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Summary

Exitron splicing (EIS) creates a cryptic intron (termed an exitron) within a protein-coding exon to 

increase proteome diversity. EIS is poorly characterized, but emerging evidence suggests a role for 

EIS in cancer. Through a systematic investigation of EIS across 33 cancers from 9,599 tumor 

transcriptomes, we discovered EIS affected 63% of human coding genes and 95% of those events 

were tumor-specific. Notably, we observed a mutually exclusive pattern between EIS and somatic 

mutations in their affected genes. Functionally, we discovered EIS altered known and novel cancer 

driver genes for causing gain- or loss-of-function, by which promotes tumor progression. 

Importantly, we identified EIS-derived neoepitopes that bind to MHC class I or II. Analysis of 

clinical data from a clear cell renal cell carcinoma cohort revealed an association between EIS-

derived neoantigen load and checkpoint inhibitor response. Our findings establish the importance 

of considering EIS alterations when nominating cancer driver events and neoantigens.
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Graphical Abstract

eTOC blurb

The comprehensive analysis of exitron splicing events in cancer provides a reference of candidate 

cancer driver events, potential immunogenic neoantigens, and predictive signatures for 

immunotherapy response that are missed by genetic alteration analysis alone.

Introduction

Alternative splicing of pre-mRNA plays a vital role in shaping the transcriptome and this 

process is frequently altered in cancers (Oltean and Bates, 2014). Recently, a type of non-

canonical splicing, exitron, was found to be dysregulated between breast cancer and normal 

tissues (Marquez et al., 2015). Exitrons are cryptic introns with both splice sites inside an 

annotated exon; that is, an exitron is an internal region of an exon that has both protein-

coding (exon) and splicing (intron) potential. Exitrons possess canonical splicing signals, 

such as 5ʹ and 3ʹ splice-site motifs (e.g. GT-AG). Because exitrons are protein-coding 

sequences flanked by exonic sequences, they do not contain stop codons or premature 

termination codons. Such genomic feature distinguishes exitrons from conventional introns 

(Staiger and Simpson, 2015). Moreover, unlike intron retention as a form of splicing 

aberration, exitrons are retained under normal conditions. However, when exitrons are 

spliced, non-canonical and unannotated protein isoforms are produced through translation of 

the exitron-spliced transcripts, which may link to disease pathogenesis (Sibley et al., 2016).
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Although intron retention and several other basic splicing models have been implicated in 

neoplastic diseases (Dvinge and Bradley, 2015; Jung et al., 2015; Kahles et al., 2018), 

exitron splicing has received less attention and little is known about its role in human 

cancers. A pilot transcriptome study of metastatic prostate cancer patients revealed that 

exitron splicing occurs recurrently in known tumor suppressor genes (Yang et al., 2018). 

This suggests that the proteins encoded by exitron-spliced mRNAs may contribute to cancer 

development. Despite the potentially high impact in cancer, the functional consequences of 

exitron splicing in cancer genes and its clinical relevance remain unknown. This likely 

reflects the lack of computational tools for de novo exitron detection and annotation on a 

genome-wide scale.

To date, there are 670 retained introns (in 577 genes) that fulfill the definition of exitrons 

annotated in the human Ensembl genome database (Marquez et al., 2015). Further, analysis 

of high-throughput RNA sequencing (RNA-Seq) data facilitated the discovery of 

approximately 900 exitrons from six human tissues and one breast cancer sample (Marquez 

et al., 2015). However, this set is not exhaustive, and the significance of these and other 

exitrons to human pathology is poorly understood. Functionally, exitron splicing can 

contribute to proteomic diversity by causing inframe internal deletions (in cases where 

exitrons have nucleotide lengths divisible by 3) or frameshifts (in cases where exitrons have 

nucleotide lengths not divisible by 3) in encoded proteins. Notably, mRNA splicing has been 

recognized as a source of neoantigens (Frankiw et al., 2019), suggesting a potential for 

exitron splicing to generate tumor neoantigens that could form a basis for the development 

of new cancer vaccines or T-cell therapeutic strategies.

Surveys of cancer driver genes or immunogenic neoantigens have so far largely focused on 

the impact of DNA mutations. Large-scale sequencing efforts by The Cancer Genome Atlas 

(TCGA) (Cancer Genome Atlas Research, 2008) and The Genotype-Tissue Expression 

(GTEx) (Consortium, 2013) provide unique RNA-Seq datasets to investigate whether 

knowledge of exitrons could yield additional cancer driver gene or neoantigen candidates. In 

this study, we systematically detect and characterize exitron splicing events across 33 cancer 

types. Our findings imply exitron splicing represents an additional cancer-driving 

mechanism beyond genetic alterations. Further, our analyses reveal exitron splicing-derived 

neoantigen burden is a candidate predictor for cancer immunotherapy response.

Results

Landscape of exitron splicing events in cancer

To assess the landscape of exitrons across cancer transcriptomes, we collected RNA-Seq 

data in 9,599 patients across 33 cancer types together with 670 matched normal samples 

from the TCGA study (Figure 1A and Table S1). We developed a bioinformatic tool, 

ScanExitron, to analyze RNA-seq data for exitron detection. ScanExitron identified exitrons 

based on splicing junctions and gene annotations, and filtered out low-confident candidates 

with a percent spliced out (PSO) metric that measures the percentage of transcripts in which 

a given exitron is spliced (Figure 1B). As a result, we identified 129,406 exitrons in tumor 

samples that were contained within 39,755 exons, which accounts for 14.8% of the 

GENCODE human exome. We selected a panel of exitron splicing events found in TCGA 
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breast cancer samples and validated them in SKBR3 breast cancer cells with different 

approaches (Figure S1A). Briefly, we obtained long-read isoform sequencing (Iso-Seq) data 

and found predicted PSOs by RNA-Seq correlated well (r = 0.88, p = 0.02, Pearson 

correlation) with corresponding isoform fractions from Iso-Seq (Figure S1B). We further 

validated individual events detected by both RNA-Seq and Iso-Seq using RT-PCR. (Figure 

S1C).

As a class of non-canonical splicing, exitrons possessed distinct cis-acting features (weak 5’ 

and 3’ splice sites, high GC content, and short length) setting them apart from constitutively 

spliced introns and, more importantly, from retained introns detected in cancer (Figure S1D). 

In addition, we found the sizes of exitrons and their parent exons were correlated (Figure 

S1E), and most of the identified exitrons resided in medium-sized exons (e.g. 100bp to 

1kbp) (Figure S1F). Next, we sought to estimate the proportion of exitron-bearing genes in 

cancer and non-cancer genomes. As normal tissues in TCGA are adjacent to the tumor and 

are only available for a subset of cancer types, we expanded our exitron analysis to include 

GTEx (v7) RNA-Seq data from 9,636 healthy tissue samples representing 53 tissue types 

from 30 anatomical sites (Figure 1A). This yielded a total of 7,701 exitrons spanning 5,735 

exons in GTEx samples. We found the percentage of genes containing exitrons was 

remarkably higher in TCGA cancer specimens (62.7%) than in GTEx healthy populations 

(17.1%) (Figure S1G), indicating that exitron splicing is prevalent across the cancer 

transcriptomes. To investigate whether the number of exitron-bearing genes has reached 

saturation, we performed ‘down-sampling’ saturation analysis on random subsets of TCGA 

samples of various smaller sizes. We observed that the number of exitron-bearing genes 

increased steadily with increasing sample size (Figure S1H), implying the catalog of exitron-

bearing genes remains far from complete.

Across all tumor samples, we observed a median count of 121 exitron splicing events per 

sample. Ovarian (OV), esophageal (ESCA), stomach (STAD) and acute myeloid leukemia 

(LAML) cancers were found to have higher exitron splicing burden than other cancer types 

(Figure 2A and Table S2). Furthermore, we observed exitrons were spliced towards a 

gender-bias or a tumor stage-bias in certain cancer types (Figure S2A). Next, we compared 

the exitron splicing burden between tumor and matched normal samples in eight tumor types 

where RNA-Seq data were available from at least 40 tumor-normal paired samples. In the 

meta-analysis of the eight cancer types, we observed a significantly higher exitron splicing 

load in tumor samples than that in matched normal samples (meta p = 5.1e-5) (Figure 2B). 

These findings suggest that exitron splicing may contribute to cancer phenotypes.

We next sought to identify exitron splicing events that were dysregulated between tumor and 

normal samples across different tumor types. To achieve this, we conducted an analysis to 

identify exitrons that were differentially spliced between tumor and matched normal samples 

in the eight cancer types. We identified 16 exitron splicing events that displayed recurrent 

dysregulation in multiple cancers (Figure 2C). Genes impacted by these differentially 

spliced exitrons were significantly enriched for genes causally implicated in cancer 

annotated by the Catalogue of Somatic Mutations in Cancer (COSMIC) cancer gene census 

(3 out of 16, p = 0.019, fold change 5.19, hypergeometric test) (Figure 2C). One prominent 

example is a frameshift exitron splicing event within exon 2 of FOXO4 (FOXO4 
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V386Hfs*36), which exhibited increased splicing in tumors compared with normal samples 

(Figure 2D). FOXO4 is known to be a tumor suppressor gene (Greer and Brunet, 2005). The 

truncated protein predicted from this exitron-spliced mRNA isoform may cause FOXO4 loss 

of function due to the lack of FOXO functional domains (Figure 2D). Another example is an 

inframe exitron splicing event within exon 12 of the tumor suppressor gene SPEN (Legare et 

al., 2015) (SPEN Δ3419–3450). Splicing of this exitron removed part of the repression 

domain that interacts with nuclear receptor corepressor 2 (NCOR2) (Ariyoshi and Schwabe, 

2003) (Figure 2D). Therefore, increased splicing of this exitron in SPEN in tumor samples 

(Figure 2D) suggests a potential loss of its transcriptional repression function.

