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Abstract

How cells respond to DNA damage is key to maintaining genome integrity or facilitating genetic 

change. In fungi, DNA damage responses have been extensively characterized in the model 

budding yeast Saccharomyces cerevisiae, which is generally not pathogenic. However, it is not 

clear how closely these responses resemble those in fungal pathogens, in which genetic change 

plays an important role in the evolutionary arms race between pathogen and host and the evolution 

of antifungal drug resistance. A close relative of S. cerevisiae, Candida glabrata, is an 

opportunistic pathogen that displays high variability in chromosome structure among clinical 

isolates and rapidly evolves antifungal drug resistance. The mechanisms facilitating such genomic 

flexibility and evolvability in this organism are unknown. Recently we characterized the DNA 

damage response of C. glabrata and identified several features that distinguish it from the well 

characterized DNA damage response of S. cerevisiae. First, we discovered that, in contrast to the 

established paradigm, C. glabrata effector kinase Rad53 is not hyperphosphorylated upon DNA 

damage. We also uncovered evidence of an attenuated DNA damage checkpoint response, wherein 

in the presence of DNA damage C. glabrata cells did not accumulate in S-phase and proceeded 

with cell division, leading to aberrant mitoses and cell death. Finally, we identified evidence of 

transcriptional rewiring of the DNA damage response of C. glabrata relative to S. cerevisiae, 

including an upregulation of genes involved in mating and meiosis – processes that have not been 

reported in C. glabrata. Together, these results open new possibilities and raise tantalizing 

questions of how this major fungal pathogen facilitates genetic change.
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Candida glabrata – a major fungal pathogen with high chromosomal 

variability and rapid evolution of drug resistance

An ability to regulate the capacity for genetic change, or evolvability, is especially important 

for pathogenic microbes that exist in the frequently changing environment of the host. 

Fungal pathogens are well known for their capacity to rapidly adapt to environmental 

pressures, such as cytotoxic antifungal drugs, by inducing genetic variants (e.g. aneuploidies 

and segmental duplications) with increased drug tolerance (Coste, et al. 2007, Selmecki, et 

al. 2006, Selmecki, et al. 2009). Genetic variation is likewise induced by passaging fungi 

through a mammalian host, likely in response to the host’s immune defense mechanisms 

(Ene, et al. 2018, Forche, et al. 2018). These phenomena have been largely described in 

diploid and polyploid fungi, such as Candida albicans and Cryptococcus neoformans 
(Bennett, et al. 2014). However, haploid fungi also show high capacity for generating 

genetic variation. Candida (Nakaseomyces) glabrata is a haploid commensal and 

opportunistic pathogen fungus closely related to baker’s yeast Saccharomyces cerevisiae 
(Shen, et al. 2018). C. glabrata is currently the second most prevalent cause of invasive 

candidiasis in North America and Europe, and its incidence is rising due to its reduced 

intrinsic susceptibility to azole class antifungals, which have been in wide clinical use for 

the last 40 years, and its ability to rapidly evolve drug resistance (Barber, et al. 2019, 

Bizerra, et al. 2014, Bordallo-Cardona, et al. 2017, Perlin, et al. 2017). Interestingly, C. 
glabrata clinical isolates display highly variable chromosome structures (karyotypes) due to 

translocations and copy number variation (Carrete, et al. 2018, Healey, et al. 2016, Lopez-

Fuentes, et al. 2018, Muller, et al. 2009, Polakova, et al. 2009, Shin, et al. 2007). It is 

thought that the propensity of C. glabrata to rapidly evolve drug resistance is related to its 

ability to generate and tolerate extensive genetic variation; however, the mechanisms 

enabling this variation are so far unknown.

Attenuated DNA damage checkpoint signaling in C. glabrata

How cells respond to DNA damage is at the crux of maintenance of genome integrity. 

Eukaryotic cells have evolved intricate DNA damage checkpoint programs, which, among 

other things, slow down S-phase and prevent cell division in the presence of damaged DNA 

(Branzei and Foiani 2010, Friedel, et al. 2009). Defective checkpoint responses, for example 

in cancer cells, are associated with increased genome instability (Lobrich and Jeggo 2007), 

and in S. cerevisiae mutations in checkpoint genes greatly increase chromosome 

rearrangements, producing the variable karyotypes reminiscent of C. glabrata clinical 

isolates (Myung, et al. 2001, Serero, et al. 2014).

