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The human gut microbiota is a complex cluster composed of 100 trillion microorganisms, which holds a symbiotic relationship
with the host under normal circumstances. Intestinal flora can facilitate the treatment of human metabolic dysfunctions and
interact with the intestinal tract, which could influence intestinal tolerance, immunity, and sensitivity to inflammation. In recent
years, significant interests have evolved on the association of intestinal microbiota and kidney diseases within the academic
circle. Abnormal changes in intestinal microbiota, known as dysbiosis, can affect the integrity of the intestinal barrier, resulting
in the bacterial translocation, production, and accumulation of dysbiotic gut-derived metabolites, such as urea, indoxyl sulfate
(IS), and p-cresyl sulfate (PCS). These processes lead to the abnormal activation of immune cells; overproduction of antibodies,
immune complexes, and inflammatory factors; and inflammatory cell infiltration that can directly or indirectly cause damage to
the renal parenchyma. The aim of this review is to summarize the role of intestinal flora in the development and progression of
several renal diseases, such as lupus nephritis, chronic kidney disease, diabetic nephropathy, and renal ischemia-reperfusion
injury. Further research on these mechanisms should provide insights into the therapeutic potential of regulating intestinal flora
and intervening related molecular targets for the abovementioned nephropathy.

1. Introduction cose, and reducing proteinuria [2]. Current studies are aimed
at developing more effective therapeutic strategies to prevent
the progression of renal diseases. Over the past years, our
understanding of the composition and function of the gut
microbiota has been expanded, mainly on account of the evolu-

tion and advances of modern molecular techniques. Developing

Kidney disease is a general term for renal heterogeneous dis-
orders affecting the kidney structure and function, which is a
dominant contributor to global morbidity and mortality [1].
Although it has been increasingly identified as a significant

public health problem worldwide with increasing prevalence
and poor outcomes, clinical diagnosis and therapeutic inter-
ventions are lagging. Nowadays, most therapeutic methods
are limited to lowering blood pressure, controlling blood glu-

research studies on gut microbiota have shown that this for-
merly “neglected organ” plays a significant role in many dis-
eases within and beyond the intestinal tract. Substantial
differences of the gut microbiota composition, immunogenicity,
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and metabolic activity have been observed by comparing
healthy individuals to patients presenting with different types
of kidney diseases [3-6] and other noncommunicable illnesses,
such as diabetes mellitus, obesity, atherosclerotic cardiovascular
disease, heart failure, and liver diseases [7-11]. These changes of
the gut microbiota are causally correlated with disease pheno-
types, complications, and outcomes according to experimental
studies in animals and humans [7, 12, 13].

The human gut microbiota, also known as the intestinal
flora, is composed of ~100 trillion microorganisms consti-
tuted by a broad spectrum of over 500 genera of bacteria
from two main phyla, namely, Bacteroidetes and Firmicutes.
Generally, the diversity and abundance of the intestinal
microbiota differ along the intestinal tract and maintain a
dynamic balance. Known as the body’s “second brain,” the
intestinal microbiota plays a major role in the absorption
and metabolism of nutrients, hormone secretion, and toxin
degradation, which enable it to control the human intestinal
homeostasis and even the whole internal environment. The
SCFAs including acetate, propionate, and butyrate are predom-
inant final products of the distal gut microbiome, fermented
from a variety of plant polysaccharides produced under anaero-
bic conditions [14]. SCFAs can provide about 10% of the caloric
needs for the human body [15] and enhance the barrier function
by regulating the retinol production and mediating the secretion
of mucin and IgA [16]. In addition, SCFAs come into the blood
circulation and then exert their systemic effects such as increas-
ing anti-inflammatory factors, downregulating autoimmunity-
related factors, and developing regulatory T (Treg) cells [17-
20] via the G protein-coupled receptors (e.g., GPR41, GPR43,
and GPR109A). Furthermore, accumulating pieces of evidence
have reported the positive effects of SCFAs in treating kidney
problems caused by several diseases [13, 21-24].

