimates for the standard control probe
adjusted method (ControlAdjusted) and
FrenchFISH. All simulated tissue sec-
tions in these plots had an accompanying
diploid control probe count. (C) Spot
count estimates for tissue sections with
nondiploid controls. (D) A heatmap
showing the accuracy of spot counting
(shading) for each method, overlap
probability, and control probe count. The
integers inside the heatmap boxes show
the mean absolute error. FISH, fluores-
cence in situ hybridization.
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E
�
n
	
� λPP × πr2 ×

Vsphere

Vavg
(15)

Validation and Benchmarking of FrenchFISH

To validate and benchmark FrenchFISH, we used the con-
trolled scenario of a simulation study as well as a real-world
case study in ovarian carcinoma.

Benchmarking in simulation study. We simulated a total of
11,200 tissue sections to benchmark our approach. For
each condition, we simulated 10 replicate sections with
50 nuclei. All nuclei had their midpoint location randomly
positioned within the tissue section. Test conditions were
selected from all possible combinations of the following:

• control probe copy number ncontrol 2 {1, 2, 3, 4},
• probe of interest copy number n 2 {1, 2, 3, 4, 5, 6, 7, 8,
9, 10},

• percentage of nuclei with a probe sampling error of
plus or minus one count e 2 {−20, −10, −5, 0, 5, 10,
20}, and

• probability of nucleus overlapping with another nu-
cleus in the section P 2 {0, 10, 30, 50, 80}.

Using these data, we tested the performance of French-
FISH against the standard approach outlined in Eq. 5 where
a control probe (assumed to be diploid) is used to scale the
observed spot counts.

Benchmarking against noisy spot counts. We first measured
performance using simulated tissue sections with non-
overlapping nuclei and varying levels of noise. Noise was
introduced by either undercounting or overcounting by one
spot in 5%, 10%, or 20% of the cells in each tissue section.

Naive spot counting without correction showed a severe
underestimate of the true number of spots (Fig 2A). The
standard correction approach improved spot count estimates
when the control probe was diploid (Fig 2B). However,
estimates showed high variability as the true number of
spots increased. By contrast, FrenchFISH showed con-
sistent performance across all true copy number states.
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average ploidy of the whole sample (x-axis). (C) Spot count estimates for a simulated sample containing two subclones of ploidies 2 and 15. FISH,
fluorescence in situ hybridization.
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Performance remained adequate for noise levels up to 10%.
The standard approach showed worse performance than
FrenchFISH at 20% noise; however, errors were less pro-
nounced for undercounting noise comparedwith overcounting
noise (Fig 2B). The standard approach largely failed to provide
correct copy number estimates when the control probe copy
number was other than diploid, especially for higher noise
levels (Fig 2C). FrenchFISH did not show a deterioration in
performance as it did not rely on a control probe.

To gain further insight, we observed accuracy and mean
absolute error for both approaches under the same varying

noise conditions (Fig 2D). Overall accuracy was poor for the
standard approach except when the control probe was
diploid and true copy number was 1. High accuracy was
observed for FrenchFISH up to a true spot count of 4 and
noise levels of 10%. Accuracy was poor in cases where
overcounting noise was 20%. Despite a deterioration in
accuracy beyond true copy number counts of 4, the mean
absolute error for FrenchFISH never exceeded 1; thus, the
FrenchFISH estimates were only ever wrong by one copy.
By contrast, the standard approach had a mean absolute
error of up to 7 under some conditions.

FISH and imaging
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maximum projection

Human: estimate aver-
age nucleus diameter
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FIG 6. Comparison of manual spot counting and
FrenchFISH automated spot counting, across 3
probes, using FISH of 12 ovarian carcinoma cases.
This flowchart outlines the tasks required to carry out
automatic or manual spot counting for a single
sample. The minutes associated with each process
are an average across 8 cases for up to 5 fields of
view. Squares represent processes, the diamond
represents a decision point, and the trapezoids
represent input and/or output. For each process, it is
listed whether it is carried out by software or by
human. FISH, fluorescence in situ hybridization.
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Benchmarking against overlapping nuclei. Here, we
assessed the performance of both methods across simu-
lated tissue sections with varying degrees of nuclear overlap
(Fig 3). Both methods were robust to nuclear overlap in the
diploid control probe setting, including at 80% probability
of overlap. However, the standard approach again showed
more variable results as the true copy number increased
(Fig 3B). The standard approach consistently failed to
estimate the correct copy number when the control probe
was not diploid; however, this error did not vary with the
degree of overlap (Fig 3C). FrenchFISH showed a mean
absolute error no greater than one, whereas the standard
approach showed up to two copies in the diploid control
probe setting and up to seven copies in the nondiploid
setting (Fig 3D).