Because exitron splicing has been linked to splicing factor (SF) dysregulation (Marquez et 

al., 2015), we investigated the extent to which trans-acting factors can explain the 

differences in the abundance of exitron splicing across tumor types. By clustering 404 

literature-curated SF genes according to their mRNA expression profiles, we observed that 

certain cancer types with high exitron splicing burden, such as ESCA, STAD and LAML, 

grouped together (Figure S2B), suggesting the large number of exitron splicing events in 

these cancers may be attributed to a partial breakdown of the splicing machinery that is the 

result of dysregulated expression of SFs. Supporting this, when examining individual tumor 

types, we observed the activity of SFs was correlated with exitron splicing burden (Figure 

S2C). To identify candidate SFs contributing to exitron splicing misregulation in cancer, we 

correlated exitron splicing changes with the expression differences of SFs in cancer vs. 

matched normal samples using a generalized additive model (GAM) (Wood, 2011). 

Remarkably, we found a large portion of exitron splicing dysregulation could be explained 

by expression alteration of SFs (Figure S2D). Further, linear regression analysis of GAM-

derived exitron/SF pairs identified a subset of SFs generally promoting exitron splicing 

(Figure S2E). Functional annotation revealed these genes encoded protein factors composing 

the spliceosome (DHX15, DHX16, CDC5L, SF3B4, WBP11, SNRNP200, HNRNPM, 

ZNF326), proteins regulating RNA transport (EIF3A, THOC2) and mRNA surveillance 

(MSI2) (Figure S2F).

Tumor-specific exitrons enable novel cancer driver gene discovery

Based on our observation that certain tumors display a higher degree of exitron splicing than 

normal cells, we sought to identify those exitrons that are predominantly spliced in tumor 

samples, which we termed tumor-specific exitrons (TSEs). We compared a panel of normal 

samples (TCGA normal and GTEx) with TCGA tumor data to identify TSEs that 1) were 

not spliced in GTEx samples and 2) were spliced in no more than three TCGA normal 

samples. As a result, a total of 123,338 (95.3%) exitrons were qualified as TSEs. We found 

that OV, ESCA, STAD and LAML had the highest number of TSE splicing events compared 

with the other cancers (Figure 3A). Given the large number of TSE splicing events observed 

across tumor types, we sought to evaluate their clinical relevance and functional impact. We 

first examined the splicing frequency of each TSE in tumor samples, and found 39.5% of 

them were recurrently spliced (Figure S3A). Next, we defined clinically-informative exitrons 

as those TSEs that were spliced in ≥ 10 samples and associated with survival for a cancer 

type. Among the 25 cancer types with clinical information and a cohort size ≥ 100, we found 

clinically-informative TSE splicing events in 21 cancers (Figure S3B). OV had the highest 
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number of clinically-informative TSE splicing events that correlated with at least one of the 

three survival endpoints (overall, progression-free and disease-free). Notably, we found 21 

TSE splicing events were clinically informative in more than one cancer type (Figure S3C), 

suggesting that they may play important roles in different tumor contexts. For example, an 

EWSR1 Δ573–603 exitron splicing event was associated with overall survival in lung 

squamous cell carcinoma (LUSC) and disease-free survival in uterine corpus endometrial 

carcinoma (UCEC) (Figure S3D).

To examine the functional impact of TSE splicing, we implemented a frequency-based 

method to identify genes that were enriched for TSE splicing events in each tumor type, 

hereafter termed significantly exitron-spliced genes (SEGs, Figure S3E, Table S3). We 

ranked SEGs based on their exitron splicing frequency and found that the top 35 ranked 

SEGs were significantly enriched for genes in the COSMIC cancer gene census, including 

TAF15, MUC4, NUMA1, FUS and EWSR1 (5 out of 35, p = 0.008, fold change 3.95, 

hypergeometric test; Figure 3B). The highest-ranked SEG was TAF15, which is a member of 

the FET protein family involved in transcriptional regulation and RNA processing (Law et 

al., 2006). Notably, the other members of the FET protein family, FUS and EWSR1 were 

also among the top-ranked SEGs. Intriguingly, we found mutual exclusivity between exitron 

splicing in these three genes in tumor samples, implying these exitron splicing events may 

have similar functional impacts (Figure 3C). Moreover, patients with TSE alterations in FET 

proteins were associated with impaired progression-free survival (Figure 3D), suggesting 

that exitron splicing in FET family genes may play a role in promoting cancer progression. 

Besides, we observed that exitron splicing hotspots in FET family genes mapped to regions 

encoding the C-terminal domains of FET proteins, which are enriched for post-translational 

modification sites (Figure S3F). This suggests that exitron splicing has the potential to alter 

the regulation of FET proteins.

Because we found that SEGs were enriched for known cancer genes, we examined whether 

identification of SEGs could nominate novel cancer driver genes. As cancer driver genes 

tend to display a tissue-specific alteration spectrum (Haigis et al., 2019), we performed a 

tissue-specific analysis of SEGs. We found that NEFH was an SEG in prostate cancer 

(Figure 3B). NEFH encodes the heavy neurofilament protein, which forms the framework 

for nerve cells (Hirokawa and Takeda, 1998). Although loss of NEFH expression has been 

observed in esophageal squamous cell carcinoma (Kim et al., 2010), a role for NEFH in 

prostate cancer remains unknown. Therefore, we examined NEFH expression in the TCGA 

prostate adenocarcinoma (PRAD) cohort. NEFH expression levels were significantly higher 

in benign samples than those in prostate tumor samples. Strikingly, NEFH expression was 

inversely correlated with Gleason score, which is a scoring system that predicts cancer 

aggressiveness from tumor histology (Figure 3E). We further evaluated NEFH expression in 

150 tumor and 29 normal samples from the MSKCC Prostate Cancer Oncogenome Project 

(Taylor et al., 2010), which collected array-based gene expression data and comprehensive 

clinical information. We found that NEFH was significantly downregulated in metastatic 

prostate cancer when compared with localized prostate tumors and benign tissues (Figure 

3F). In addition, low NEFH expression in tumors was associated with high risk of 

biochemical recurrence (Figure 3G). Collectively, these data strongly suggest that NEFH is a 

tumor suppressor gene in prostate cancer.
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To support this, we sought to validate the function of NEFH using two NEFH-negative 

prostate cancer cell lines, C4-2 and PC-3 (Figure 3H, Figure S3G). When comparing 

prostate cancer cells overexpressing NEFH relative to control cells, we observed that ectopic 

expression of NEFH inhibited cell growth (Figure 3I, Figure S3H), colony formation (Figure 

3J, Figure S3I) and DNA replication (Figure 3K, Figure S3J) but promoted apoptosis as 

measured by cleaved PARP protein levels (Figure 3H), confirming that NEFH has tumor 

suppressor function in prostate cancer. Next, we investigated whether exitron splicing of 

NEFH affects this tumor suppressor function. Strikingly, we confirmed that an inframe, 

exitron-spliced NEFH protein isoform lacking 41 amino acids in the C-terminal domain, 

NEFH Δ871–911 (Figure S3K), increased cell growth (Figure 3I, Figure S3H), colony 

formation (Figure 3J, Figure S3I) and DNA replication (Figure 3K, Figure S3J) but reduced 

apoptosis (Figure 3H) in prostate cancer cells relative to wild-type NEFH. Importantly, 

NEFH is rarely mutated in prostate cancer (Figure S3L), but NEFH Δ871–911 is the most 

frequent TSE splicing detected in PRAD and an independent cohort of advanced prostate 

cancer (Quigley et al., 2018) (Figure S3M). Collectively, these data demonstrate that exitron 

splicing can functionally inactivate tumor suppressor genes in cancer.

Mutual exclusivity between tumor-specific exitrons and somatic mutations

To ask whether lack of mutations in SEGs such as NEFH is a general feature, we focused on 

genes affected by somatic mutations and/or TSE splicing. We observed a clear pattern 

wherein significantly mutated genes (SMGs) such as TP53, PIK3CA and KRAS, and SEGs 

such as TAF15, RRBP1 and NEFH were bifurcated into two groups (Figure 4A), suggesting 

SMGs and SEGs are mutually exclusive. When examining genes affected by somatic 

mutations and/or TSE splicing in an individual cancer type, we confirmed this pattern of 

mutual exclusivity (Figure S4A). To investigate the relationship between SEGs and SMGs in 

more detail, we focused on the PRAD cohort. As expected, NEFH was the top-ranked SEG, 

but did not display mutations (Figure 4B). Conversely, known SMGs in prostate cancer, such 

as TP53 and SPOP, displayed no exitron splicing. This pattern further supported the notion 

that SEGs could represent an independent catalog of genes with functionally important 

exitron splicing alterations in cancer. Notably, when we focused on genes that displayed 

somatic mutations and exitron splicing in the PRAD cohort (for instance, the epigenetic 

regulator KMT2D, the pioneer factor FOXA1 and the tumor suppressor gene ZFHX3), the 

pattern of mutual exclusivity between mutations and exitron splicing was apparent at the 

patient level (Figure 4B).