In addition to the metabolic function, the gut microbiota
performs some basic roles to promote the maturation of
intestinal immunity [25-28] and maintain the integrity of
the intestinal epithelial barrier to prevent the invasion and
colonization of pathogenic microorganisms [29]. The intesti-
nal epithelial barrier is essential for intestinal homeostasis,
which enables the bilateral passage of vast metabolites and
immune signals and simultaneously obstructs the passage
of the pathogenic bacteria, toxic metabolites, and microbial
byproducts [30-32]. To counterpoise these apparently con-
tradictory roles [33, 34], the epithelial cells and immune cells
closely interact with each other, establishing the first line of
protection against invading pathogens. Its mechanism of
action is the recruitment of phagocytes or direct bacterial
prevention and killing by releasing chemokines, cytokines,
AMPs, and other soluble molecules [35-38]. The intestinal
immune system is built up and matures with the participa-
tion of the gut microbiota. Microfold cells (M cells) in the
epithelium capture lumen contents and deliver them to the
underlying antigen-presenting cells, such as macrophages
and dendritic cells (DCs) [39]. Once the pattern recognition
receptors of the DCs bind to the pathogenic microorganisms,
the stimulated DCs that process and present the antigens
express costimulatory molecules and cellular factors. These
processes contribute to the regulating helper T (Th) cells,
such as Thl, Th2, and Th17, and immunosuppressive Treg
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cells differentiated from naive CD4" T cells, maintaining
the Treg/Th17 balance and the immune homeostasis [14,
40-42] (Figure 1). Intestinal flora imbalance induces the acti-
vation of immune cells through this pathway, secreting a
large amount of proinflammatory factors (e.g., IL-4, IL-5,
IL-6, and interferon-y (IFN-y)), which results in immune
dysregulation and inflammation. The intestinal microbiome
promotes the differentiation of IgA-secreting plasma cells
by activating a proliferation-inducing ligand (APRIL) recep-
tor and B cell-activating factor (BAFF) in DCs. sIgA has a
regulatory effect on intestinal microorganisms. Bacterial
metabolites, such as SCFAs, histamine, spermine, and tau-
rine, can also influence the host’s immune homeostasis [43].
As a contributing factor and indicator of human health,
the gut microbiota plays an important role in the prevention,
diagnosis, and treatment of many human diseases. Although a
dynamic balance is established between intestinal flora, host,
and external environment, it is susceptible to changes caused
by age, diet, antibacterial drugs, psychological pressure, and
other factors, resulting in an imbalance of intestinal flora [44,
45]. Once this microecological balance of intestinal flora is
destroyed, known as dysbiosis, it will lead to a variety of gastro-
intestinal and systemic diseases (Figure 1). Microbial dysbiosis
promotes the production of bacteria-produced uremic toxins,
such as IS, p-cresyl sulfate (PCS), and trimethylamine N-oxide
(TMAO). These metabolites translocate into the circulation
through the impaired intestinal barrier, and most of which are
excreted by the kidneys, where their retention would lead to kid-
ney dysfunction [46]. In addition to dysbiosis, the increased per-
meability and structural damage of the intestinal barrier result in
the translocation of pathogenic bacteria and their byproducts
which is a vital step leading to local or systemic inflammation
[47-50], affecting various organs, including the kidneys [51, 52].
Taken together, the colonization of intestinal microor-
ganisms is a double-edged sword for the host. The healthy
microbial community plays an indispensable role in the
host’s nutrient absorption and metabolism, the maturation
of intestinal immunity, the maintenance of the integrity of
the intestinal epithelial barrier, and the prevention of coloni-
zation by pathogenic microorganisms. These are what the
microbiome has contributed to the overall health of the host.
However, changes in the intestinal flora can cause diseases of
different organs and exacerbate existing diseases. This review
summarizes the current understanding of the role of intesti-
nal flora in the occurrence and development of kidney dis-
ease, focusing on select components of the immune system
that have been shown to drive the pathogenesis of each kid-
ney disease. Further research on the association between
the immune system and the gut microbiota may contribute
to the understanding of the intricate pathogenesis of kidney
disease. Likewise, the regulation of intestinal flora and the
intervention of related molecular targets may have a potential
therapeutic utility in the treatment of kidney diseases.

2. Gut Microbiota in Lupus Nephritis

Systemic lupus erythematosus (SLE) is a multisystemic auto-
immune disease characterized by lymphocyte overactivation
and the production of antinuclear autoantibodies that drive
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F1GURE 1: The intestinal epithelial barrier allows a large number of metabolites and immune signals to pass in both directions while blocking
the pathways of pathogenic bacteria, toxic metabolites, and microbial byproducts. The outermost layer of the intestinal barrier is the mucus
layer which is composed of mucin glycoprotein, AMPs, and sIgA, produced by goblet cells, Paneth cells, and plasma cells, respectively, and
excludes the microbiome from the epithelial surface. Adjacent cells are linked together by the tight junction protein families that can

determine the permeability and prevent mechanical disruption of the
mature with the participation of the gut microbiota. Once bound

costimulatory molecules and cellular factors involved in regulating Thl,

epithelial sheet. The intestinal immune system is established and
to luminal antigens, DC pattern recognition receptors express
Th2, Th17, and Treg cells differentiated from naive CD4" T cells,

maintaining Treg/Th17 balance and forming immune homeostasis. The intestinal microbiome promotes the differentiation of IgA-
secreting plasma cells by activating APRIL (a proliferation-inducing ligand) receptor and B cell-activating factor in DC.

arthritis, glomerulonephritis, and other different inflamma-
tory tissue damage [53]. Approximately 60% of SLE patients
are suffering from lupus nephritis (LN), which is one of the
leading causes of morbidity and mortality in SLE, resulting
in acute or chronic kidney damage through inflammation,
deposition of immune complexes, and glomerular or intersti-
tial scarring [54]. Nowadays, the etiological understanding of
LN is limited in the genes and environment [55], but the spe-
cific causes still remain unclear. In recent years, the alter-
ations of the gut microbiota have been associated with
multitudinous autoimmune disorders, and present data has
reported the distinctive microbiota composition in the gas-
trointestinal tract of LN patients [3, 56-61]. Thus, the role
of intestinal flora in LN has increasingly attracted the atten-
tion of researchers [62].

