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Abstract

Accurate measurement of gradient waveform errors can often improve image quality in sequences 

with time varying readout and excitation waveforms. Self-encoding or offset-slice sequences are 

commonly used to measure gradient waveforms. However, the self-encoding method requires a 

long scan time, while the offset-slice method is often low precision, requiring the thickness of the 

excited slice to be small compared to the maximal k-space encoded by the test waveform. This 

work introduces a hybrid these methods, called variable-prephasing. Using a straightforward 

algebraic model, we demonstrate that variable-prephasing improves the precision of the waveform 

measurement by allowing acquisition of larger slice thicknesses. Experiments in a phantom were 

used to validate the theoretical predictions, showing that the precision of variable-prephasing 

gradient waveform measurements improves with increasing slice thickness.

1. Introduction

Gradient waveform imperfections—where the actual magnetic gradient field differs from the 

intended field due to eddy currents, gradient amplifier nonlinearities, or other gradient 

system errors—are a common source of artifact, particularly for many advanced MRI 

techniques. Gradient waveform corrections are often necessary to improve image quality in 

non-Cartesian imaging, including spiral [1, 2], radial [3–6], and radial center-out trajectories 

[7, 8]. Waveform errors have also been known to cause slice profile distortion for 2D UTE 

imaging [9–13], and more generally for excitation schemes with a time-varying gradient 

trajectories [14–17]. For many such acquisitions, image quality depends upon accurate 

measurement and correction of the gradient field error, and methods to measure gradient 

waveforms are crucial to improve image quality.
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Gradient waveforms can be measured using magnetic field cameras [18, 19], but these 

systems require specialized hardware and careful calibration. Using standard system 

hardware, there are two categories of gradient measurement methods. The self-encoding 

method uses a gradient with known area in between a slice-selective excitation and a test 

gradient applied during signal reception [20–24]. The test gradient waveform is inferred 

from the envelope of the signal—e.g., the magnitude of the signal peaks when the time 

integral of the test gradient cancels that of the self-encoding gradient. The sequence is 

repeated with different self-encoding gradient amplitudes until the test gradient area be 

calculated with sufficient temporal resolution. Multi-dimensional variants of this methods 

have been used for multi-dimensional Because numerous repetitions are required to encode a 

gradient waveform, the self-encoded method tends to require a long acquisition time.

Alternatively, the offset-slice method estimates the gradient field based upon the signal 

phase. The change in phase over time is proportional to magnitude of both the applied 

gradient field and the slice offset from gradient isocenter [25]. If the sequence is repeated 

with the test gradient on and off, the applied gradient waveform can be distinguished from 

background sequence contributions and sample-dependent phases. If the sequence is also 

repeated at multiple slices, both the applied gradient [26] and B0 eddy currents can be 

distinguished [27, 28]. While this method is relatively rapid, it also has the lower signal-to-

noise ratio (SNR) and requires a thin slice to avoid phase wrapping through the slice.

Here, we introduce a hybrid of the self-encoding and offset-slice method, which we call 

variable-prephasing. Like the offset-slice method, variable-prephasing uses the change in 

signal phase from offset slices to calculate the gradient waveform. Similar to the self-

encoding method, repeated acquisitions with a variable amplitude self-encoding gradient 

mitigates the signal loss due to phase wrapping, which, in-turn, allows thicker slices and 

greater SNR. A algebraic model is presented, which allows the method to be tuned to trade-

off scan time for measurement precision. Measurements from a phantom demonstrate 

improvements to the gradient waveform precision.

2. Theory

The variable-prephasing (VP) pulse sequence is shown in Figure 1, and is comprised of a 

slice-selective excitation followed by a variable amplitude prephasing gradient, and then an 

acquisition concurrent with the test gradient waveform. For illustrative purposes, the VP 

gradient is shown separate from the slice refocusing gradient; however, in practice, the two 

gradients can be combined to reduce the time between excitation and readout. The slice 

direction is defined here as the laboratory Z-direction, but could equally be along X- or Y-

directions for measurements of X- or Y-direction gradients. A complete measurement from 

each of Ns slices involves repetition of this sequence with signal with Nv VP gradient 

amplitudes and N0 additional reference measurements acquired with both the VP and test 

gradients turned off.