To investigate how C. glabrata responds to DNA damage, we examined the phosphorylation 

state of Rad53 (CHK2 in higher eukaryotes), a conserved effector kinase that is extensively 

phosphorylated upon DNA damage in S. cerevisiae and other organisms (Chen, et al. 2014, 

Jung, et al. 2019, Lee, et al. 2003, Pellicioli and Foiani 2005, Sanchez, et al. 1996, Sweeney, 

et al. 2005, Wang, et al. 2012). This hyper-phosphorylation, carried out by upstream DNA 

damage sensing kinases as well as by autophosphorylation, is a key signal transduction event 

necessary for multiple aspects of a functional DNA damage response (Lee, et al. 2003). 
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Rad53 is also hyperphosphorylated upon genotoxic stress in C. albicans (Sun, et al. 2011, 

Wang, et al. 2012), where it is required for the DNA damage-induced switch from the yeast 

to the filamentous form (Shi, et al. 2007). In S. cerevisiae, dozens of Rad53 serines and 

threonines are phosphorylated upon DNA damage (Chen, et al. 2014), such that its mobility 

in acrylamide gels is significantly slowed to produce a characteristic band shift on a Western 

blot, which has become one of the hallmarks of a functional DNA damage response. 

Interestingly, unlike S. cerevisiae Rad53, C. glabrata Rad53 (CgRad53) did not show a size 

shift in the presence of heavy DNA damage – either 0.1% MMS (alkylating damage) or 10 

mM H2O2 (oxidative damage) (Shor, et al. 2020). Importantly, both of these treatments 

produced robust phosphorylation of Ser129 of histone H2A (a.k.a. γH2A.X), indicating that 

cells were experiencing DNA damage but that CgRad53 was nevertheless not 

hyperphosphorylated (Shor, et al. 2020). We also confirmed the lack of DNA damage-

induced CgRad53 hyperphosphorylation by mass spectrometry of immunoprecipitated 

endogenous CgRad53 (Shor, et al. 2020). These results were the first to indicate that the 

DNA damage checkpoint response in C. glabrata deviates from the paradigmatic response 

elucidated by studies of S. cerevisiae.

A key function of the DNA damage checkpoint is to slow down DNA replication, stabilize 

replication forks, and prevent cell division in the presence of DNA damage; failure to do 

this, for example in checkpoint mutants, results in chromosomal instability and cell death 

(Myung, et al. 2001, Segurado and Diffley 2008). Thus, we investigated these aspects of the 

DNA damage response in C. glabrata. We found that, unlike S. cerevisiae cells, C. glabrata 
cells did not accumulate in S phase in the presence of MMS (Shor, et al. 2020). Furthermore, 

time-lapse microscopy showed that some C. glabrata cells proceed with cell division even in 

the presence of MMS, and marking the nucleoplasm with nuclear-localized RFP allowed us 

to detect aberrant mitoses (i.e. those marked by unequal nuclear division), which were 

followed by cell death (Shor, et al. 2020). In accordance with these results, we also observed 

that C. glabrata cells exhibited higher lethality in the presence of moderate and high doses of 

MMS than S. cerevisiae (Shor, et al. 2020). These results are consistent with a lack of DNA 

damage-induced CgRad53 phosphorylation in C. glabrata and indicate that its DNA damage 

checkpoint response is attenuated relative to that of S. cerevisiae, suggesting that C. glabrata 
is more “permissive” of DNA replication and cell division in the presence of damaged DNA. 

This “permissiveness” may be one mechanism contributing to the high karyotype diversity 

of C. glabrata clinical isolates. Thus, it is possible that the obligate commensal and 

opportunistic pathogenic lifestyle of C. glabrata has been accompanied by relaxed DNA 

damage checkpoint activity and increased genetic flexibility, allowing chromosomal 

rearrangements at the cost of higher DNA damage-induced lethality.

Transcriptional response to DNA damage response in C. glabrata

In S. cerevisiae, DNA damage-activated Rad53 in turn phosphorylates multiple transcription 

factors that activate or repress hundreds of genes, resulting in the stereotypical 

transcriptional reprogramming in response to DNA damage (Edenberg, et al. 2014, Gasch, et 

al. 2001, Jaehnig, et al. 2013, Smolka, et al. 2007). We compared the transcriptional 

response to 0.1% MMS in S. cerevisiae and C. glabrata and found that, with a few intriguing 

differences highlighted below, the global transcriptional responses to DNA damage are quite 
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similar in the two organisms (Shor, et al. 2020). Indeed, most of the genes whose orthologs’ 

up- or downregulation is dependent on Rad53 in S. cerevisiae were still up- or 

downregulated by DNA damage in C. glabrata within the timeframe (1 hour) where no 

CgRad53 hyper-phosphorylation was occurring (Shor, et al. 2020). This result suggests that 

some transcriptional rewiring has occurred in C. glabrata, wherein genes that are Rad53-

dependent in S. cerevisiae are regulated by Rad53-independent means in C. glabrata. 

Alternatively, it is possible that CgRad53 is mildly phosphorylated upon DNA damage 

(which our results do not exclude), and that this is sufficient for downstream transcriptional 

activation.