To investigate the consequences of exitron splicing on protein functions, we examined the 

landscape of FOXA1 TSE splicing events in PRAD. We observed that exitrons clustered in 

the Forkhead DNA binding domain (FKHD) (Figure 4C). Recently, the Wing 2 region of the 

FKHD was identified as a FOXA1 mutational hotspot (Adams et al., 2019; Parolia et al., 

2019). Mapping mutations and exitrons to the 3D crystal structure of FKHD demonstrated 

that exitron splicing alterations largely affected non-Wing 2 regions (Figure 4D), suggesting 

that exitron splicing in FOXA1 could represent a distinct, yet-unexplored mechanism for 

altered FOXA1 pioneer activity in prostate cancer. To further test this, we cloned two 

representative, inframe exitron-spliced FOXA1 protein isoforms, each missing a region in 

the FKHD: Δ186–215 and Δ231–240 (Figure S4B). In reporter assays using luciferase with 
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FOXA1 binding sequences, we observed that ectopically expressed FOXA1 Δ186–215 and 

Δ231–240 displayed higher transcriptional activities than the wild-type FOXA1 (Figure 

S4C). Consequently, exitron-spliced FOXA1 resulted in stronger transcriptional activation of 

oncogenic androgen receptor (AR) signaling (Figure S4D). Further, we confirmed 

overexpression of these two FOXA1 TSE splicing events in prostate cancer C4-2 cells 

(Figure S4E) promoted cell growth (Figure S4F) and colony formation (Figure S4G) relative 

to control cells. Concordantly, transcriptomic analyses of PRAD tumor tissues predicted AR 

and FOXA1 to be driver transcription factors for upregulated genes in patients with FOXA1 

TSE alterations (Figure S4H). We further confirmed that patients with FOXA1 TSE 

alterations had the highest AR activity score (Figure S4I). When examining TSEs across all 

TCGA tumors, we found a significant overlap (p < 2.2e-16, hypergeometric test) and a 

strong correlation in the protein family (Pfam) domains affected by exitron splicing and 

somatic mutations (Figure 4E), indicating exitron splicing impacts protein functions in a 

manner similar to genetic alterations.

Besides gene level analysis, we compared somatic mutations and TSE alterations at the 

patient level. We found that mutation burden and exitron splicing burden were independent 

across all cancer types (Figure S4J). To further investigate the consequences of mutations 

and exitron splicing events at the transcriptome level, we calculated the mutational burden, 

variant allele frequency and variant size of expressed mutations and compared them with 

TSE alterations. We found that TSE alterations had a higher burden and allele fraction in 

tumor samples, and had a larger impact by size on transcripts than insertions and deletions 

(indels) (Figures S4K–M).

Because RTK/RAS and PI3K/AKT signaling pathways are frequently mutated in cancer 

(Sanchez-Vega et al., 2018), we attempted to investigate whether TSE splicing alterations 

preferentially occur in cancer hallmark pathways. Hence, we extended the single gene-based 

SEG analysis into a multi-gene-based analysis to test whether TSE splicing events were 

significantly enriched in gene sets representing major biological processes. To achieve this, 

we focused on 50 “hallmark” gene sets from the Molecular Signature Database (MSigDB) 

(Liberzon et al., 2015) and performed the multi-gene-based analysis for each gene set in a 

particular tumor type. We identified 20 gene sets that were significantly altered by TSE 

splicing across different tumor types (Figure 5). “IL2_STAT5_SIGNALING” and 

“UNFOLDED_PROTEIN_RESPONSE” were the top two gene sets that enriched with TSE 

alterations across the highest number of cancer types (18 out of 33). Conversely, certain 

gene sets displayed significant TSE splicing only in a specific malignancy, such as 

“ANDROGEN_RESPONSE” in PRAD. Within some gene sets, TSE alterations occurred 

over many genes (e.g., P53 and MYC_V1 gene sets), while in other gene sets TSE 

alterations only affected a few genes (e.g., HYPOXIA and SPERMATOGENESIS) (Figure 

S5). Interestingly, frequently mutated pathways, such as PI3K, Notch, Wnt and TGFβ 
(Sanchez-Vega et al., 2018), were not enriched with TSE alterations in any cancer type 

(Figure 5), reaffirming the notion that exitron splicing represents a distinct, yet-unexplored 

mechanism in cancer that could be complementary to genetic alterations.
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Tumor-specific exitrons represent a source of neoepitopes

Because exitron splicing affects protein-coding exons, they can cause inframe deletions of 

functional protein domains or generate novel reading frames through frameshifts. We 

observed 56% of TSE splicing events retained the reading frame (Figure S6A), and 38% of 

these inframe TSEs were found to overlap with Pfam domains (Figure S6B). Frameshift 

TSE splicing events may produce novel protein sequences or introduce premature 

termination codons, trigging nonsense-mediated RNA decay (NMD) to degrade resultant 

transcripts. Remarkably, we observed the overall expression of exitron-spliced transcripts 

was higher than those with retained introns (Figure S6C), suggesting exitron splicing is less 

affected by NMD than intron retention. Indeed, when focusing on frameshifting events that 

have the potential to trigger NMD, we found exitron splicing events are much more likely to 

evade NMD than intron retentions according to the canonical rules of NMD (Lindeboom et 

al., 2016) (Figure S6D). In this regard, exitron splicing alterations are similar to indels, 

which are known to be a rich source of neoantigens due to frameshifts and those escaping 

NMD can predict response to checkpoint immunotherapy (Litchfield et al., 2020; Turajlic et 

al., 2017). Following this, we sought to investigate whether TSE slicing has the potential to 

produce immunogenic neoantigens.

We applied ScanNeo (Wang et al., 2019) to predict potential TSE neoantigens in TCGA 

tumors. For a total of 123,338 unique TSE splicing events, we identified 168,206 putative 

neoantigens with a mean number of 1.4 neoantigens per TSE splicing event, which is higher 

than the average number of 0.64 for non-synonymous single nucleotide variants (nsSNVs) 

(Turajlic et al., 2017). Across all tumor types, OV was found to have the highest burden of 

TSE neoantigens (Figure S6E). To validate the expression of these predicted peptides, we 

used MS-GF+ (Kim and Pevzner, 2014) to search mass spectrometry (MS) data in 32 OV 

and 35 breast invasive carcinoma (BRCA) samples available from the Clinical Proteomic 

Tumor Analysis Consortium (CPTAC) project (Ellis et al., 2013), and identified a total of 28 

neoepitopes derived from TSE splicing (Table S4). Comparing to nsSNVs and indels, TSE 

splicing introduced a higher number of CPTAC-confirmed neoantigens per sample in OV, 

but a lower number in BRCA (Figure 6A), which may reflect differences in TSE splicing- 

and mutation-derived neoantigen burdens between the two cancer types. Similarly, when 

examining MS-confirmed neoantigens derived from TSE splicing or somatic mutations 

across five cancer types offered by the CPTAC study (phase III), we found TSE splicing 

introduced a higher number of validated peptides in cancers of low tumor mutation burden, 

such as clear cell renal cell carcinomas (ccRCC), but a lower number than nsSNVs in tumors 

with high mutational burden, such as lung adenocarcinoma (LUAD) (Figure S6F).

Although CPTAC proteomic data confirmed the expression of peptides derived from TSE 

splicing, they were not able to demonstrate whether these peptides were processed and 

presented on the major histocompatibility complex (MHC). To validate this, we conducted 

analysis on a separate cohort of 11 ovarian cancer samples (Schuster et al., 2017), where 

tumors were subjected to transcriptome profiling and immunoaffinity purification of MHC 

complexes followed by MS analysis. Altogether, 26 TSE neoantigens were confirmed to be 

presented by MHC class I or II (Figure S6G). In particular, we found that 69% of these 

neoantigens (18 out of 26) were derived from splicing of TSEs that caused frameshifts, 
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indicating the importance of frameshift-inducing exitron splicing events as a source of 

neoantigens. For example, PRPF8 displayed recurrent splicing of an exitron 

(chr17:1658603–1658682) in two patients (OvCa65 and OvCa109, Table S5) that was 

predicted to cause a frameshift truncating the PRP8 domain. The predicted neoepitope 

MKANPALTMVSSSPTRL resulting from this frameshift event was confirmed by MS-based 

immunopeptidome analysis (Figure 6B).

Next, we assessed the potential immunogenicity of TSE neoantigens by comparing them 

with experimentally validated immunogenic neoantigens and evaluating their association 

with anti-tumor immune response. We observed that MS-confirmed TSE neoantigens 

displayed a higher potential to be recognized by CD8+ T cells as measured by the relative 

hydrophobicity of T-cell receptor contact residues, a hallmark of immunogenic CD8+ T cell 

epitopes (Chowell et al., 2015), when compared to 295 curated immunogenic nsSNV-

derived neoantigens (Figure S6H) and 15 functionally validated immunogenic frameshift 

indel-derived neoantigens (Figure S6I). Recently, frameshift indels with highly elongated 

neo open reading frames (neoORF) have demonstrated a high potential to elicit immune 

response (Litchfield et al., 2020). Accordingly, we found MS-confirmed frameshift TSEs 

had longer neoORF length than immunogenic frameshift indels (Figure S6J), suggesting 

frameshift TSEs could be highly immunogenic. Further, we calculated the correlation 

between the TSE neoantigen load and the immune cellular fractions of TCGA tumors to 

evaluate the association between TSE neoantigen load and immune responses. We observed 

that TSE neoantigen load positively correlated with a higher content of CD8+ T cells, M1 

macrophages, and CD4+ memory T cells in multiple cancer types (Figure 6C).

Given that indel burden is a known correlate of immune checkpoint inhibitor response, we 

next sought to examine whether TSE load and TSE neoantigen load were associated with 

clinical response to immune checkpoint blockade (ICB). To test this, we analyzed data from 

three cohorts of melanoma patients (n=94) and one cohort of ccRCC patients (n=33) 

receiving anti-CTLA-4 or anti-PD-1 treatments (Hugo et al., 2016; Miao et al., 2018; Riaz et 

al., 2017; Van Allen et al., 2015). Although TSE load and TSE neoantigen load had no 

association with response to ICB in melanoma (Figure S6K), we found a significant 

association between TSE neoantigen load and clinical benefit from ICB in ccRCC (p = 

0.045) (Figure 6D). Moreover, receiver operating characteristic (ROC) analysis 

demonstrated that TSE neoantigen load was the best predictor of response to ICB in ccRCC 

compared to known ICB response signatures, such as mutation neoantigen load, CD8+ T 

cell, PD-L1 and interferon gamma response (Jiang et al., 2018) (Figure S6L). Besides, we 

found ccRCC patients with clinical benefit had a significantly higher number of NMD-

escape exitron splicing events than patients without benefit (Figure S6M). In contrast, no 

association was found between exitron splicing events predicted to trigger NMD and clinical 

benefit (Figure S6M), suggesting NMD on exitron splicing may modulate the efficacy of 

cancer immunotherapy.