The acquired signal is
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Sn, m(t) = ∫ M z − zm /δ e−iϕn, m(t, z)dz (1)

where M(z) is the excited slice profile centered at z = 0 with unit thickness, zm is the slice 

offset of the m-th slice, δ is the slice thickness, and n is the index to the variable pre-phasing 

step. If the slice profile is conjugate symmetric around zm, then the phase and magnitude of 

the signals are separable, resulting in

∠Sn, m(t) = ϕn, m t, zm ,  and  (2)

Sn, m(t) = δ∫ M(z)cos δkn, m(t)z dz , (3)

where

kn, m(t) = γ
2π∫0

t
Gn, m t′ dt′ (4)

The observed signal phase, ϕn,m (t, zm), contains all contributions from the applied gradient 

(including induced gradient and B0 eddy currents) plus static background field shifts.

From the acquisition with the nth VP gradient amplitude from the mth slice, the resonance 

frequency (in Hz) in the rotating frame can be estimated by 2-point central difference,

fn, m(t) = 1
2π

ϕn, m t + Δt, zm − ϕn, m t − Δt, zm
2Δt , (5)

where Δt is the receiver sample period. If the effect of the VP gradient on f(t) can be 

neglected (the consequence of this simplification is outlined in Appendix A), then this 

frequency can be modeled as depending on the gradient (G) and spatially constant (B) field 

shifts due to the test gradient, plus a slice-dependent background term, qm, which originates 

from background variations in B0 or residual phases imparted by any other gradients in the 

sequence.

fn, m(t) = γ
2π zmG(t) + B(t) + qm(t ), (6)

where zm is the slice offset distance of the m-th slice. Defining f0,m as average signal from 

the N0 reference acquisitions from the mth slice, we can write Equation 6 for any point in 

time and all acquisitions as,
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f = Ab
f1, 1
f2, 1

⋮
fNv, 1

f1, 2
⋮

fNv, 2

⋮
fNv, Ns

f0, 1
f0, 2

⋮
f0, Ns

=

z1 1 1 0 ⋯ 0
z1 1 1 0 ⋯ 0
⋮
z1 1 1 0 ⋯ 0
z2 1 0 1 ⋯ 0
⋮
z2 1 0 1 ⋯ 0
⋮

zNs 1 0 0 ⋯ 1
0 0 1 0 ⋯ 0
0 0 0 1 ⋯ 0
⋮ ⋱
0 0 0 0 ⋯ 1

G
B
q1
q2
⋮

qNs

. (7)

The rows in Equation 7 iterate first over the Nv VP measurements, and then the Ns slices. 

The reference measurements are appended as the last Ns rows. The measured phase has a 

variance that depends on the signal magnitude, |Sn,m|, which is modulated by the VP 

gradient,

σϕn, m
2 ≈ σ2

Sn, m
2 , (8)

where σ2 is the variance of the measured complex signal from a single acquisition [29]. 

Then the inverse covariance matrix of f, Σf
−1, is diagonal with the first Nv×Ns elements 

being proportional to |Sn,m|2, and the final Ns elements proportional to N0|S0,m|2. The 

maximum likelihood solution to Equation 7 is given by weighted least squares,

b = A⊤Σf
−1A −1A⊤Σf

−1f (9)

(and the proportionality constant in Σf
−1 cancels). Thus, at any time, t, the measured test 

gradient waveform amplitude is G = b(1), and the variance of G normalized to the number of 

acquisitions is σG
2 = Σb(1, 1), where

Σb = 1
Nv + N0

A⊤Σf
−1A−1 . (10)

