Table 2.
The examples of biotechnological approaches for steviol glycoside synthesis
| Technique | SvGls content | References | |
|---|---|---|---|
| Micropropagation | No effect | Kumari and Chandra 2015 | |
| SvGls decrease | Bondarev et al. 2001 | ||
| Micropropagation + elicitors | alginate and yeast extract | SvGls increase | Bayraktar et al. 2016 |
| Micropropagation + salinity stress | NaCl | Upregulation of several genes encoding key enzymes of the steviol glycoside biosynthetic pathways and SvGls increase | Pandey and Chikara 2015 |
| NaCl, Na2CO3 | SvGls increase | Gupta et al. 2016 | |
| NaCl | SvGls decrease | Fallah et al. 2017 | |
| NaCl | SvGls decrease | Rameeh et al. 2017 | |
| Glycine betaine | SvGls increase | Rameeh et al. 2017 | |
| NaCl | Upregulation of several genes encoding key enzymes of the steviol glycoside biosynthetic pathways | Lucho et al. 2019 | |
| Micropropagation + drought stress | Mannitol | Downregulation of several genes encoding key enzymes of the steviol glycoside biosynthetic pathways SvGls decrease | Pandey and Chikara 2015 |
| Proline | SvGls increase | Gupta et al. 2016 | |
| PEG | SvGls increase | Gupta et al. 2016 | |
| Callus and cell suspension culture | plant growth regulators | minor and varied amounts of SvGls |
Swanson et al. 1992, Bondarev et al. 2019, 2001 Janarthanam et al. 2010, |
| Callus and cell suspension culture + salinity stress | NaCl, Na2CO3 | SvGls increase | Gupta et al. 2014 |
| Callus and cell suspension culture + drought stress | Proline, PEG | SvGls increase | Gupta et al. 2015 |
| Transformation with Rhizobium rhizogenes, hairy roots production | SvGls not found | Yamazaki and Flores 1991 | |
| Light and dark conditions | Photosynthetically dependent SvGls synthesis and upregulation of UGT85C2 gene | Pandey et al. 2016 | |
| Light stress and osmotic stress | SvGls synthesis | Libik-Konieczny et al. 2020 | |
| Transformation with Rhizobium rhizogenes, Agrobacterium Mediated Transient Gene Silencing (AMTS) | Identification of alternative pathway of SvGls biosynthesis | Guleria and Yadav 2013a | |
| Transformation with Rhizobium rhizogenes, hairy roots production and plantlets regeneration | SvGls increase in regenerated plantlets | Sanchéz-Cordova et al. 2019 | |
| Genetic modification of microorganisms | Escherichia coli | Reconstruction and expression of kaurene biosynthetic pathway, development of pathways for rebaudioside D synthesis and UDP-glucose recycling, redesigning and reconstruction a steviol-biosynthetic pathway and overproduction of steviol in Escherichia coli | Kong et al. 2015, Wang et al. 2015, Chen et al. 2018, Moon et al. 2002 |
| Saccharomyces cerevisiae | De novo production of rare steviol glycosides like Reb M or Reb D |
Patents of Washington University, University Massachusetts, Evolva cited in: Spakman 2015 |
|
| Chemical synthesis/enzymatic synthesis | Rebaudiosides A, D and M chemical synthesis, enzymatic modifications to improve the sweet-tasting of SvGls | Qiao et al. 2018, Gerwig et al. 2016 | |