To investigate the potential of TSE neoantigen load mediating ICB response in other 

cancers, we evaluated the correlation between TSE neoantigen load and the expression of T 

cell markers (PD-1, CD8A and CD8B), immune-regulatory molecules (PD-L1 and PD-L2) 

and markers of cytolytic activity (GZMA and PRF1) across all TCGA tumor types. We 
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observed that OV and renal clear cell carcinoma (KIRC) were the top two cancer types 

where patients with a high load of TSE neoantigens expressed higher levels of these 

immunogenic gene markers (Figure 6E, Figure S6N). Because we have demonstrated the 

association between TSE neoantigen load and ICB response in ccRCC, our finding suggests 

that ovarian tumors with a high TSE neoantigen burden would likely benefit from ICB 

therapy.

Discussion

In this study, we identified widespread exitron splicing in human cancer transcriptomes. By 

integrating transcriptome sequencing data in nearly ten thousand samples across 33 cancer 

types, we discovered that 63% of human coding genes display exitron splicing, which 

expands significantly on previous studies that indicated only 4% of genes display exitron 

splicing (Marquez et al., 2015). Although this pan-cancer analysis enabled an investigation 

of exitron splicing at an unprecedented scale and resolution, saturation analysis indicated 

that the catalog of exitrons likely to exist in the human transcriptome is far from complete. 

In addition, the ScanExitron method described in this study identifies exitrons only if they 

are spliced with canonical splice site motifs. Exitrons can be spliced using non-canonical 

splice motifs, as evidenced by a recent report that exitron EGR1 Δ141–278 used CC-AG 

splice site motifs (Aliperti et al., 2019). Therefore, future work is needed to provide a more 

comprehensive portrait of exitron splicing in cancer.

Exitron splicing alterations cause changes in proteins, and functionally mimic the outcome 

of genetic alterations. Interestingly, we found that genes enriched for exitron splicing (i.e., 

SEGs) were mutually exclusive with SMGs in cancer. This has importance because analysis 

of SMGs is an established approach for identifying cancer driver genes (Bailey et al., 2018). 

The analysis of SEGs in our study led to the discovery of NEFH as a novel tumor suppressor 

gene in prostate cancer, indicating that analysis of SEGs has the potential to reveal 

previously undetected cancer driver genes. Beyond SEGs, exitron splicing events that 

function as cancer drivers (i.e., TSEs) are still largely unknown. Our discovery of functional 

exitron splicing alterations in FOXA1 supports a model by which proteins frequently altered 

in cancer through somatic mutations may be affected in a similar way by exitron splicing 

alterations. Detection and characterizations of these driver exitron splicing events relies on 

further development of both computational and experimental technologies. For instance, 

exitrons are usually in a medium- to large-size range that is challenging for existing 

algorithms to predict their driver potential. High-throughput functional screening 

technologies such as HiTMMoB (Ng et al., 2018) may provide an alternative approach for 

assessing the functional impact of exitron splicing on a large-scale.

Indels and alternative splicing events have been recognized as DNA- and RNA-level 

processes that can contribute to the generation of tumor neoantigens (Kahles et al., 2018; 

Smart et al., 2018; Turajlic et al., 2017). Exitron splicing is a type of alternative splicing 

with a proteomic outcome similar to indels in that both can cause a frameshift or an inframe 

changes of protein sequences. As a result, exitron splicing has the potential to introduce 

highly immunogenic neoantigens and therefore promotes anti-tumor immune responses. Our 

discovery of neoantigens derived from exitron splicing expands our knowledge of the tumor 
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immunopeptidome and contributes potential substrates for identifying patients who are most 

likely to benefit from cancer immunotherapy.

Limitations

The current study reveals that genes enriched with exitron splicing events have the potential 

to be cancer driver genes. However, most of these genes are understudied in cancer as their 

overall mutation rates are lower than those of well-known cancer driver genes. An important 

extension of the current work is to systematically characterize the functions of SEGs with 

dedicated computational predictions and functional validations. In addition, our current 

analysis of immunogenicity of exitron splicing-derived neoantigens was mainly driven by 

availability within the public datasets. Further work to experimentally demonstrate T-cell 

recognition of identified neoantigens in the tumor and/or peripheral blood will be crucial to 

prioritize cancer immunotherapy targets in clinical trials.

STAR Methods

Resource Availability

Lead Contact—Further information for resources and data should be directed to and will 

be fulfilled by the Lead Contact Rendong Yang (yang4414@umn.edu).

Materials Availability—All reagents generated in this study are available from the Lead 

Contact without restriction.

Data and Code Availability—Code for identification and quantification of exitrons is 

available on GitHub (https://github.com/ylab-hi/ScanExitron). Calculated TSE data and 

predicted TSE-derived neoantigens data for TCGA are available on Mendeley Data at http://

dx.doi.org/10.17632/vdkpfzjjvg.1. RNA-Seq data and processed gene expression data from 

TCGA cohort, and RNA-Seq data and mutation data from CPTAC cohort (phase3) are 

available on Genomic Data Commons (GDC) (https://portal.gdc.cancer.gov). TCGA Unified 

MC3 Variant Calls from Ellrott et al., 2018 analyzed in this manuscript can be found at GDC 

(https://gdc.cancer.gov/about-data/publications/mc3-2017). HLA types for TCGA samples 

from Thorsson et al., 2018 is available at GDC (https://gdc.cancer.gov/about-data/

publications/panimmune). The clinical outcome endpoints data and gender and tumor stage 

data for patients were obtained from the TCGA Pan-Cancer Clinical Data Resource (Liu et 

al., 2018). RNA-Seq data from GTEx cohort are available at GTEx data portal (https://

www.gtexportal.org/home/). Protein mass spectrometry data from CPTAC cohort from are 

available at CPTAC data portal: https://cptac-data-portal.georgetown.edu/cptacPublic/ 

(Edwards et al., 2015). The RNA-Seq data for ccRCC study (Miao et al., 2018) are available 

at dbGap: phs001493.v1.p1. The RNA-Seq data for melanoma studies are available from the 

GEO or dbGaP repository under the following accession codes: GSE78220 (Hugo et al., 

2016), phs000452.v2.p1 (Van Allen et al., 2015) and GSE91061 (Riaz et al., 2017). The 

somatic mutation data from ccRCC and melanoma studies are from their original 

publications. Illumina RNA-Seq data of SKBR3 are available from the NCBI SRA under 

accession SRX5414723 (Ghandi et al., 2019). PacBio single-molecular real-time long-read 

Iso-Seq data of breast cancer cell line SKBR3 are available from the NCBI SRA under 
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accession: SRX4220391 (Nattestad et al., 2018). MS-based immunopeptidomics data and 

corresponding RNA-Seq data from ovarian cancer samples can be found at PRIDE: 

PXD007635 and Bioproject: PRJNA398141 (Schuster et al., 2017). RNA-Seq data from 101 

metastatic prostate cancer in WC-SU2C cohort are available at dbGap under accession 

phs001648.v1.p1 (Quigley et al., 2018). Gene expression and clinical annotation data from 

MSKCC Prostate Cancer Oncogenome Project can be assessed through the MSKCC 

Prostate Cancer Genomics Data Portal: https://cbio.mskcc.org/cancergenomics/prostate/data 

(Taylor et al., 2010). nsSNV-derived neoantigens that induce a T-cell response are available 

from the dbPepNeo database (http://www.biostatistics.online/dbPepNeo). PTM sites for FET 

family proteins including EWSR1, FUS and TAF15 can be found at the PhosphoSitePlus: 

https://www.phosphosite.org (Hornbeck et al., 2015).

Experimental Model and Subject Details

Cell lines and cell culture—C4-2 cell line was a kind gift from Dr. Leland W. Chung. 

All other cell lines (HEK293T, PC-3, and SKBR3) used in this study were obtained from the 

American Type Culture Collection (Rockville, MD, USA). HEK293T cells were grown in 

Dulbecco’s Modified Eagle Medium (DMEM) containing 10% FBS (Gibco) and Penicillin/

Streptomycin antibiotics (Gibco). PC-3 and C4-2 cells were cultured in RPMI 1640 medium 

containing 10% FBS and Penicillin/Streptomycin antibiotics. SKBR3 cells were maintained 

in McCoy’s 5A medium (Sigma) supplemented with 10% FBS (Millipore), 1% Penicillin/

Streptomycin antibiotics (Corning), and 25 μg/mL plasmocin (Invivogen). All cells used in 

this study were grown 5% CO2 at 37°C and regularly tested as mycoplasma-negative.

Method Details

Clinical and Molecular Data of TCGA study—Gene expression and gene mutation 

data were obtained for this study. For gene mutation data, we used TCGA Unified MC3 

Variant Calls (Ellrott et al., 2018). For gene expression data, the RNA-Seq alignment files in 

BAM format and HTSeq-Count files in tab-delimited format were downloaded from the 

GDC (https://gdc.cancer.gov). We only used samples that had available data across these two 

genomic platforms: gene mutations and mRNA expression. TCGA aliquot barcodes flagged 

as “do not use” or excluded by pathology review by the PanCancer Atlas Consortium, and 

annotated according to the Merged Sample Quality Annotation file were removed from the 

study. For somatic mutations, FILTER values were required to be one of PASS, wga, or 

native_wga_mix, and only protein-coding mutations were retained (Variant_Classification in 

one of Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, 

Missense_Mutation, Nonsense_Mutation, Nonstop_Mutation, Splice_Site, and 

Translation_Start_Site). Mutations calls were required to be made by two or more mutations 

callers (NCALLERS > 1), satisfy allele requirements: reference allele count >= 3 and total 

depth >= 10, allele frequency >= 0.05. For RNA-Seq data, a single representative aliquot 

was selected per participant for cases where more than one aliquot was available, as follows. 