In the symbiotic condition, intestinal microorganisms
can affect gut tolerance, immunity, and sensitivity to inflam-

mation through B cell maturation, Treg/Th17 ratio balance,
and anti-inflammatory cytokine secretion. However, the
intestinal inflammatory microenvironment in SLE patients
may influence intestinal tolerance, exceeding the immuno-
logic reactions, autoimmunity, and damage of tissues/organs
in SLE patients. In the pathological circumstances of SLE,
chronic inflammation disrupts the intestinal barrier, which
is termed as leaky gut [63], and bacterial pathogens are
directly exposed to various organs and immune systems of
the body. Through the toll-like receptor (TLRs) [64, 65],
antigen-presenting cells (APCs, e.g., macrophages and DCs)
secrete cytokines to activate the differentiation and prolifera-
tion of T cells [14, 40]. Proinflammatory factors, such as IL-6
and IFN-q, are released, which play an important role in
inducing B cells to release autoantibodies and cause an
imbalance in the Treg/Th17 ratio [66]. A large number of
autoantibodies, most of which are anticellular antibodies



4 Journal of Immunology Research

Healthy gut [ (43 J : Leaky gut in SLE
|
: Chronic inflammation
Intestinal | ™ >
\ >
lumen : D K) o (1) o o C
|
|
|
: Leaky gut
|
|
> |
° AT I
Lamina éoz ..'.' ) |
propria = ,\yi) S, M. h. :
/y‘ acrophage |
—~ 1 2
/\ “ ' o1
I
/ Th1 / Th2 |
o~ 4 (io] | : ~
») L olerance ! o l
I [induction | |
Beell  Naive \ Treg : Beell  Naive \ Treg
T cell o6 R
BAFF ‘ AL\A Pathogen : \ T cell [ t B cell
> < | defence :
Th17
: Auto-Ab producing ity
Plasma : plasma cells
| I
| {
| LA (A -
| YAk I
slgA : Antibody against Anti-cellular Anti-nuclear
: microbial antibodies autoantibodies autoantibodies
| | |
- : | | -
1 il —
e o : \ooc&z ,{,Hloo < Y AIOQ
: \ 1 1 =
/
' \ 1 /
\ ’
N 7
\\\ r //
Te— P
Podocyte
Cell apotosis DNA damage Seetproess
\\\‘ ,\4/ / EC damage
"ROSZ —= MMP9 L IC
. ~ N £ C3a gom—
Auto-antibody cs
production ? Complement
> = activation
A ’IILNlF-“ 4 B;cruit immune cells
-1p = - Beell Tcell
IL-17 MmN @
Renal inflammation Y
[ ]
T ar o Auto-Ab producing
Recruit neutrophils k plasma cells
Th17
; and Th17 cells }s‘( < AL o\, v 7
L1 (&2 IL-17F ;.0 : N Endothelial cell
: L17A i T (R T Ay K CF °
L6 ., :
exXCL20- : (8 e
CXCL5
GBM Podocyte detachment e
- -
° = -

Ficure 2: Correlation between intestinal microbiota and the incidence of lupus nephritis. Under the symbiotic condition, intestinal
microorganisms can affect gut tolerance, immunity, and sensitivity to inflammation through B cell maturation, Treg/Th17 ratio balance,
and anti-inflammatory cytokine secretion. In SLE patients, the intestinal inflammatory atmosphere can induce B cells to release
autoantibodies, resulting in an imbalance of the Treg/Th17 ratio, leading to intestinal tolerance disorders, beyond immune response and
autoimmunity, and tissue/organ damage (such as lupus arthritis (LN)). A large number of autoantibodies and immune complexes are
produced and enter the circulation. The deposition of autoantibodies and immune complexes in the glomeruli leads to the activation of
complement components (e.g., C3a and C5), resulting in the endothelial cell or podocyte injury and recruitment of immune cells.
Infiltrated Th17 cells in the kidney secrete cytokines IL-17A and IL-17F, which activate mesangial cells and tubular epithelial cells to
produce CXCL5 and CCL20, then recruit more Th17 cells and neutrophils through CCR6 and CXCR2, respectively. At the same time,
ROS produced by infiltration of immune cells can lead to further renal inflammation and tissue destruction.
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and antinuclear antibodies [67-69], combine with ligands to
form immune complexes. Moreover, molecular mimicry may
be an important link between intestinal microbiota and SLE.
Bacteria can express orthologs of human Ro60 autoantigens
in the SLE patients’ gut. This characteristic would lead to T
cell cross-reaction and the production of human anti-Ro60
autoantibodies in SLE patients [70, 71]. Particularly, it was
found that Ruminococcus gnavus cross-reacts with human
DNA, whose relative abundance in the intestinal tract is pos-
itively correlated with SLE activity and LN [72].

These changes initiated by the gut microbiota can lead to
an acceleration of the process of kidney injury. The deposi-
tion of autoantibodies and immune complexes in the glomer-
uli leads to the activation of complement components,
resulting in the injury of endothelial cells or podocytes and
the recruitment of immune cells. Some pieces of evidence
have reported the essential role of renal resident cells (e.g.,
podocytes, renal tubular epithelial cells, and glomerular
mesangial cells) in the development of LN [73]. Infiltrated
Th17 cells in the kidney secrete cytokines IL-17A and IL-
17F, which activate the mesangial cells and tubular epithelial
cells to produce C-X-C motif chemokine 5 (CXCL5) and che-
mokine (C-C motif) ligand 20 (CCL20) and then recruit
more Th17 and neutrophils through chemokine receptor 6
(CCR6) and CXCR2, respectively. At the same time, reactive
oxygen species (ROS) produced by the infiltration of immune
cells can lead to further renal inflammation and tissue
destruction (Figure 2).

The current treatment for LN includes the administra-
tion of high doses of corticosteroids and broad-spectrum
immunosuppressants, but treatments are not ideal at present
[74]. The study of the interaction between intestinal micro-
flora and LN provides a new idea for the treatment of LN.
In experimental studies, the restoration of the composition
of intestinal flora through the administration of acidic water
[67], vitamin A [61], probiotics [3, 75, 76], or prebiotics can
moderate the inflammatory status and possibly favor renal
protection in SLE models. Rodgers et al. demonstrated the
renal protective potential of drug-like analogs of ES-62,
which is a type of phosphorylated cholinergic glycoprotein
secreted by Acanthocheilonema viteae and involved in main-
taining the balance of regulatory/effector B cells and desensi-
tized renal effector function [77]. Since limited reports have
investigated the impact of the abovementioned treatments
in SLE and LN patients, further research is needed to confirm
their efficacy in clinical application.