Benchmarking against heterogeneous true copy number.
FrenchFISH relies on a homogeneous Poisson point pro-
cess, which is an unrealistic assumption if multiple sub-
clones with different ploidies are present in one image.
To test how robust FrenchFISH is to subclonality, we sim-
ulated samples containing subclones of different ploidies
and compared the FrenchFISH estimations on these sim-
ulations with the weighted average copy numbers of the
whole samples. Samples containing a mixture of cells of
ploidies 2 and 4 (Fig 4B), as well as samples with ploidies
2 and 15, were simulated (Fig 4C). Ten different frac-
tions of each ploidy were simulated for each of these
two mixtures. FrenchFISH performed consistently well at
estimating the weighted average copy number across all
twenty different bimodal subclonal simulations tested (4).
This shows that FrenchFISH is robust to copy number
heterogeneity.

Case study on ovarian carcinoma tissue sections. We
performed both manual and automatic spot counting on
multichannel FISH of tissue sections from 12 ovarian
carcinoma cases. Manual spot counts were corrected using
the volume adjustment method in FrenchFISH, and au-
tomatic counting was performed using the Poisson point
process model.

Manual versus automatic counting. We observed the de-
gree of agreement between manual and automatic
spot counting to assess whether the automatic method
resulted in any loss of performance compared with manual
counting. About 74% (26 of 35) of the estimated copy
number counts were less than one copy number different
with a further 17% (6 of 35) having estimates less than two
copies different (Fig 5).

Timing analysis. We measured the time it took to perform
both manual and automatic spot counting. Figure 6 pro-
vides a breakdown of the two approaches and the timings
associated with each step. Using up to 5 fields of view per
sample, we were able to obtain roughly 100 manually
curated nuclei per sample. The total average processing
time for the automatic FrenchFISH approach was 36

minutes: 30 minutes for manual estimation of the nuclear
diameter and then 6 minutes for software processing. The
total average processing time for the manual approach was
119 minutes, with the majority of processing performed by
a human.

DISCUSSION

Here, we present FrenchFISH, a software tool for quanti-
tative copy number estimation from FISH of tissue sections.
FrenchFISH is the first method specifically designed to
provide quantitative copy number estimates from tissue
section FISH without the need for a matched control probe.
FrenchFISH does not require time-intensive training and is
quick to run because it derives its estimates from a Poisson
point process.

We demonstrated the robust and superior performance of
FrenchFISH using simulated tissue sections and FISH
of ovarian carcinoma tissue sections. We explored the
limitations of FrenchFISH using simulations of tissue
sections with spot counting noise and overlapping nuclei.
FrenchFISH was robust to overlapping nuclei noise and
performed well in cases with up to 10% spot counting
noise. Interestingly, overcounting noise resulted in worse
performance than undercounting, suggesting that a con-
servative spot counting strategy could improve copy
number estimates. Our controlled simulations also high-
lighted the difficulty in estimating high copy number states,
with accuracy rapidly decreasing with copy numbers . 4
copies. However, in all cases tested, FrenchFISH estimates
were not more than 1 copy different from the underly-
ing truth. On ovarian carcinoma tissue sections, 74% of
FrenchFISH automated spot count estimates were within
1 copy of manually counted estimates. This demonstrates
that FrenchFISH is a viable alternative to manual counting,
which would decrease analysis time fourfold with signifi-
cantly less human intervention.

FrenchFISH also has some limitations. For instance, esti-
mating the copy number of a sample from a limited number
of FISH images presents an unavoidable sampling bias.
Additionally, FrenchFISH relies on clearly defined and
stained nuclear areas. If nuclear areas are too fuzzy,
FrenchFISH will not be able to provide a reliable estimate.
For example, the two spot count estimates that showed the
largest difference compared with manual counting in
Figure 5 can both be accounted for by probe or image
artifacts: The image in which FrenchFISH overestimated
the SE7 probe contained small spots on the image that
exceeded the minimum detection threshold. Similarly, the
c-Myc probe that was heavily underestimated was part of
an image that contained an artifactual saturation of the
probe signal outside of cell nuclei, which reduced the signal
of the probes inside the cell.

Further validation of FrenchFISH is required using other
complex data sets. Even with the advent of whole-genome
sequencing (WGS) technologies to estimate copy number,
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there will always be a place for FISH to serve as a tool to
validate WGS estimates in the clinic. For example, gains of
the ALK locus have been identified as one of the original
events in non–small-cell lung cancer.16 Since 10 or more
copies of ALK distinguish this event from polysomy,16

FrenchFISH’s ability to estimate precise copy number for
solid tumor sections gives it unique utility in this and similar
clinical situations.

FrenchFISH is implemented in R23 using elements of the
FishalyzeR19 package. The FrenchFISH method has been
published as an R package in Bioconductor,24 and instruc-
tions for its installation and use can be found in the repository
given in the references.25 Code to reproduce all the results in
this publication can be found in the FrenchFISH analyses
repository.26 The ovarian carcinoma FISH images used in this
study can be downloaded from the Cell Image Library.27
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