When data on more than one tumor sample was available, we used the following rule of 

priority order (01A (not FFPE), 01B (FFPE), 01C (FFPE), 06A (Metastatic), 02A (Recurrent 

tumor), 05A (additional primary)) to keep one aliquot, according to the sample identifier of 

TCGA barcode. The clinical outcome endpoints data and gender and tumor stage data for 

patients were obtained from the TCGA Pan-Cancer Clinical Data Resource (Liu et al., 
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2018). The immune cell fraction data were obtained from Thorsson et al. (Thorsson et al., 

2018).

Identification and quantification of exitron splicing events—Exitron splicing 

events were detected from RNA-Seq using ScanExitron pipeline as illustrated in Figure 1B. 

Briefly, high quality uniquely mapped reads (MAPQ >50) were extracted from BAM files 

with samtools view -q 50 command. ScanExitron first extracted splicing junctions from 

these high mapping quality reads using RegTools (version 0.4.0) (Feng et al., 2018). Next, 

junctions from annotated intron regions were removed based on the GTF annotation files 

from GENCODE v21 and NCBI RefSeq (GRCh38.p7). The remaining unannotated 

junctions were further processed using in-house Python scripts to identify their splice site 

motifs. Splicing junctions with canonical spliced site motifs (GT-AG, GC-AG, and AT-AC) 

located within protein-coding exons were identified as putative exitron splicing events. We 

measured exitron splicing expression as the fraction of alternatively spliced junction 

spanning reads over the total number of reads across the spliced exitron region, which we 

refer to as percent of spliced-out (PSO) value. We set filters that required exitrons to have: 1) 

at least three uniquely-mapped reads across the exitron junction and 2) a minimum of 5% 

PSO in this study.

Detection of differentially spliced exitrons between tumor and normal tissues
—The differentially spliced exitrons were detected in tumor types that had at least 40 tumor 

samples and 40 matched normal samples, including BRCA, HNSC, KIRC, LIHC, LUAD, 

LUSC, PRAD and THCA. For each tumor type, a linear regression model with PSO as the 

dependent variable and tumor status as independent variables was employed to identify 

exitrons that are differentially spliced between tumor and matched normal tissues. The 

results from different tumor cohorts were aggregated using Stouffer method (Stouffer et al., 

1949) for meta-analysis, the meta p values are Benjamini-Hochberg FDR corrected for 

multiple testing. Those exitron splicing events present in less than four cancer types were 

discarded.

Effect of cis-acting features—MaxEntScan (Yeo and Burge, 2004) was used to 

calculate maximum entropy scores for 9-bp 5′ splice sites and 23-bp 3′ splice sites. The 

length and GC content of constitutive introns, exitrons and retained introns were calculated 

using the hg38 human genome assembly. Constitutive introns were defined as those present 

in all child transcripts of a given GENCODE gene. Retained introns of TCGA tumor 

samples were derived from Kahles et al. (Kahles et al., 2018).

Effect of trans-acting splicing factors—First, 404 SFs were collected from the 

literature (Seiler et al., 2018). Based on these SFs, we defined the SF gene signature to 

quantify SF activity for each sample. In brief, Z-scores for 404 SF genes were computed by 

subtracting the pooled mean from the RNA-Seq expression FPKM values and dividing by 

the pooled standard deviation. The SF gene signature was defined as the summation of the 

Z-scores.

To calculate the proportion of the variation in exitron splicing that could be explained by 

SFs, we used a generalized additive model (GAM) from the R-package mgcv (Wood, 2011) 
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v1.8.3. We selected tumor types that had at least 40 tumor samples and 40 matched normal 

samples, including BRCA, HNSC, KIRC, LIHC, LUAD, LUSC, PRAD and THCA in the 

GAM analysis. For each cancer type, we selected the most variable exitrons, defined as 

having a standard deviation of changes in exitron for tumor-normal pairs across samples 

exceeding 0.02. For the 404 literature-curated SF genes, we used the log2 fold-change of 

FPKM normalized gene expression of the matched tumor-normal pairs. GAM models for all 

individual exitron/gene pairs were calculated using a Gaussian distribution with “identity” as 

the link function, and the method “GCV.Cp” was used for estimating the smoothing 

parameters of the log2 fold-changes for the genes. Following GAM predictions, a linear 

regression model was used to measure the relationship between predictors and responses for 

GAM-derived significantly associated exitron/SF pairs (FDR<0.05). For each SF in the 

analysis, the number of exitron/SF pairs was required to be three or more. The positive 

Pearson Correlation Coefficient (PCC) of exitron/SF pair indicated that the specific SFs 

generally promoting this exitron splicing.

Characterization of tumor-specific exitrons and their clinical relevance—Due to 

the lack of matched normal RNA-Seq data for most TCGA tumor samples, GTEx healthy 

samples were incorporated to identify the tumor-specific exitrons. Raw RNA-Seq reads of 

GTEx samples were obtained from dbGap (phs000424.v7.p2) and mapped to the human 

reference genome (hg38) using HISAT2 (Kim et al., 2019). Next, we identified exitron 

splicing events of TCGA and GTEx project using the criteria as described above. Exitrons 

that were spliced in GTEx samples or spliced in more than three TCGA normal samples 

were excluded from the exitrons detected in TCGA tumor samples. The remaining exitrons 

were considered as the tumor-specific exitrons. We further defined the informative and 

clinically relevant exitron splicing events if a tumor-specific exitron meets the following 

criteria:

a. The exitron splicing recurred in more than ten samples in a cancer type.

b. The exitron splicing was significantly associated with one of the three clinical 

endpoints: overall survival, progression-free survival and disease-free survival.

c. The exitron-containing gene expression was not associated with the same type of 

survival detected in (b).

Protein domain and post-translational modification sites analysis—The inframe 

exitron splicing events and somatic mutations (missense mutations and inframe indels) 

encode whole or parts of Pfam (Finn et al., 2014) protein domains were calculated using 

Variant Effect Predictor (VEP) (McLaren et al., 2016). Then the number of genes with the 

affected Pfam domains was obtained for exitron splicing alterations and somatic mutations, 

respectively. PTM sites for FET family proteins including EWSR1, FUS and TAF15 were 

obtained from PhosphoSitePlus (Hornbeck et al., 2015) (Version Aug 19, 2019).

Expressed mutation identification—For somatic mutations reported in TCGA Unified 

MC3 Variant Calls, we firstly filtered out the mutations, where their harboring genes have 

zero reads count in the corresponding RNA-Seq data. For the remaining mutations, 

freebayes (Garrison and Marth, 2012) was applied to the RNA-Seq data to call variants in 
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the recorded mutation sites from MC3 to check whether the mutations were expressed or not 

at transcriptomic level. The MC3 mutations detected by freebayes from RNA-Seq were 

considered as expressed in RNA. Variant allele fraction (VAF) of expressed mutations were 

calculated as AO/DP, where AO is the number of RNA-Seq reads supporting the mutations, 

and DP is the RNA-Seq total depth at the mutation site. VAFs of not expressed MC3 

mutations were set to 0 in the expressed mutation list.

NMD efficiency estimation—We used gene expression data and the position of 

premature termination codon (PTC) to estimate NMD efficiency, respectively. To estimate 

the NMD efficiency with gene expression data, we adopted the NMD index method (Turajlic 

et al., 2017). We estimated the extent of NMD for all tumor-specific exitrons and retained 

introns by comparing mRNA expression in samples with a splicing aberration event to the 

median mRNA expression of the same gene across all other tumor samples where the 

splicing aberration was absent. For a gene in one sample with splicing aberration and n 
samples where the splicing aberration was absent. NMD index (NMDI) for the gene in the 

sample t is calculated by

 NMDI(gene,  t) =
expt

Median exp1, exp2, …, expn

Frameshift variants-derived PTCs can result in the degradation of mRNAs by triggering 

NMD or the production of truncated proteins by escaping NMD. The NMD efficiency is 

linked to the sequence positions (Lindeboom et al., 2016). We defined NMD-escaped 

frameshift events if a PTC meets any of the following criteria (Litchfield et al., 2020): (a) 

first exon within the first 200 nucleotides of coding sequence (CDS), (b) penultimate exon 

within 50 nucleotides of the 3′ exon junction, and (c) last gene exon (Figure S6D). Tumor-

specific exitrons were detected as described above. Tumor-specifically retained introns were 

obtained from Kahles et al. (Kahles et al., 2018).

HLA typing with OptiType—HLA class I four-digit types of 8,915 out of 9,599 TCGA 

tumor samples were obtained from Thorsson et al (Thorsson et al., 2018). For the remaining 

684 TCGA tumor samples used in this study, OptiType (Szolek et al., 2014) and yara aligner 

(Siragusa et al., 2013) were employed for HLA class I typing procedure, as follows. The 

RNA-Seq alignment files in BAM format were first converted to raw reads in FASTQ format 

using Picard tool (http://broadinstitute.github.io/picard/). Next, the raw reads of each sample 

were aligned to the HLA class I database provided by OptiType using yara aligner with error 

rate of 3%. Finally, OptiType was used to predict the HLA class types for each sample under 

its default parameters for the RNA-Seq data.