3. Gut Microbiota in Chronic Kidney Disease

Chronic kidney disease (CKD) is a global health issue and is
increasingly considered a social burden. More than 10% of
the population has been diagnosed with CKD, in which
50% are classified as high-risk subgroups [78]. As a result
of progressive renal parenchymal injury, clinical symptoms,
such as the reduced glomerular filtration rate, increased uri-
nary protein excretion, reduced synthesis of erythropoietin,
and hypertension, can be noticed in patients with CKD.
CKD induces numerous alterations in internal and exter-
nal factors that potentially alter the microbiota composition.

Furthermore, intestinal dysbiosis is closely associated with
gut inflammation and intestinal barrier disruption [79, 80].
For instance, dietary changes in CKD patients might contrib-
ute to intestinal dysbiosis and the generation of excessive ure-
mic toxins. Urea is produced from amino acids in the urea
cycle and is excreted by the kidneys (80%) and the digestive
tract (20%). As renal function is impaired in patients with
CKD, the digestive tract becomes the main route for urea
excretion. Urea in the intestinal lumen could be converted
by bacteria to NH; or NH,OH, wherein the formation of
which and increased intestinal lumen pH can promote the
proliferation of pathogenic microorganisms and destroy the
intestinal barrier. Other causes that probably contribute to
intestinal barrier disruption in CKD include the use of
numerous medications and hypervolemia [81, 82] which lead
to uremia, azotemia sympathetic overactivity [83, 84], and
intestinal congestion [5]. These processes lead to systemic
inflammatory responses through increasing the production
of proinflammatory cytokines, activating the nuclear factor-
kappa B (NF-«B) pathway, and dysregulating the immune
response, thus exacerbating the ecological imbalance [79,
85]. The destruction of the intestinal barrier facilitates the
bacterial endotoxin to enter the circulatory system, which is
known as endotoxin translocation. Endotoxemia has various
effects on systemic inflammation, oxidative stress, cardiac
injury, and atherosclerosis [52]. More importantly, endotox-
emia is positively correlated with the reduced survival of
CKD and hemodialysis patients [52]. The inflammation in
CKD involves the endotoxin-induced overactivation of APCs
and lymphocytes [86]. However, evidence suggested that
host defense against infectious microorganisms is impaired
in end-stage renal disease (ESRD) patients [87, 88]. This
seemingly paradoxical immune response can be explained
by the endotoxin tolerance; that is, persistent innate immune
activation induces immune paralysis [89], which contributes
to the presence of acquired immunosuppression and sys-
temic inflammation.

In the liver and colon, dysbiotic gut-derived uremic
toxins, such as indoles and phenols, are further metabolized
into TMAO, IS, and PCS [80, 90]. They enter the circulation
through the impaired intestinal barrier and then exert harm-
tul effects on the kidney. IS has the ability to promote the pro-
duction of ROS in renal tubular epithelial cells; activate NF-
kB, p53, and other regulatory factors; and upregulate the
expression of chemokines, leading to the aggregation of renal
interstitial monocytes/macrophages and finally causing renal
fibrosis [91]. IS can also promote the expression of trans-
forming growth factor-B (TGF-f8) and accelerate renal func-
tion deterioration by activating the renin-angiotensin-
aldosterone system (RAAS) [92]. PCS has a proinflammatory
effect, which can promote renal interstitial monocyte/ma-
crophage infiltration and upregulate the expression of
inflammatory factors, such as IL-6 and TGF-, thus promot-
ing renal fibrosis [93]. Both IS and PCS can lead to the hyper-
methylation of the Klotho gene, inhibit Klotho gene
expression, weaken the protective effect of its products on
the kidneys, and ultimately accelerate renal function deterio-
ration [94]. In the circulation, 100% of the PCS and IS are
bound to proteins, which limits their clearance; they could



Journal of Immunology Research

AR
*¢ §R05‘<
_ 5 g
Hypertension % IS o >\ /(
- LA TLR4
o X \ S
( e Podocyte
Mesangial cells " ) 4 ) e
5 + ! oo /e \ injury & death
S / " / N
\ 30
e © 0|0|0ofo
. s ) W bl
L e RI—
2 o 3 . 0| oo lefefe
Ve - %, ) °
o Proximal tubular
l Inflammatory N
. lecul epithelial cells
e olecules
IgA nephropathy \ ¢ N ° |
(7, ;
e e )
N / h o Inflammation
S o WAy | Glomerular damage
| }Yo%j; API-1
Uri Fys 1 o %o
' IgAl production rinary space f oNF-KB TLR4 \(
l IgAl galactosylation NO‘X I | z o X
OAT! 90AT] NeAE
PCS e IS '
Macrophage
- Indol IS Liver
TMA-> TMAO
2 e
fre=e=e—7cv— —
>
3 [ = = ¢
4 =
=
_ TLR4 Inflammation
’ Yy slgA e N \
- Y- Vi
Lamina 4 ™ NESS o \N - %
. - /‘ =
propria Bcell —— BAFF Macrophage ‘zo T
Oxidative
1 Barrier Loss of tight Stress
integrity junctions A
il
LROS =
Py
[
” . - TLR4 | .
3 Epithelial cells ‘ 3 - Dendritic cell
S Tryptophan > Indol
f1ps  —— | f Pathogens Uremic toxins _— Coline>TMA
] Tyrosine - p-Cresol
Lumen ' pH — Dysbiosis of microbiota ~— Reduced kidney function
Urea — § NH,/NH ,OH | Fibre intake
Urease { Medication use