Figure 2 compares the theoretical precision of G 1/σG  from offset-slice and VP methods for 

a rectangular slice profile. Here,

Sn = δsinc δ kG + kv, n , (11)
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where sinc(x) = sin(πx)/πx, δ is the slice thickness, and kG and kv,n are k-space values 

encoded by the test and VP gradients, respectively. As plotted, precision values are 

normalized relative to that with kG = 0 and a thin slice, δ = 0.25/kmax—this value was 

chosen because the slice is thin enough relative to the maximum k-space value to provide 

nearly uniform precision over the entire domain of kG. The left panel shows the precision for 

the offset slice method with kmaxδ = 0.25, 0.5, 1.0, and 2.0. The thin slice shown (δz = 0.25/

kmax) provides low but consistent precision over k-space domain encoded by the test 

gradient. The thickest slice provides the highest precision near kG = 0, but reduced precision 

and even zero precision at various points in the k-space domain. The VP method counters 

the consequences of the thick slice by shifting the signal magnitude, and hence the precision 

function, across the k-space domain with each VP step. This is illustrated by the dashed line 

in Figure 2, which shows the precision from the thick slice acquisition shifted when kv = 

−kmax/2. The net precision of the VP method is shown in the right panel of Figure 2 for N0 = 

Nv = 4 and kv values uniformly spaced between kmin and kmax. This plot shows that across 

the entire k-space domain, precision increases with slice thickness.

Because the precision of the measurement varies across the k-space domain, we define an 

average measure of the variance over the domain of kG that can be used to optimize the slice 

thickness of a given measurement

σG
2 ≡ 1

Δk∫kmin

kmax
σG

2 dkG . (12)

Figure 3 plots σG
2  as a function of slice thickness (δkmax) for Nv = 1, 2, 4, and 8 and kmin = 

0. For each curve, the set of Nv values of kv are linearly spaced between 0 and −kmax, and 

σG
2  normalized relative to lowest σG

2  with Nv = 1 (the minimum of the yellow curve, 

which also represents the minimum noise variance for the offset slice method). In all cases, 

σG
2  decreases with increasing slice thickness to a point and then phase wrapping causes a 

loss of signal and σG
2  increases. Increasing Nv allows thicker slices and, in-turn, lower 

variance of the gradient waveform measurement per excitation.

Figure 4 shows the trade-off of N0 vs Nv within the fixed total number of acquisitions. For a 

thin slice (δz = 0.25/kmax, top set of curves) the variance is optimized at Nv = N0. For a thick 

slice (δz = 2/kmax, bottom set of curves), the variance is optimized when N0 uses 

approximately 30% of the total scan duration; however, degradation of the variance between 

N0 of 30% and 50% of the total scan time is small relative to the improvement in precision 

provided by the larger slice thickness.

3. Methods

3.1. Test Waveforms to Evaluate Measurement Precision

To compare methods to measure gradient waveforms, test waveforms are needed that 

highlight regions of noise in the measurement. Precision in gradient waveform 

measurements is primarily a function of encoded k-space, as illustrated in Figure 2. Chirp or 

triangular gradient waveforms are often used to characterize gradient system frequency 
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response because these waveforms can be designed to sample over a range of specific 

frequencies [30]. Theoretically, precision could be gathered from triangular or chirp 

waveforms. However, these waveforms are not ideal, as the series of triangles used to 

evaluate the system response vary in gradient area, and a chirp waveform will traverse the 

same domain of k-space multiple times. Instead, we used trapezoidal test waveforms to 

quantitatively compare gradient waveform measurement methods, since these waveforms 

quickly encode a specific domain in k-space.

3.2. MR Measurements

Gradient waveform measurements were performed on a Bruker 7T scanner, with a 38 mm 

birdcage coil used for RF excitation and reception. Gradient waveform measurements were 

performed in a 15 mL tube of distilled water, doped with CuSO4 to a T1 and T2 ≈ 300 ms. 