Neoantigen prediction for tumor-specific exitron splicing events and somatic 
mutations—Tumor-specific exitron splicing derived neoantigen candidates were identified 

using ScanNeo (Wang et al., 2019) based on HLA types derived from RNA-Seq data as 

described above. In brief, predicted tumor-specific exitron splicing events were first reported 

in VCF files. Next VEP was used to annotate exitron splicing alterations with the raw VCF 

file as input. HGVS indel notation rules were used to report exitrons (den Dunnen et al., 
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2016). Inframe events are coded to start with a delta (means deletion) notion followed by the 

amino acid positions removed by this exitron splicing event. A frameshift event is coded to 

contain ‘fs’ indicates this type of change is frameshift, following the length of neo Open 

Reading Frame (neoORF). Using NetMHC (Lundegaard et al., 2008) and NetMHCpan 

(Nielsen and Andreatta, 2016), ScanNeo predicted neoantigen candidates that bound to 

autologous HLA (IC50 < 500 nM) with the VEP annotated VCF files as input. Neoantigens 

derived from non-synonymous single nucleotide variants (nsSNVs) and indel variants were 

predicted for TCGA-BRCA, TCGA-OV and five CPTAC tumor types using the ScanNeo 

method with the same criteria as were used for tumor-specific exitron splicing events.

Exitron splicing-derived neoantigen prediction for patient cohorts treated with 
ICB—The RNA-Seq data for the clear cell renal cell carcinoma (ccRCC) study (Miao et al., 

2018) was download from dbGap: phs001493.v1.p1. The RNA-Seq data for melanoma 

studies were download from GEO: GSE78220 (Hugo cohort (Hugo et al., 2016)), dbGap: 

phs000452.v2.p1 (Van Allen cohort (Van Allen et al., 2015)) and GEO: GSE91061 (Riaz 

cohort (Riaz et al., 2017)). Exitrons and tumor-specific exitrons of these studies were 

identified using the methods and parameters applied for TCGA cohorts and described above. 

HLA class I four-digit types were obtained from the original studies or inferred by using 

OptiType and yara aligner for HLA class I typing from the RNA-Seq data. TSE splicing-

derived neoantigen candidates were identified using ScanNeo as described above.

Performance comparison on predicting ICB response—We collected the somatic 

mutation data from ccRCC (Miao et al., 2018) and melanoma studies (Hugo et al., 2016; 

Riaz et al., 2017; Van Allen et al., 2015). Mutation-derived neoantigens were identified 

using ScanNeo as described above. Gene expression profiles (FPKM values) were quantified 

by featureCounts (Liao et al., 2014) from the RNA-Seq data as described above. In addition 

to TSE-splicing load, TSE splicing-derived neoantigen load and mutation-derived 

neoantigen load, we include literature-reported ICB response biomarkers (expression levels 

of PD-L1, CD8+ T cell, and interferon gamma) (Jiang et al., 2018) for comparison. If the 

biomarker includes multiple gene members (e.g., CD8+ T cell: CD8A and CD8B), the 

average expression values among all members will be used as the expression value of this 

biomarker.

To determine the predictive power, we stratified patients into responders and non-

responders, and performed a ROC analysis detailing the true-positive rates versus false-

positive rates at various thresholds of predictor values. The area under the curve (AUC) from 

the ROC analysis was used as the performance measurements of prediction. Smoothed ROC 

curve was generated by R package pROC (Robin et al., 2011).

Identification of expressed peptides in CPTAC—Proteomics data for TCGA breast 

(Mertins et al., 2016) (35 samples) and ovarian cancer (Zhang et al., 2016) (32 samples) 

were downloaded from the CPTAC data portal (Edwards et al., 2015). For each of the 67 

TCGA tumor samples, we generated individual polypeptide databases comprising mutant 

(MT) peptide sequences with ten flanking amino acids on each side of the exitrons/nsSNVs/

indels concatenating with UniProt human proteome. OpenMS (Rost et al., 2016) was used to 

identify polypeptides from a sample’s polypeptide database as follows: 1) decoy sequences 
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were added to the database to control false discovery rates; 2) The sample’s CPTAC mass 

spectrometry data set was searched against the corresponding polypeptide database using 

MS-GF+ (Kim and Pevzner, 2014). The peptide-spectrum match (PSM) FDR was set to 5% 

for the polypeptide identification. Any 9-mer putative neoantigen contained in at least one of 

the identified polypeptides is considered CPTAC-confirmed. We used the same commands 

and parameters as described in Kahles, A. et al. (Kahles et al., 2018) to perform the 

polypeptide identification, as follows:

a. Create decoy sequences database.

DecoyDatabase -in <in.fasta> -out <db.fasta>

b. Search CPTAC mass spectra.

MSGFPlusAdapter -ini <config.ini> -in <spectra.mzML> -out <out.idXML> -

database <db.fasta> -executable <MSGFPlus.jar> -java_memory 20000 -threads 

16

c. Refresh the mapping of peptides to proteins and add target/decoy information.

PeptideIndexer -in <out.idXML> -fasta <db.fasta> -out <pi_out.idXML> -

allow_unmatched - enzyme:specificity ‘semi’

d. Merge peptide identification files from multiple runs.

IDMerger -in <pi_out.idXML files> -out <merged.idXML>

e. Control for false discovery rate

FalseDiscoveryRate -in <merged.idXML> -out <fdr_out.idXML>

IDFilter -in <fdr_out.idXML> -out <fdr_filtered.idXML> -score:pep 0.05

The codes and the configuration file are also available on GitHub (https://

github.com/ylab-hi/ScanExitron).

In addition to TCGA tumor samples, five cancer types offered by CPTAC (phase III) have 

been used for the proteomic analysis. CPTAC samples include ccRCC (Clark et al., 2019) 

(110 samples), Glioblastoma (99 samples), Head and Neck Squamous Cell Carcinoma 

(HNSCC) (110 samples), Uterine Corpus Endometrial Carcinoma (Dou et al., 2020) (101 

samples) and Lung Adenocarcinoma (Gillette et al., 2020) (111 samples). The 

corresponding mutation data and the RNA-Seq alignment files were downloaded from the 

GDC (https://gdc.cancer.gov). Proteomics data were downloaded from the CPTAC data 

portal (Edwards et al., 2015). For somatic mutations data, mutation calls were required to be 

made by two or more mutation callers at the position where total depth >= 10. Following the 

same procedure applied for TCGA samples, neoantigens derived from exitrons/nsSNVs/

indels and proteomic-confirmed neoantigens were identified.

Identification of expressed peptides in immunopeptidome data—We obtained 

the MS-based immunopeptidomics raw data and the corresponding RNA-Seq data from 

eleven ovarian cancer samples (patient ids: OvCa48, OvCa58, OvCa65, OvCa70, OvCa80, 

OvCa84, OvCa104, OvCa105, OvCa109, OvCa111, OvCa114) (Schuster et al., 2017). The 
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immunopeptidomics raw data were converted to mzML files with ProteoWizard Toolkit 

(Chambers et al., 2012). Tumor-specific exitrons of these ovarian cancer samples were 

identified by ScanExitron from their RNA-Seq data following the same criteria used for 

tumor-specific exitron analysis for TCGA samples, which requires tumor-specific exitrons 

were not spliced in GTEx samples and were spliced in no more than three TCGA normal 

samples. For each ovarian cancer sample, we generated individual polypeptide databases 

comprising MT peptide sequences with ten flanking amino acids on each side of the 

exitrons. The decoy sequences were added to the database for false discovery rates control. 

OpenMS (Rost et al., 2016) was used to perform polypeptide identification. Tandem MS 

spectra were searched against the target-decoy databases by MS-GF+ with the following 

settings: (a) No cleavage specificity, (b) one dynamic modification allowed (oxidized 

methionine), (c) precursor mass tolerance 5 ppm, (d) peptide length allowed: 8–11 amino 

acids for MHC-I ligands, 12–21 amino acids for MHC-II ligands and (e) a false discovery 

rate of 5% on the peptide-spectrum match level to filter the identified polypeptides.

Immunogenicity score and neoORF length calculation for exitron splicing 
events and mutations—We measure the immunogenicity of neoantigens by calculating 

the relative hydrophobicity of amino acids at T-cell receptor contact residues, which is a 

strong hallmark of CD8+ T cell-mediated immunity (Chowell et al., 2015). pTuneos (Zhou 

et al., 2019) was used to calculate a hydrophobicity score for candidate neoantigens, which 

utilize the amino acid biochemical property (Kyte-Doolittle numeric hydrophobicity) and 

eXtreme Gradient Boosting (XGBoost) machine learning model to infer the score based on 

experimentally validated T-cell response epitopes deposited in Immune Epitope Database 

(IEDB, www.iedb.org ). To evaluate the immunogenic potential of TSE-derived neoantigens, 

295 nsSNV-derived neoantigens that induce a T-cell response curated from dbPepNeo (Tan 

et al., 2020), 15 literature-reported functionally validated immunogenic frameshift (fs) indel-

derived neoantigens (Litchfield et al., 2020) and 4 non-immunogenic fs-indel-derived 

neoantigens from the same study were used for immunogenicity predictions. The length of 

neoORF was used as another measurement of immunogenicity as it has been reported that 

long neoORF was associated with immunogenic neoantigens (Litchfield et al., 2020). VEP 

was used to determine the neoORF lengths as described above.

RNA-Seq and Iso-Seq validation of exitrons in SKBR3—Illumina RNA-Seq data of 

SKBR3 was downloaded from NCBI SRA (Accession: SRX5414723) (Ghandi et al., 2019). 

Exitron splicing events were identified using the methods and parameters applied for TCGA 

cohorts and described above. PacBio single-molecular real-time long-read Iso-Seq data of 

breast cancer cell line SKBR3 was downloaded from NCBI SRA (Accession: SRX4220391) 

(Nattestad et al., 2018). The long-read raw data in FASTA format were retrieved using the 

SRA toolkit (Leinonen et al., 2011). Minimap2 (Li, 2018) was used to align Iso-Seq long-

read raw data to hg38 human genome assembly with the parameters for spliced long reads 

alignment. Exitron splicing events were identified from aligned long reads using 

ScanExitron as described above. TALON (Wyman et al., 2020) was used for transcript-level 

quantification to long-read identified exitron-spliced and wild-type transcripts, respectively.
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PCR- and Sanger sequencing-based validation of exitrons in SKBR3—Genomic 

DNA (gDNA) was isolated from SKBR3 human breast cancer cells were using standard 

methods. Briefly, cells were lysed with 500 μl of cell lysis buffer (10 mM Tris-HCl, 10 mM 

EDTA, 50 mM NaCl, 10% SDS, pH 7.5) supplemented with 10μl proteinase K (Roche). 