Interestingly, several genes involved in the maintenance of genome stability (DNA repair, 

replication integrity, chromosome segregation) were differentially regulated by DNA 

damage in S. cerevisiae and C. glabrata, most notably POL30, which encodes the 

proliferating cell nuclear antigen (PCNA). Consistent with previous studies, ScPOL30 was 

strongly induced by DNA damage whereas, in contrast, CgPOL30 was repressed by DNA 

damage both at RNA and protein levels (Shor, et al. 2020). The reasons for these differences 

are not yet clear, yet they are likely to have profound implications for how the two organisms 

maintain chromosome integrity in the presence of DNA damage because of the multiple 

roles of PCNA in preserving the integrity of the replisome and mediating its interactions 

with DNA repair complexes (Amin and Holm 1996, Ayyagari, et al. 1995, Brothers and Rine 

2019, Chen, et al. 1999).

DNA damage induces orthologs of mating and sporulation genes in C. 

glabrata

One of the more mysterious aspects of the transcriptional response of C. glabrata to MMS 

was revealed by gene ontology (GO) analysis of downregulated and upregulated genes. 

Consistent with previous studies, the major functional classes downregulated by DNA 

damage in both S. cerevisiae and C. glabrata were involved in growth and protein synthesis, 

whereas genes upregulated by DNA damage were involved in stress and damage responses 

(Shor, et al. 2020). However, an additional functional category was found for MMS-induced 

genes only in C. glabrata: genes whose orthologs in S. cerevisiae functioned in meiosis. This 

was surprising and intriguing because, as mentioned above, sexual reproduction has not been 

observed in C. glabrata in the lab, and only genome analyses of clinical isolates have 

provided indirect evidence of rare sex and recombination in this species (Carrete, et al. 2018, 

Lott, et al. 2010). Nevertheless, C. glabrata possesses the full complement of genes whose 

orthologs in S. cerevisiae function in mating, meiosis, and sporulation, suggesting either that 

sexual reproduction does occur in C. glabrata under as yet unknown conditions, or that these 

genes have perhaps been coopted for another function in this fungus (Muller, et al. 2008, 

Wong, et al. 2003). To begin to understand the connection between DNA damage and mating 

and meiosis, we more closely scrutinized the transcriptional changes in mating and meiosis-

related genes in C. glabrata.

The process of sexual reproduction in S. cerevisiae can be broken down into several distinct 

stages. First, two cells of the opposite mating type signal their presence to each other by 
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secreting pheromones. Mating type identity is determined by the MAT locus, which contains 

either MATa- or MATα-specific transcription factors that regulate pheromone production 

and other mating factors (Heitman, et al. 2013). Yeast cells can switch their mating type by 

expressing HO endonuclease, which creates a DNA double strand break at the MAT locus, 

triggering a gene conversion event from a transcriptionally silenced locus carrying MAT 

genes of the opposite mating type (HMRa or HMLα) (Haber 2012). Most lab strains of S. 
cerevisiae contain point mutations in HO and are therefore incapable of mating type 

switching. Interestingly, our transcriptome analysis showed that the HO gene was 

downregulated by DNA damage in S. cerevisiae but significantly upregulated in C. glabrata 
(Figure 1, “Mating type determination, pheromone production”), suggesting that DNA 

damage may promote mating type switching in C. glabrata or perhaps other reconfiguring of 

the MAT locus. Whether this is indeed true remains to be experimentally determined.

Because the focus of our study had been on the DNA damage checkpoint, with no 

anticipation of the effects of DNA damage on mating-related processes, the S. cerevisiae and 

C. glabrata strains exposed to MMS and used for RNAseq happened to be of different 

mating types: the C. glabrata strain was MATα whereas the S. cerevisiae strains was MATa. 

Interestingly, MF(alpha)2 gene, which encodes the MATα-specific pheromone α-factor, and 

STE3, which encodes the receptor for the MATa pheromone a-factor, were both strongly 

induced by MMS in C. glabrata, as if in preparation for mating (Figure 1, “Mating type 

determination, pheromone production”). Furthermore, all genes involved in the pheromone-

signaling mitogen-activated protein kinase (MAPK) cascade (Wang and Dohlman 2004) 

were also upregulated by MMS in C. glabrata relative to S. cerevisiae, with the exception of 

STE4, which was downregulated in S. cerevisiae but unchanged in C. glabrata (Figure 1, 

“Pheromone MAPK cascade”). However, genes involved in subsequent steps of mating (cell 

shape change known as “shmooing”, cell fusion, karyogamy) were not, as a whole, more 

likely to be induced in C. glabrata than in S. cerevisiae (Figure 1, “Shmooing, cell fusion, 

karyogamy”). Together, these data suggest several possibilities. First, it is possible that DNA 

damage, or perhaps another kind of damage caused by MMS, truly triggers mating type 

switching and mating in C. glabrata. Consistent with this hypothesis, the early genes 

involved in pheromone signaling were induced within the timeframe of our experiment (1 

hour MMS exposure), whereas the later genes involved in cell fusion were not. An 

alternative explanation is also possible, however: that the orthologs of mating genes in S. 
cerevisiae have been coopted for another process in C. glabrata, one that is induced by 

MMS. There is precedent for non-mating functions of the mating gene cascade: for example, 

in C. albicans pheromone signaling also promotes cell adhesion and biofilm formation (Alby 

and Bennett 2011).