Gradient waveform measurements were performed on a trapezoidal test gradient waveform 

in the Z-direction, with an amplitude of 40mT/m, and duration of 2.35ms, providing kmax ≈ 
2mm−1. The readout bandwidth was 250 kHz. A total of seven slices were acquired, at −6, 

−4, −2, 0, 2, 4, and 6 mm, interspaced within a repetition time of 250 ms. Both offset-slice 

and VP gradient waveform measurements (with Nv = N0 = 4) had the same scan time, and 

included δz = 0.125, 0.25, 0.5 and 1.0 mm. Gradient waveforms were estimated from the 

measurements using Equation 9. These measurements were repeated 16 times, and the 

standard deviation of the waveform measurement (σG) was calculated at each point in the 

waveform.

4. Results

4.1. Variable-prephasing

Figure 5 compares offset-slice based gradient waveform measurements with VP 

measurements with Nv = N0 = 4, at kmaxδz = 0.25, 0.5, 1.0, and 2.0. For a thin slice (kmaxδz 

= 0.25), offset-slice and VP measurements provide similar noise variance throughout the 

entire trapezoidal gradient. As the slice thickness is increased, the offset slice method shows 

an improvement in the gradient waveform precision at the beginning of the gradient 

waveform; however, the variance increases significantly as the gradient area increases. In 

contrast, an increase in slice thickness in the VP measurement shows improved precision of 

the gradient waveform throughout the entire gradient waveform.

The precision of these measurements ( 1/σGw ) is shown in Figure 6, estimated from 16 

repetitions of the gradient waveform in Figure 5. The precision was normalized to the thin 

slice case (δz = 0.25/kmax) at kG = 0. For the offset slice method, the thin slice provides low 

but consistent precision over the entire range of kG/kmax. Increasing the slice profile 

improves the precision at low kG, but reduces the precision at high kG. Meanwhile, gradient 

waveform measurements with VP provides improved precision that is more uniform over the 

entire range of kG/kmax. These measurements closely match the theoretical predictions 

shown in Figure 2. A slight decay in the measured precision with increasing kG is due to T2*

relaxation, with other differences—particularly in thick slices within the offet-slice method

—due to non-rectangular excited slice profile.

Harkins and Does Page 6

J Magn Reson. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Discussion

As several advanced MR imaging applications depend upon the fidelity of the gradient 

system, there is a need for SNR-efficient methods to measure gradient waveforms. The 

trade-off between maximum gradient area and slice thickness imposed by the offset-slice 

gradient measurement method limits the utility of the method for measuring gradient 

waveforms with large gradient areas. For example, using the offset-slice method to measure 

a readout gradient waveform will require the slice thickness of the gradient waveform 

measurement to be less than the encoded resolution. For high resolution scans, the thin slice 

will result in low SNR, requiring many averages and a long scan time to achieve adequate 

precision. In contrast, the VP method can improve the SNR efficiency of gradient waveform 

measurements by overcoming the slice thickness limitation of offset-slice method. The 

method can be applied on any MRI system, and does not require additional hardware.

The variable-prephasing sequence can be considered a generalization of both the self-

encoding method and the offset-slice method. If Nv = 1, VP is the same as the offset-slice 

method, capable of providing a fast but low precision estimate of the gradient waveform. For 

large Nv, the VP sequence is identical to self-encoding, and high precision estimates of the 

gradient waveforms can be imaged using a Fourier transform [22–24]; although, this method 

requires a relatively long acquisition time. By using an intermediate value for Nv, the 

variable-prephasing method can trade off the desired precision of the measurement with total 

acquisition time.

As part of this work, we demonstrated a weighted least squares framework to estimate the 

gradient waveform from measurements at multiple slices and multiple VP steps. This 

framework is useful to optimize the SNR efficiency of these measurements, including the 

number of measurements with the VP and test gradient off that optimizes the variance of the 

noise, which was 30 to 50% of the total scan time depending on the slice thickness. While a 

single channel quadrature coil was used for signal reception in this work, it would be 

straightforward to extend the model in Equation 7 to optimally estimate gradient waveforms 

from acquisitions using multi-channel receive coils available on many commercial MRI 

systems.