FiGuRrk 3: Changes in diet, numerous medication use, and decreased kidney function in CKD patients may lead to intestinal dysbiosis. The
digestive tract becomes the main route for urea excretion in CKD patients with impaired renal function. A large amount of NH3 or
NH40H which are produced by bacteria can increase the intestinal pH value, promote the intestinal dysbiosis and destroy intestinal
barrier. Thus, the transport of endotoxins (e.g., lipopolysaccharides (LPSs)) into the bloodstream has different effects on systemic
inflammation, oxidative stress, cardiac injury, and atherosclerosis. Dysbiotic gut-derived uremic toxins, such as indoles and phenols, are
further metabolized into trimethylamine N-oxide (TMAO), indoxyl sulfate (IS), and p-cresyl sulfate (PCS) in the liver and colon. The
introduction of uremic toxins into the circulation causes inflammation and tubulointerstitial damage and promotes ROS production,
tubulointerstitial damage, and nephrotoxicity of proximal tubuloepithelial cells. Intestinal microbial metabolites SCFAs are associated with
hypertension and are important risk factors for CKD. SCFAs trigger hypertension through OIfr78, leading to renin secretion and
regulation of peripheral resistance. In addition, bacteria and their components are involved in the hyperproduction and
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not be eliminated by dialysis. However, the binding capacity
of proteins as a whole is decreased in patients with CKD [95],
augmenting the circulating levels of unbound metabolites.
The increased levels of PCS and IS in serum were positively
correlated with renal degeneration, nephropathy progres-
sion, cardiovascular diseases, and mortality in patients with
CKD [51]. Collectively, uremic toxins will trigger inflamma-
tion and tubulointerstitial damage and promote ROS pro-
duction, tubular injury, and renal toxicity in the proximal
renal tubular epithelial cells [96]. In addition to the tubules
and mesenchymal damage, IS also injures the glomeruli
where the podocytes play an important role. Podocytes are
highly differentiated cells that are involved in the formation
of glomerular filtration membranes and have a limited regen-
erative capacity [22]. Once the podocytes are damaged, pro-
teinuria and other clinical manifestations of renal disease
would occur. The abnormal increase of IS induces AhR acti-
vation, which contributes to the progressive impairment of
the podocytes and glomeruli [97].

Renal disease is inextricably linked to cardiovascular dis-
eases. Overall, 85%-90% of patients with CKD have hyper-
tension [98], which is an important risk factor for CKD.
Emerging studies have demonstrated a strong link between
gut microbiota and hypertension in animals and patients
[84, 99-103]. Yang et al. compared the fecal microbiome of
spontaneously hypertensive rats and angiotensin-induced
hypertensive rats. They noticed a prominent dysbiosis char-
acterized by decreasing microbial abundance, variety, and
evenness and the increased Firmicutes/Bacteroidetes ratio in
hypertensive rats [103]. Moreover, treatments with antibi-
otics can lower the blood pressure of patients with
treatment-resistant hypertension [102], indicating that the
intestinal microbiome plays a role in hypertension pathogen-
esis and one of the possible causes is increased gut permeabil-
ity and translocation of bacterial products [84].
Accumulating pieces of evidence suggest that gut-derived
SCFAs contribute to the regulation of blood pressure via
olfactory receptor 78 (Olfr78) and GPR41 [23, 84, 101, 104,
105]. Specifically, SCFAs trigger hypertension through
Olfr78 in the peripheral blood vessels and renal afferent arte-
rioles, leading to the secretion of renin and modulation of
peripheral resistance when an intestinal microbial imbalance
occurs. By contrast, SCFAs are able to lower blood pressure
by binding with GPR41 and GPR43. Moreover, further
research on the relationship between the intestinal microflora
and the renal-cardiovascular system is helpful in the develop-
ment of effective treatment methods for hypertension and
CKD (Figure 3).

In view of the role of hypertension and other pathogene-
sis of CKD, the most useful management in the early stage of
CKD is the control of blood pressure, along with reducing
protein and salt intake to prevent acute renal injury and con-
trol blood glucose levels. With the exception of dialysis and
kidney transplantation, no effective strategy to cure or pre-
vent ESRD is currently available. Considering this, it could
be hypothesized that regulating the intestinal microbiota
can lower blood pressure, ameliorate kidney disease, and pre-
vent complications in patients with CKD. Intervening mea-
sures (e.g., increasing fiber intake, rational use of antibiotics

[106, 107], and therapeutic use of probiotics, prebiotics, and
synbiotics) can restore the composition of intestinal flora
and inhibit the accumulation of urotoxins in the blood
[108, 109]. According to the research of Lakshmanan et al.
[110], prebiotic gum acacia (GA) treatment restored the
intestinal balance of CKD rats and relieves the inflammation
of kidney tissue by increased production of butyrate, as well
as its anti-inflammatory and antioxidant capacity. Future
studies are needed to improve dialysis techniques to isolate
protein-bound uremic toxins and to discuss the feasibility
of fecal microflora transplantation.