Following centrifugation, DNA was precipitated from lysates using isopropanol, washed 

with 70% ethanol, and resuspended in 100 μl of nuclease-free water for subsequent 

experiments. Alternatively, mRNA was extracted from SKBR3 cells using an RNeasy Plus 

kit (Qiagen) according to the manufacturer’s instructions. Eluted RNA (1 μg) was used to 

generate cDNA for subsequent experiments using a cDNA synthesis kit (BioRad) as 

described in the kit provided protocol. Standard PCR was performed using gDNA and 

mRNA-derived cDNA templates, Choice-Taq™ DNA Polymerase (Thomas Scientific), and 

five pairs of gene specific oligonucleotides designed to flank the exitronic deletions 

identified in SETDB2, MOGS, NOD1 and CHD2 genes. Forward (5’−3’) and reverse 

(5’−3’) primer sequences used to amplify exitron splice products are as follows: SETDB2-F: 

TGCCACTGAACTTGAAGGGA, SETDB2-R: CCGAGCCAACTGAACATAGG, MOGS-

F: TGACAGATGGCAAGGAAGTC, MOGS-R: CCCTTGTCCGTAGAAGTAGCC, NOD1-

F: TGACTCCAAGTTCGTGCTGT, NOD1-R: CTCAGGTCCAAGTCCGAGTG, CHD2-F: 

CGGATAGCCGAGTGCCTTAAA, CHD2-R: CTCTGCCAGTCTCCTCGATCT. PCR 

amplified DNA extracted from a 2% agarose gel was purified using QIAEX II® Gel 

Extraction Kit (Qiagen) according to the manufacturer’s instructions. Gel extracted PCR 

products were cloned into the pCR®-Blunt II-TOPO® vector (Invitrogen) for subsequent 

Sanger sequencing. Plasmids isolated using ZymoPURE™ Plasmid Miniprep Kit (Zymo 

Research) were subjected to Sanger sequencing using the pCR®-Blunt II-TOPO® kit 

supplied M13-R primer, 5’- CAGGAAACAGCTATGAC-3′.

Transcriptional signature of FOXA1 exitron-spliced tumors—To determine 

transcriptional signatures associated with FOXA1 exitron splicing events, we identified 

significantly differentially expressed genes between FOXA1 exitron-spliced and wild-type 

samples. Wild-type samples were determined as those lacking ETS family gene fusions 

(ERG, ETV1, ETV4 and FLI1) and SPOP mutations (Parolia et al., 2019) in addition to 

FOXA1 mutations and exitron splicing events. To identify putative transcription factors 

regulating differentially expressed genes between FOXA1 exitron-spliced tumors and wild-

type patients, BART (Wang et al., 2018) was used to infer the specific transcription factors 

mediating transcriptional changes.

The AR activity score was calculated as previously described (Cancer Genome Atlas 

Research, 2015). In brief, Z-scores for 20 androgen-induced genes were computed by 

subtracting the pooled mean from the RNA-Seq expression FPKM values and dividing by 

the pooled standard deviation. The sum of the Z-scores for the AR signaling gene signature 

of 20 androgen-induced genes represents the AR activity score for each sample.
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Experimental validation of FOXA1 Δ186–215 and Δ231–240 and NEFH Δ871–
911

(a) Antibodies: The following antibodies were used for western blotting: NEFH antibody 

(ab207176, RRID:AB_2827968); Myc-Tag antibody (9B11; RRID:AB_331783); PARP 

antibody (46D11, RRID:AB_659884); β-ACTIN antibody (Ab8227, RRID:AB_2305186).

(b) Cell Proliferation assay: Cells were seeded at a density of 1×103 cells/well in a 96-well 

plate with outer wells left empty for addition of PBS. The proliferation rate was performed 

with CellTiter-Glo® 2.0 Cell Viability Assay Kit (G9241, Promega). Each assay was 

performed at least three times with triplicate wells.

(c) BrdU incorporation assay: The BrdU incorporation assay was performed in wild type 

and mutant NEFH expressing C4-2 and PC-3 cells with BrdU ELISA kit (ab126556, 

Abcam) according to manufacturer’s recommended conditions. The data are presented as the 

means and standard deviations of three independent experiments with triplicate wells.

(d) Colony-forming assay: PC-3 and C4-2 cells (500 cell/well) were seeded on 6-well 

plates and maintained in RPMI1640 cell culture medium supplemented with 10% FBS in a 

humidified chamber atmosphere comprising 95% air and 5% CO2 at 37°C for 2 weeks. 

Following PBS wash, cells were stained using 0.1% crystal violet solution at room 

temperature for 30 min. Stained cells were washed with water gently, pictures were taken 

after air dried at room temperature.

(e) Luciferase reporter assay: Oligonucleotide fragments containing six tandem FKHD-

consensus (canonical or non-canonical) (Adams et al., 2019) motifs with 5-bp spacers 

(Oligo list) were cloned into pGL3-Promoter Luciferase Reporter Vector (Pomega) between 

NheI and XhoI restriction sites. Oligonucleotide sequences were verified using Sanger 

sequencing. The pGL3–6FBS-Luc (600 ng per well) was transiently transfected using 

Lipofectamine 3000 (Thermo Fisher) into HEK293T cells in 12 well plates along with 

CMV-Renilla (60 ng per well) (pRL-CMV Renilla, Promega) as an internal control. To test 

the response of these reporters to various mutants of FOXA1 introduced into the system, the 

same total amount of DNA was transfected into each well. Response ratios are calculated 

relative to the signal obtained for the wells transfected with wild-type FOXA1 (1200 ng per 

well), which was set to 1. In evaluating relative response ratios between FOXA1 (wild type) 

and various mutants, one concentration of cDNA (1200 ng per well) was used and relative 

response ratios reflect the activity of the given variant on the reporter. Luminescence 

measurements were taken 24 hrs after transfection. All results are means and standard 

deviations from experiments performed in biological triplicates, and luciferase activity of 

individual well was normalized against Renilla luciferase activity using the Dual-Glo 

Luciferase assay (Promega; E2980).

HEK293T cells stably overexpressing the wild-type AR protein (HEK293T-AR) were used 

for the TMPRSS2 reporter assays. 14 hrs after seeding cells in 12-well plate, medium was 

replaced with 10% CSS-supplemented phenol-free medium (androgen-depleted) and cells 

were transfected with the TMPRSS2 promoter Firefly luciferase reporter. TMPRSS2 
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promoter luciferase reporter (Liu et al., 2019) construct was described previously. It was 

transiently transfected (1200 ng per well) using Lipofectamine 3000 (Thermo Fisher) into 

HEK293T-AR cells along with CMV-Renilla (60 ng per well) (pRL-CMV Renilla, 

Promega). 8 hrs after transfection, cells were treated with DHT at 10 nM dosage diluted with 

fresh androgen-depleted medium (Parolia et al., 2019); and after incubation for additional 24 

hrs, dual luciferase activity was recorded for every sample using the Dual-Glo Luciferase 

assay (Promega; E2980). All results are means and standard deviations from experiments 

performed in biological triplicates, and luciferase activity of individual well was normalized 

against Renilla luciferase activity.

(f) Cloning of representative FOXA1 and NEFH mutants: Human wild-type FOXA1 

coding sequence was cloned in pLenti-C-Myc-DDK-P2A-Puro (Origene PS100092) by 

primers (Oligo list). Human NEFH wild type expressing vector was purchased from Origene 

(RC213487L3). Truncate mutations were engineered from the wild-type FOXA1 and NEFH 

vector using specific primers (Oligo list). All mutations were confirmed using Sanger 

sequencing through GENEWIZ. Engineered mutant plasmids were further transfected in 

HEK293T cells to confirm the expression of the mutant protein. All FOXA1 and NEFH 

variants had the Myc tag fused on the C terminus, and these lentivirus vectors were further 

used for generating stable cell lines in PC-3 and C4-2 cells by puromycin selection.

Quantification and Statistical Analysis

Characterization of significantly exitron-spliced genes and gene sets—We 

adopted the method used in MutSig (Lawrence et al., 2013) to identify significantly exitron-

spliced genes (SEGs) that are enriched for exitron splicing events. For a tumor type, a single 

average genome-wide background exitron splicing rate (BER) was calculated by BER = N
L , 

where N is the number of exitron splicing events in a specific tumor cohort, L is total length 

protein-coding exons harboring exitron splicing events in pan-cancer cohorts. A binomial 

distribution was used to calculate the gene-specific enrichment p value as below:

Pr(gene) = n
k BERk(1 − BER)n − k

where k is observed number of exitron splicing events for a gene, n is the length of protein-

coding exons for this gene. Benjamini-Hochberg FDR was controlled at 10−5. For each 

identified SEG, tissue specificity among 33 cancer cohorts was defined using tissue 

specificity index tau (Yanai et al., 2005), as follows.

tau =
∑i = 1

n 1 − xi′
n − 1 ; xi′ =

xi
max

1 ≤ i ≤ n
xi

where n is the number of cancer cohorts (n=33) and xi is the number of exitron splicing 

events occurred in a particular SEG divided by the total number of exitron splicing events 

occurred in the cohort i.