Because the VP allows gradient waveform measurements over a larger range in gradient 

areas, it will enable measurement and correction of gradient waveforms at or near the 

nonlinear limits of the gradient system. Some previous works have used a linear time-

invariant system model of the gradient system (the GIRF) [30–34]. However, the gradient 

system is only approximately linear over a certain range of gradient amplitude, slew rate, 

and acceleration rate. As imaging methods use waveforms that approach the nonlinear limits 

of the gradient system, the fidelity of the GIRF will degrade. Therefore, either such 

waveforms will need to be individually measured and calibrated, or they will require the 

development of nonlinear methods to analyze the gradient system.

There is room for further optimization of the VP method. For example, it is possible that 

precision of the gradient waveform measurement can be further improved by combining 

measurements acquired at two or more different slice thicknesses. It is also possible that 
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alternate choices of the Nv VP gradient areas can further improve precision. For some 

applications, precision may be more important in some regions of k-space than others, which 

would merit increasing the density of VP measurements in those regions.

While this work neglected higher order terms and cross terms between gradient axes, the VP 

method can be applied to more general characterization. For example, a recent paper used 

multi-slice measurements to estimate 2nd & 3rd order spatial gradient terms and used phase 

encoding in the orthogonal dimensions to estimate cross terms between linear gradients [35]. 

Variable-prephasing is compatible with this recent method, and could be incorporated to 

improve precision, particularly in measurement of higher order and cross terms.

While the VP method is able to improve the precision of gradient waveform measurements 

by increasing the range in useable slice thickness, in some cases larger slices may reduce the 

accuracy of the method. In particular, the accuracy of this gradient waveform method 

depends upon conjugate symmetry of the slice profile. Large slices may be less symmetric—

either due to partial volume averaging, the presence of background gradients, or air tissue/

interfaces—thereby increase bias in the measurements.
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Appendix A.: Bias of Variable-Prephasing Terms

If the residual contributions from the variable-prephasing gradient lasting into acquisition 

cannot be neglected, Equation 6 becomes

fn, m(t) = γ
2π zmG(t) + B(t) + zmGv, n(t) + Bv, n(t) + qm(t), (A.1)

where Gv,n and Bv,n are the linear and 0-th order contributions of the n-th VP gradient 

lasting into the acquired signal. This will result in a biased gradient measurement, but it is 

straightforward to estimate the magnitude of this bias. In the approximation that the gradient 

system can be treated as linear time-invariant, a change in the amplitude of the VP gradient 

(gn) creates a proportional change Gv,n and Bv,n. Therefore, we can approximate Gv,n(t) ≈ 
c(t)gn, and Bv,n(t) ≈ d(t)gn, where c & d are the magnitude of the residual eddy current. 

Incorporating this model into the linear system of equations,

f = Ab + Uv (A.2)

where
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U =

g1z1 g1
⋮

gNvz1 gNv
g1z2 g1

⋮
gNvzNs gNv

0 0
⋮
0 0

(A.3)

and

v = c(t)
d(t) . (A.4)

The expected bias can be calculated by substituting Equation A.2 into Equation 9

b = A⊤Σf
−1A −1A⊤Σf

−1(Ab + Uv)

= b + A⊤Σf
−1A −1A⊤Σf

−1Uv
(A.5)

where the second term is the expected bias of b. Therefore, given some estimate of the 

residual long-lived eddy currents, the expected bias in the estimated gradient waveform can 

be estimated from the magnitude of the residual eddy current (c).