4. Gut Microbiota in Diabetic Nephropathy

The worldwide prevalence of diabetes is rising rapidly, and it
is estimated to increase to 578 million in 2030 [111]. Diabetes
increases the risk of multiple complications, such as
decreased kidney function and cardiovascular disease [112].
Although only 30%-40% of diabetic patients develop diabetic
nephropathy (DN), it is a leading cause of ESRD in most
developed countries and a key determinant of survival in
people with diabetes [113]. Pathologically, the major changes
in the kidney are the deposition of the extracellular matrix
(ECM), thickening of the glomerular basement membrane,
tubular atrophy, and cellular proliferation that results in
interstitial fibrosis and glomerulosclerosis [113]. Accumulat-
ing pieces of evidence have revealed that increased ROS and
low-grade inflammation, due in part to hyperglycemia, are
strongly associated with diabetic complications [114, 115].
These changes lead to kidney damage, such as glomerular
hyperfiltration, glomerular hypertension, altered glomerular
composition, and hypernephrotrophy. Although the rela-
tionship is not clear, most studies believe that dysbiosis is
involved in the occurrence and development of diabetes
and DN, which may be related to the induction of insulin
resistance and long-term chronic inflammation in diabetes.

Studies have investigated intestinal dysbiosis among dia-
betic patients and nondiabetic individuals [10, 11, 116], and
it was found that intestinal dysbiosis is associated with insu-
lin resistance and lipid metabolic disorders [117]. Intestinal
dysbiosis itself and abnormal lipid metabolism in diabetes
can decrease the expression of connective proteins, resulting
in increased intestinal permeability and bacterial transloca-
tion. LPSs translocate into the circulation through the dys-
functional barrier and mediate host inflammatory responses
through TLR2- and TLR4-related pathways, which is associ-
ated with the occurrence and development of many meta-
bolic diseases. Chronic inflammation may also lead to the
apoptosis of islet cells and eventually diabetes [7]. He et al.
found that probiotics could delay the occurrence and devel-
opment of diabetes by improving insulin resistance and sta-
bilizing fasting blood glucose (FBG) levels [118]. The
abovementioned studies have shown the correlation between
intestinal flora and diabetes and found that restoring the gut
microbiota is considered to be an effective strategy in pre-
venting and treating diabetes.

In addition to the effect on insulin resistance, the intesti-
nal microbiota may also be closely related to the occurrence
and development of renal disease in diabetes through some



other ways. Although magnesium lithospermate B is unable
to decrease the FBG levels in STZ mice, the study of Zhao
et al. showed that it can improve renal function (decreasing
24h urinary protein) in diabetic patients by restoring the
intestinal microbial composition and regulating the bile acid
metabolism [119]. In 2019, one study first discovered a direct
association between intestinal flora and DN. Through ana-
lyzing the fecal flora composition among diabetic biopsy-
proven DN patients and healthy controls, the researchers
found that the composition of the gut microbiota of DN
patients is different from diabetic patients and healthy con-
trols with several strains, such as Escherichia-Shigella [4].
The increased abundance of Escherichia-Shigella could pene-
trate the intestinal barrier and then exacerbate the intestinal
leakage [120], which could contribute to the chronic low-
grade inflammatory status in diabetic patients [121]. The
interaction of bacterial LPS with TLR2 and TLR4 has been
shown to be involved in the ongoing inflammatory process
of DN by activating NF-xB and inducing the release of proin-
flammatory cytokines (TNF, IL-1, IL-6, etc.) in an inflamma-
tory cascade that exacerbates renal damage [118]. Moreover,
the accumulation of toxic metabolites produced by intestinal
microorganisms stimulates the production of ROS through
the NADPH pathway, which triggers the NF-xB pathway
and induces an inflammatory response, and contributes to
proteinuria and podocyte damage. Kikuchi et al. suggested
that phenyl sulfate, a type of bacterial toxin, could potentially
be an early diagnostic marker and a therapeutic target of DN
in the future [122]. The NF-xB pathway is a key point for the
progression of inflammation and fibrosis in DN, whose acti-
vation can reduce the expression of inflammatory cytokines
and fibrosis degree [123].

Recent studies have focused on the relationship between
enterogenic products such as SCFAs and DN, which is a
hot research field recently. Lu et al. speculated that intestinal
microorganisms produce excessive SCFAs, especially acetate,
which could bind to the renal Olfr78 receptor, and activate
the intrarenal renin-angiotensin system (RAS) [124]. The
activation of the RAS has long been regarded as one of the
initiators of DN. The kidney is sensitive to angiotensin II
(Ang II) which leads to renal vasoconstriction, increased
blood pressure, and glomerular hypertension [125]. More-
over, Ang II promotes the morphological changes of podo-
cytes and glomerular endothelial cells, the deposition of the
extracellular matrix, and the secretion of inflammatory fac-
tors and profibrotic chemokines, accelerating the progress
of DN. Furthermore, Hu et al. demonstrated that the acetate
produced by the intestinal flora mediates the dysregulation of
cholesterol homeostasis by activating GPR43, which leads to
the tubulointerstitial injury of DN [126].