Wang et al. Page 22

Mol Cell. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For a gene set {ℊ1, ℊ2 ⋯ ℊm}; that includes m genes, a binomial distribution was used to 

calculate the gene set-specific enrichment p value as below:

Pr(gene set) =
∑i = 1

m ni

∑i = 1
m ki

BER∑i = 1
m ki(1 − BER)∑i = 1

m ni − ∑i = 1
m ki

where ki is observed number of exitron splicing events in gene ℊi and ni is the length of 

protein-coding exons for gene ℊi. Benjamini-Hochberg FDR was controlled at 0.05.

Differential analysis between somatic mutation and tumor specific exitron 
splicing altered genes—The differential analysis was run on all tumor types that had at 

least 50 tumor samples available, CHOL, DLBC and UCS were excluded. For each tumor 

type we randomly selected 50 samples. We then used Wilcoxon signed-rank test to perform 

a differential test between mutations and exitron splicing, utilizing the event number for 

every gene in every sample. Formally, the p value of each gene (Pr(ℊ)) is obtained by 

Wilcoxon signed-rank test ([x1, x2, …, xn], [y1, y2, …, yn]), where n is total number of 

selected samples, xi is the number of exitron splicing events and yi is the number of 

mutations for gene ℊ in patient i. Benjamini-Hochberg FDR correction was applied for Pr(ℊ). 

The effect size was calculated as the log-ratio of total exitron splicing count to total mutation 

count. We kept the top 300 genes ranking by the average exitron splicing count or average 

mutation count in all tumor samples. To account for variability in the random selection 

process, we repeated the testing 10 times, each time on a different random subset. For each 

gene, the final FDR and effect size was recorded as the median of the ten results.

Statistical analysis—Student’s t-test, Kruskal–Wallis test, Mann-Whitney test, Fisher’s 

exact test and Hypergeometric test were performed using R v3.2.2 (R Core Team, 2017). 

Benjamini-Hochberg multiple testing correction was used to estimate the FDR when 

multiple testing correction was applied, unless specified otherwise. Significance was 

reported at four levels and is indicated in figure legends: *p < 0.05, **p < 0.01, ***p < 

0.001, ****p < 0.0001. Kaplan-Meier estimate and log-rank test were performed using 

Python package lifelines (Davidson-Pilon, 2019). Other details regarding parameters 

pertaining to results shown in figures can be found in the associated legends, including 

statistical analysis performed, statistical significance and counts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Large-scale transcriptome analysis compiles a cancer exitron splicing landscape

Exitron splicing disrupts functional protein domains to cause cancer driver effects

Immunopeptidome analysis identifies exitron splicing-derived neoantigens

Exitron splicing neoantigen load predicts response to checkpoint inhibitor therapy
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Figure 1. Samples and workflow for exitron splicing discovery.
(A) Data source for the 33 cancer types in this study. Bar charts describe numbers of tumor 

and matched normal samples for each cancer type from TCGA (with color) and healthy 

samples from GTEx (without color). The number of samples with available RNA-Seq data is 

indicated. (B) Workflow and criteria of exitron detection in TCGA data. Left, the 

computational pipeline to detect exitron splicing events within annotated protein-coding 

exons from TCGA RNA-Seq data. Right, the criteria to report an exitron splicing event 

including the number of supporting reads (indicated by D) and a percent spliced out (PSO) 

metric.
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Figure 2. Detection of dysregulated exitron splicing (EIS) events in cancer.
(A) Count of EIS events across 33 cancer types. For each cancer type, we randomly choose 

36 samples for EIS burden evaluation to account for cohort size variations. (B) Pairwise 

comparison of EIS load in 40 randomly selected pairs of tumor specimens (T) and matched 

adjacent histologically normal tissues (N) for TCGA cancer types with at least 40 T/N 

matched samples. The p value is calculated using the Wilcoxon signed-ranks test. (C) 
Results of differential splicing analysis of exitrons between tumor and normal tissues for 8 

cancer types. Rows represent 16 dysregulated exitrons that were found to be differentially 

spliced after FDR correction. Shading corresponds to −log10(p value). Columns represent 

cancer types. Genes marked with an asterisk are annotated in the COSMIC cancer gene 

census. (D) Illustration of the dysregulated EIS events identified in FOXO4 (left) and SPEN 
(right) and comparison of their splicing between tumor and normal samples for the eight 

TCGA cancer types. Each dot corresponds to the percent spliced out (PSO) value of the 

selected EIS in one sample.
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Figure 3. Detection of genes enriched with tumor-specific exitrons (TSEs).
(A) Number of TSE splicing events for TCGA cohorts. Each dot represents the number of 

TSE splicing events in a TCGA tumor sample. (B) Top 35 significantly exitron-spliced 

genes (SEGs). Circle size correlates with the number of samples with spliced TSEs and 

colored by cancer type. Highly tissue specific SEGs (τ > 0.9) are highlighted. (C) Mutual 

exclusivity of exitron splicing events in FET genes including EWSR1, FUS and TAF15 in 

TCGA pan-cancer cohort (****p < 0.0001, Fisher’s exact test). (D) Exitron splicing of FET 

family genes predicts progression-free survival in TCGA pan-cancer cohort. (E) The 

expression of the SEG gene NEFH is correlated with Gleason grade in PRAD cohort (n.s., 

not significant (p > 0.05), *p < 0.05, **p < 0.01, ***p < 0.001, Mann-Whitney rank test). 

(F) NEFH is downregulated in prostate tumors. NEFH mRNA expression from microarray 

data set (GSE21032) is compared in benign, localized, and metastatic prostate cancer. The p 

value is calculated by Kruskal-Wallis test. (G) Low NEFH mRNA expression is associated 
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with poor clinical outcome. Kaplan-Meier analysis of prostate cancer outcome using 

GSE21032 dataset is shown. Prostate cancer cases are stratified based on their NEFH mRNA 

expression level and analyzed for biochemical recurrence. The p value is calculated by a log-

rank test. (H) Representative western blot against C4-2 stable cell lines expressing Myc-

tagged wild-type NEFH and exitron-spliced NEFH. Apoptosis was evaluated by western blot 

analysis for poly (ADP-ribose) polymerase (PARP) cleavage. (I) CellTiter-Glo growth 

assays indicate that overexpression of wild-type NEFH, but not exitron-spliced NEFH, 

significantly inhibited cell growth in C4-2 cells. (J) Overexpressing wild-type NEFH 

significantly decreased colony-formation ability of C4-2 cells. Cells were fixed and stained 

with crystal violet. n = 6. The figure is a representative of three experiments with similar 

results. Quantification was performed by manual counting. (K) BrdU ELISA assay of C4-2 

cells overexpressing wild-type NEFH and or exitron-spliced NEFH with 24hrs of BrdU label 

(n=9). Y axis, absorbance of 450–590 nm relative to empty vector. There was less 

incorporation of BrdU in cells expressing wild-type NEFH. All p values are calculated using 

unpaired, two-tailed Student’s t-test. Error bars indicate ± s.d. (*p < 0.05, **p < 0.01, ***p 

< 0.001).
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Figure 4. Comparison of TSE splicing and somatic mutations.
(A) Volcano plot shows mutation and TSE splicing frequency difference separating genes as 

SMGs and SEGs. (B) The frequencies of mutation and exitron splicing events in genes are 

inversely correlated in the PRAD cohort. DNA mutations and exitron splicing are mutually 

exclusive in FOXA1, KMT2D, and ZFHX3. Genes of interest are highlighted. (C) DNA 

mutations and exitron splicing are clustered in the forkhead DNA binding domain of the 

FOXA1 gene in PRAD. (D) The nucleotide and amino acid changes caused by exitron 

splicing and somatic mutations are shown against the 3D structure of the FOXA1 forkhead 

domain. The α-helix and wing regions are highlighted. (E) Comparison on Pfam protein 

domains affected by somatic mutations versus exitron splicing events. Venn diagram (top 

panel) shows that Pfam domains affected by somatic mutations or exitron splicing events 

share extensive overlap. The scatterplot (bottom panel) shows high correlation (Spearman 

correlation coefficient = 0.7) in the Pfam domains affected by exitron splicing events and 
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somatic mutations. Pfam domains of interest are highlighted. Jaccard similarity is used to 

measure the similarity between exitron splicing- and mutation-altered gene sets.
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Figure 5. MsigDB hallmark gene sets affected by exitron splicing in TCGA cohorts.
The size of the circles represents the significance of TSE enrichment measured by FDR. 

Color indicates the fraction of TSE splicing altered samples per gene set and tumor type.
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Figure 6. Putative TSE neoantigens and their correlation with immune response.
(A) Comparison of the contribution of TSE splicing, somatic SNVs and indels to CPTAC 

proteomic-confirmed putative neoantigens in BRCA and OV. (B) RNA-Seq data of ovarian 

cancer patient OvCa65 showed a 79bp exitron in PRPF8 exon 33 (top panel). Predicted 

functional domains disrupted by this frameshift exitron splicing event in PRPF8 (middle 

panel). A predicted neoantigen resulting from this frameshift exitron in PRPF8 was found by 

mass spectrometry to be presented in the corresponding immunopeptidome (bottom panel). 

(C) TSE neoantigen burden correlates with individual immune cell types in TCGA tumors. 

Values displayed are the Spearman correlation of immune cell fractions (rows) with 

neoantigen count within each tumor type (columns). Red indicates positive correlation 

(increasing proportion of indicated cell type with increasing neoantigen burden), and blue 

indicates negative correlation. (D) TSE neoantigen burden is associated with checkpoint 

inhibitor response in clear cell renal cell carcinoma (ccRCC). (E) Expression of T cell 
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markers (PD-1, CD8A, CD8B), cytolytic activity markers (GZMA and PRF1) and immune-

regulatory molecules (PD-L1 and PD-L2) in patients between top quartile TSE neoantigen 

load (named high group) and bottom quartile TSE neoantigen load (named low group) in OV 

and KIRC (n.s., not significant (p > 0.05), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 

0.0001, Mann-Whitney rank test).
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