The second stage of sexual reproduction is meiosis, upon which a diploid cell forms four 

haploid spores. In S. cerevisiae mating and meiosis are two distinct processes occurring in 

haploid or diploid cells, respectively, and triggered by different stimuli: presence of the 

opposite mating type and nutrient limitation, respectively. Likewise, mating and meiosis are 

associated with distinct transcriptional programs. In contrast, in the haploid pathogenic 

yeast, C. lusitaniae, mating and meiosis occur together in quick succession, and the two gene 

sets are coordinately upregulated by the same set of stimuli and are controlled of the same 
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transcription factor (Ste12) (Sherwood, et al. 2014). We examined the transcription changes 

in orthologs of meiosis-related genes in C. glabrata, including the early regulators of 

meiosis, genes involved in meiosis-specific chromosomal transactions, and genes involved in 

spore development. None of the orthologs of well-defined early meiotic regulators (e.g. 

IME1, IME2, NDT80) were induced more strongly in C. glabrata than in S. cerevisiae 
(Figure 1, “Early meiotic regulators”). Furthermore, although a few genes involved in 

regulating meiosis-specific chromosomal transactions (MAM1, SPO16, MSH4, RED1) were 

strongly induced by MMS in C. glabrata relative to S. cerevisiae, most such genes were as 

likely to be repressed as induced in C. glabrata (Figure 1, “Synaptonemal complex, 

chromosome cohesion, recombination”). Finally, genes involved in spore development 

(mostly those promoting the formation of the spore membrane or cell wall) did tend to be 

upregulated in C. glabrata relative to S. cerevisiae, with several showing very strong 

induction by MMS (log2ratio > 4, Figure 1, “Ascospore membrane & cell wall formation”). 

Given the importance of the cell wall in C. glabrata (Lopez-Fuentes, et al. 2018), it is 

possible that the upregulation of these genes reflects not their meiotic functions but perhaps 

the fact that in C. glabrata they serve to maintain cell wall integrity in the face of stress, such 

as MMS exposure. In sum, these data do not provide strong evidence of induction of the 

meiotic program within the timeframe of the experiment, and further experiments, with 

longer DNA damage exposures, are required to clarify this issue.

Summary and future directions

Our study of the DNA damage response in C. glabrata revealed several unique features, 

some easier to interpret than others, which likely impact genetic flexibility and karyotype 

diversity in this organism. The absence of Rad53 hyper-phosphorylation, the attenuated 

checkpoint response, and downregulation of PCNA expression upon DNA damage are all 

expected to affect chromosome stability and may contribute to the variable karyotypes that 

characterize C. glabrata clinical isolates (Figure 2). The observation that HO endonuclease 

and pheromone signaling genes are strongly induced by MMS in C. glabrata but not S. 
cerevisiae suggests that mating in C. glabrata – which has never been observed as yet – may 

be connected to its DNA damage response or another stress response triggered by MMS. If 

true, this would fit with the paradigm of generating genetic diversity – via sexual 

reproduction – in the presence of stress (Ram and Hadany 2016). Alternatively, DNA 

damage may induce other functions mediated by the orthologs of mating and sporulation 

genes, e.g. cell adhesion, biofilm formation, or cell wall integrity. If this is the case, it would 

support the conclusion that C. glabrata is largely asexual, and perhaps its relaxed DNA 

damage checkpoint function helps generate genetic diversity in the absence of sex. In any 

case, what these data show is that C. glabrata responds to DNA damage differently than its 

close non-pathogenic relative S. cerevisiae, and understanding these differences will help 

explain how C. glabrata regulates genetic change and evolvability, and may identify routes 

towards inhibiting rapid emergence of antifungal drug resistance.
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Figure 1. DNA damage-induced transcriptional changes of C. glabrata orthologs of genes 
involved in sexual reproduction.
The color scheme represents transcript abundance log2 ratios (MMS/no MMS). The 

RNAseq data are available at the Gene Expression Omnibus (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155701) and have been previously 

described (Shor, et al. 2020). The heatmaps were generated using the R studio gplots 

package.
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Figure 2. Schematic representation of the differences between the responses to DNA damage ( ) 
in C. glabrata and S. cerevisiae.
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