Clinical studies have demonstrated that traditional treat-
ments that control glucose levels and inhibit RAS and inflam-
mation could not absolutely prevent the progression of renal
damage in DN. Considering this, the gut microbial factors
could be involved in the pathogenesis of DN besides the tra-
ditional risk factors [127-129]. Modulating the gut microbi-
ota may lead to better glycemic control and favorable
outcomes in people with diabetes. Probiotics and prebiotics
(e.g., fructooligosaccharides, lactulose, inulin, and resistant
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starches) are commonly used to regulate the gut flora, and
the application of synbiotics and probiotics has been found
to regulate the metabolic profile (e.g., glycemic, blood pres-
sure, and lipid profile) of people with diabetes [130]. Studies
have also reported the effect of probiotics and synbiotics in
decreasing the biomarkers of inflammatory factors and oxi-
dative stress [24, 131, 132], which could ameliorate kidney
injury in diabetes. Chinese herbal medicine, QiDiTangShen
granules, has been confirmed to modulate the gut micro-
biome composition and improved bile acid profiles in a
mouse model of DN [133]. These benefits could be attributed
to the ability of probiotics to restore epithelial barriers, pro-
ducing SCFAs, modulating the immune response locally
and systemically, and improving the gut barrier function.
Moreover, in patients with type 2 diabetes, dietary fiber
intake was strongly associated with glycemic control [11]
and negatively associated with the prevalence of metabolic
syndrome, both of which were associated with a lower risk
of renal disease [134].

5. Gut Microbiota in Renal Ischemia-
Reperfusion Injury

Renal ischemia-reperfusion injury (IRI) contributes to acute
kidney injury (AKI) and delayed graft function after kidney
transplantation [135]. Blood reperfusion of ischemic tissue
increases the production of ROS that could attack the cells
and tissue. Endogenous danger signals are released after cell
stress and death, which could activate the tubules and endo-
thelial cells to enhance the expression of adhesion molecules
that can recruit innate and adaptive immune cells and pro-
mote ROS production [136]. Moreover, excessive ROS
destroy the ratio of oxidant/antioxidant enzymes, leading to
mitochondria-mediated cell apoptosis. Tubular epithelial
cells and APCs secrete cytokines and chemokines that lead
to the inflammatory response. APCs, such as macrophages
and DCs, could activate CD4" and CD8" T lymphocytes by
increasing the expression of total stimulus molecules, thereby
leading to tissue damage [137].

According to the study of Emal et al., applying antibiotics
leads to the diminution of the gut microbiome that can pro-
foundly protect against kidney IRI by reducing the matura-
tion status of the bone marrow monocytes and F4/80" renal
resident macrophages [138], suggesting that intestinal
microbes play a role in the progression of ischemia-
reperfusion injury to AKI. Furthermore, the treatment with
the SCFAs (acetate, propionate, and butyrate) that the gut
bacteria produced in the distal colon can improve renal dys-
function in mice with IRI. This protection was associated
with the functions of SCFAs, such as reducing inflammation,
cellular oxidative stress, and immune cell infiltration and reg-
ulate DNA methylation status [21].

6. Gut Microbiota in IgA Nephropathy

IgA nephropathy (IgAN) is the most common type of glo-
merulonephritis globally and a dominant cause of CKD and
renal failure [139]. A characteristic of IgAN patients is the
circulating elevation and glomerular accumulation of
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TasBLE 1: The related mechanism in the relationship between gut microbiota and kidney diseases.

Kidney
diseases

Related mechanism Conclusions References

LN

In susceptible individuals, symbiotic bacterial antigens cross-react with
human DNA to activate the immune system and destroy self-tolerance,
which is positively correlated with SLE activity and LN.

Molecular mimicry [70, 71]

Treg/Th17 imbalance can trigger immune responses and promote the

Treg/Th17 imbalance production of SLE autoantibodies.

(40, 42]

An increase of TLR7 and TLR9 can contribute to alterations of

TTLR7 and TLR9 proinflammatory cytokines in lupus patients.

(64, 65]

Mice with reduced gut bacteria developed nephritis more slowly and had
lower levels of circulating antinuclear antibodies (ANAs) compared to
the control group.

(67, 69]

Antinuclear antibodies ) ) - . )
Germ-free lymphotoxin-deficient animals monocolonized with SFB

produced more ANAs than lymphotoxin-deficient controls [68]
monocolonized with E. coli.

CKD

Endotoxemia can lead to systemic inflammation, oxidative stress, cardiac

Endoxin . .
injury, and atherosclerosis.

Uremic toxins cause inflammation and tubulointerstitial damage and
promote ROS production, tubulointerstitial damage, epithelial
cytotoxicity of proximal renal tubules, and progressive podocyte and
glomerular damage.

Gut-derived SCFAs trigger hypertension through Olfr78 in the

peripheral blood vessels and renal afferent arterioles, which in turn leads
to renin secretion and regulation of peripheral resistance.

Uremic toxins (TMAO, IS, and

PCS) [51, 96, 97]

SCFAs [23, 84, 101]

DN

Intestinal dysbiosis is involved in insulin resistance and apoptosis of islet

cells in diabetes. [7. 10, 11, 116, 118]

Insulin resistance

Ang II accelerates the progression of DN by inducing renal
vasoconstriction, promoting renal cell morphology, extracellular matrix
deposition, inflammatory cytokine secretion, and fibro-promoting
chemokines.

Activation of the RAS [125, 126]

Phenyl sulfate can cause proteinuria and podocyte injury in diabetic

mice. Inhibition of phenyl sulfate can reduce proteinuria in diabetic mice. [122]

Uremic toxin

IRI

Applying antibiotics can diminish the gut microbiome and protect
against kidney IRI profoundly by reducing the maturation status of bone
marrow monocytes and F4/80" renal resident macrophages.

Bone marrow monocytes and

renal resident macrophages [138]

IgAN

Intestinal dysbiosis and chronic bacterial infections could stimulate
epithelial cells to produce BAFF and APRIL which could promote
excessive production of IgA.

TGF-f3, BAFF, and APRIL [140, 144-147]

LPS is involved in the presence of important features of IgAN

Endoxin (LPS) pathogenesis: hyperproduction and hypogalactosylation of IgA1.