Such residual long-lived eddy currents are typically low amplitude, can be easily measured 

using traditional methods (including offset-slice measurements), and are compensated with 

pre-emphasis. However, this potential bias can also be reduced or effectively eliminated by 

increasing the delay between the VP gradient and the start of acquisition, potentially at the 

cost of a small amount of precision due to T2* decay. Consider a model of eddy currents as 

exponential decays. In addition to the magnitude and time constant of the eddy currents, the 

bias will depend on the duration of VP gradient (τv), and the delay between the VP gradient 

and the start of acquisition (τd). Residual eddy currents at the start of acquisition can be 

estimated as the difference between eddy currents induced from the rising and falling edges 

of the rectangular VP gradient,

c τd = κ e−τd/τc − e− τd + τv /τc (A.6)

where κ is the magnitude of the eddy current and τc is the characteristic time-constant of the 

eddy current. The fraction of the residual eddy current that lasts into acquisition (c/κ) is 

plotted in Figure A.7 for τd/τc = 0.5, 1.0, 2.0, 4.0 and 8.0. For example, in the case of τd/τc 

= 4.0, the residual eddy current lasting into the acquisition is < 10% of the nominal eddy 

current amplitude. Equation A.5 provides a straightforward formula to estimate potential 

measurement bias caused by residual eddy currents from the VP gradient. Using this 

formula and the gradient waveform measurements presented in this study, Table A.1 
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compares the average variance of the measured noise with the worst-case bias caused by a 

5% amplitude eddy current off a VP gradient with max amplitude 40 mT/m and τd/τv = 4.0. 

For this specific range of cases, the bias is less than the noise in these measurements.

Figure A.7: 
If eddy currents off the VP gradient are not negligible, increasing the delay (τd) between the 

VP gradient (with duration τv) and the acquisition can be used to reduce the bias of the 

measured gradient waveform.

Table A.1:

Comparing the standard deviation of the VP gradient waveform measurements with the 

worst case bias imposed by a 5% eddy current off a 40 mT/m VP gradient with τd/τv = 4.0.

δ 0.25/kmax 0.25/kmax 1.0/kmax 2.0/kmax

σG (mT/m) 2.93 1.74 1.08 0.73

maximum bias (mT/m) 0.11 0.15 0.16 0.16
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Highlights

• Variable-prephasing is proposed as a hybrid of previously published self-

encoding and offset-slice gradient waveform measurement methods

• Variable-prephasing improves the precision of gradient waveform 

measurements by overcoming slice thickness limitations of the offset-slice 

method

• An algebraic model is introduced to optimally estimate gradient waveforms

• Experiments in phantoms were used to validate the theoretical predictions of 

the algebraic model
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Figure 1: 
The variable-prephasing pulse sequence uses a variable amplitude encoding gradient (v) in 

between slice excitation and test gradient waveform measurement.
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Figure 2: 
Gradient waveform measurement precision per excitation. In offset slice gradient waveform 

methods (left), precision is limited by the maximum area of the test gradient waveform. Thin 

slices can be used to produce low but uniform precision, while precision in larger slices can 

vary widely. By changing the area of the VP gradient, the envelope of the signal can be 

shifted (shown as the dashed line, for kv = −kmax/2). The precision of the gradient waveform 

measurement (shown with Nv = N0 = 4) can be improved over the whole domain of kG by 

combining multiple measurements over a range of VP gradient areas (shown right).
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Figure 3: 
By increasing the number of VP steps (Nv), thicker slices reduce the average variance of the 

gradient waveform measurement. For large Nv, σG
2  is minimized at approximately 

δkmaxNv/2. For all curves, N0 = Nv.
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Figure 4: 
Trading in variance between N0 reference scans with Nv acquisitions. With the total number 

of acquisitions given by N0 + Nv, the fraction of total scan time that optimizes the variance 

depends upon slice thickness, varying between 30%−50% of the total acquisition time.
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Figure 5: 
Measured trapezoidal gradient waveforms. For the thin slices (δz = 0.25/kmax), the offset 

slice and VP gradient waveform measurement methods both provide low precision estimates 

of the applied gradient waveform. While the precision of the offset-slice method suffers with 

increased slice thickness, VP can be used to improve precision of the gradient waveform 

measurement.
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Figure 6: 
Measured precision per excitation. The precision of the test gradient waveform measurement 

was estimated from 16 repetitions, and closely matches theoretical predictions plotted in 

Figure 2.
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