(151]

immune complexes consisting of aberrantly glycosylated
IgA1l, IgG autoantibodies, and C3, which leads to glomerular
inflammation [139]. The generation of IgA in the intestinal
mucosa is a predominant immunological process that is crit-
ical for homeostasis between the intestinal microbiota and
the local immunological environment [140, 141]. Consider-
ing this, it could be hypothesized that gut dysbiosis and the
abnormalities of the IgA mucosal immune system could be
a significant element in the pathogenesis of IgAN [142].
The mucosal IgA is mainly produced in mesenteric
lymph nodes (MLNs), Peyer’s patches (PPs), and isolated
lymphoid follicles (ILF) [140, 143]. The microenvironmental
signals and controlling factors that drive the mass production
of IgA in the intestine include the transforming growth fac-
tor-f (TGF-B) [144], BAFF, and APRIL [140, 145-147],

which can reveal the commensal dependence in the IgA
switch and the IgA-driven pathology [148]. Intestinal dysbio-
sis and chronic bacterial infections could stimulate the epi-
thelial cells to produce BAFF and APRIL that promote the
excessive production of IgA. Furthermore, studies have
reported the distinct differences of the gut microbiome and
metabolome in IgAN patients and healthy controls [149,
150] (Figure 3).

Otherwise, the potential link between the gut microbiota
and the pathogenesis of IgAN could be revealed in the inhibi-
tion of IgA1 glycosylation by bacterial LPS. Qin et al. suggest
that LPS could significantly inhibit the chaperone Cosmc,
which is essential for the activity of galactosyltransferase,
via toll-like receptor 4 (TLR4) [151]. The low Cosmc mRNA
expression restrains the galactosylation level of IgA1 in IgAN
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patients. Combined with the fact that the bacterial LPS itself
can stimulate a local and systemic inflammatory response,
LPS is involved in the presence of the important features of
IgAN pathogenesis including hyperproduction and hypoga-
lactosylation of IgA1 [151].

7. Conclusion

The gut microbiome can be considered a giant bioreactor of
the human body, which holds a bidirectional relationship
with the host. Human-produced factors, such as sIgA and
AMPs, can affect and control the intestinal microbiota poten-
tially. The colonization of intestinal microorganisms is a
double-edged sword for the host, and it can elicit a variety
of effects on the host’s health and diseases. A healthy micro-
bial community plays an indispensable role in supporting
symbiotic homeostasis by helping the body in resisting sud-
den changes from the internal and external environment,
metabolizing nutrients, and secreting hormones, promoting
the maturation of immune cells, maintaining the integrity
of the intestinal epithelial barrier, and preventing the coloni-
zation of pathogenic microorganisms. A great deal of basic
research can also confirm the role of microbiota in the treat-
ment of a variety of renal disorders. The morbid state of the
kidney leads to gut microbial dysbiosis, and in turn, gut
microbial alteration induces renal injury. Imbalanced micro-
bial composition leads to intestinal barrier permeability
increase, accumulation of uremic toxins, and impaired auto-
immune tolerance. Microbial dysbiosis and increased intesti-
nal barrier permeability would be involved in the
translocation of pathogenic bacteria, bacterial endotoxins,
and toxic metabolites. Circulating microbial components
may not lead to a clinical manifestation of infection but
instead promote many pathological changes. Bacterial endo-
toxins and toxic metabolites cause chronic inflammation by
activating the NF-«B pathway and promoting the production
of proinflammatory chemokines; bacterial pathogens destroy
autoimmune tolerance and induce autoimmunity by causing
an imbalance in the Treg/Th17 ratio and abnormal activation
of B cells. Moreover, the alternation of the gut microbiota can
increase oxidative stress and induce hypertension (Table 1).
These processes are thought to contribute to the further pro-
gression of kidney diseases. Clinical evidence that clarified
the intricate pathogenesis of kidney diseases from a gut
microbial perspective has opened the possibility for the
development of innovative treatments in copious microbial
pathways as both potential pharmacological targets and
mediators for renal diseases. It may be helpful in the long
term to modulate the composition of intestinal flora and
restore the epithelial barriers through diet, probiotics, and
antibiotics. Ranganathan et al. [152] found that BUN levels
showed statistically apparent differences in outcomes
(P <0.05) between the placebo and probiotic treatment
periods at all four sites (46 patients). Oral administration of
Lactobacillus casei or L. acidophilus, both of which can be
used as probiotics, reduced the production of phenolic and
indole uremic toxins significantly in hemodialysis patients
[153]. In another set of trials, CKD patients who took L. aci-
dophilus orally had a significant decline in their levels of
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serum urea concentration (dimethylamine and nitrosodi-
methylamine) [154]. In addition, a randomized controlled
clinical trial demonstrated that synbiotic therapy signifi-
cantly alters uremic toxin, PCS, and a palpable shift in the
stool microbiome (particularly with the increase of Bifidobac-
terium and the decrease of Ruminococcaceae) [155]. Parasite-
derived glycoprotein is involved in maintaining the balance
of regulatory/effector B cells and desensitized renal effector
function. Moreover, gut-derived SCFAs were proven to
reduce inflammation, cellular oxidative stress, and immune
cell infiltration and contribute to the regulation of DNA
methylation status. These significant findings can contribute
to the future development of treatment methods for renal
diseases. Although numerous studies have been conducted,
major advances are still needed to expand our understanding
of the interaction mechanism between bacterial molecules
and peripheral organs. Further investigations will be needed
to prove the research achievement in animal models success-
fully in patients.
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