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Summary:

Inverse probability of treatment weights are commonly used to control for confounding when 

estimating causal effects of point exposures from observational data. When planning a study that 

will be analyzed with inverse probability of treatment weights, determining the required sample 

size for a given level of statistical power is challenging because of the effect of weighting on 

the variance of the estimated causal means. This paper considers the utility of the design effect 
to quantify the effect of weighting on the precision of causal estimates. The design effect is 

defined as the ratio of the variance of the causal mean estimator divided by the variance of a 

naïve estimator if, counter to fact, no confounding had been present and weights were not needed. 

A simple, closed-form approximation of the design effect is derived that is outcome invariant 

and can be estimated during the study design phase. Once the design effect is approximated for 

each treatment group, sample size calculations are conducted as for a randomized trial, but with 

variances inflated by the design effects to account for weighting. Simulations demonstrate the 

accuracy of the design effect approximation, and practical considerations are discussed.
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1. Introduction

Researchers often aim to estimate causal effects rather than just associations between 

variables. In settings where experimental designs are implausible, inference relies on 

observational data from which measured associations can be confounded. Marginal 

structural models (MSMs) are a commonly used method to estimate causal effects in the 

presence of confounding variables (Hernán et al., 2000; Robins et al., 2000; Cole and 

Hernán, 2008; Brumback et al., 2004). These models can be fit using numerous methods, 

but are commonly fit via weighted estimating equations, where the weights are the inverse 

of each participant’s probability of the observed treatment (or exposure). For a binary 
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point exposure, the estimand of interest is often the average causal effect, the difference 

in counterfactual means for the two treatment levels. With the assumptions of causal 

consistency, conditional exchangeability, and positivity, the inverse probability of treatment 

weight (IPTW) estimators are consistent for the MSM parameters for the causal means and 

the average causal effect (Lunceford and Davidian, 2004). Variance estimates are computed 

using standard estimating equation theory (Stefanski and Boos, 2002), with the empirical 

sandwich variance estimator providing a consistent estimator for the asymptotic variance of 

the estimated average causal effect.

While IPTW estimators provide researchers with an analytic tool for estimating causal 

effects in the presence of confounding variables, these estimators pose challenges during 

study design. The use of weights in the analysis affects the variance of the average causal 

effect estimator, making it challenging to determine the number of participants needed to 

achieve sufficient statistical power to detect a difference in causal means. Sample sizes 

cannot be calculated using standard methods that ignore weighting as in a randomized 

controlled trial (RCT) (e.g. as in Chow et al., 2017), as this will tend to be anti-conservative. 

Numerous papers have examined the properties of IPTWs and have developed guidelines 

and diagnostics for specifying weight models and adjusting estimated weights (Austin, 

2009; Austin and Stuart, 2015; Cole and Hernán, 2008; Lee et al., 2011). However, currently 

no methods exist for power and sample size calculations for studies that will be analyzed 

using MSMs fit with IPTWs.

Weighted estimators are common in survey sampling, and methods have been developed 

to quantify the effect of weighting on the precision of estimates. Kish (1965, page 257) 

introduced the design effect under the randomization-based inferential paradigm for survey 

sampling. The design effect is the ratio of the variance of an estimator under a complex 

sample design to the variance of the estimator under a simple random sample. When 

participants are selected directly from the finite population rather than from clusters of 

correlated observations, the design effect for a population mean estimator simplifies to the 

design effect due to weighting (deff w), or the unequal weighting effect (Kish, 1992). Let 

n be the sample size and wi represent the sampling weight for the ith participant, i.e., the 

inverse of participant i’s probability of selection. The design effect due to weighting is 

defined using either of the two equivalent forms:

deffw =
n∑i = 1

n wi2

∑i = 1
n wi

2 = 1 + S2(w)
n−1∑i = 1

n wi
2 (1)

where S2(w) is the finite sample variance of the weights. The design effect is interpreted 

as an estimator’s increase in variance due to differential weights across participants. This 

metric is commonly applied to all types of complex sample designs in which individuals 

in the finite population have different probabilities of selection (Valliant et al., 2013, page 

375). Gabler et al. (1999) provided a justification for how Kish’s design effect also applies 

to model-based estimators. In practice, the design effect is used to calculate the effective 
sample size, which is equal to the observed sample size divided by the design effect. The 

effective sample size can be interpreted as the sample size under simple random sampling 

Shook-Sa and Hudgens Page 2

Biometrics. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that that would have produced the same variance as the sample selected under the complex 

design (Valliant et al., 2013, page 5).

Advantages of deff w are that it is outcome invariant and allows the sample size under a 

complex design to be translated into a sample size under a simpler design with the same 

variance. The former implies that deff w depends only on the participants’ weights and is 

constant across outcomes. The latter means that once deff w is known or approximated, 

it can be used in power and sample size calculations along with the simpler assumptions 

needed to design a study without weights.

In this paper we consider design effects for planning observational studies to assess the 

effect of a treatment or exposure on an outcome of interest. In the analysis of observational 

data, McCaffrey et al. (2004, 2013) have used the effective sample size to quantify the 

loss of statistical precision following inference about causal effects using propensity score 

weighting. Here we describe the use of design effects for determining the sample size or 

power when designing an observational study to estimate point exposure effects. Section 

2 introduces the design effect for causal inference and gives a large sample justification 

that the design effect can be approximated by Kish’s deff w. Section 3 demonstrates how 

the design effect can be used to determine the sample size or power of an observational 

study that will be analyzed using IPTWs. Section 4 examines the accuracy of the design 

effect approximation for various exposure and outcome types via simulations, and Section 

5 provides practical considerations regarding the use of design effects. Section 6 considers 

estimating the design effect in the setting where pilot data are available, and Section 7 

concludes with a discussion of the results and implications. The supporting information 

includes proofs of the propositions appearing in the main text along with additional 

simulations and supplemental tables and figures.

2. The Design Effect

2.1 Preliminaries

Suppose an observational study is being planned where n independent and identically 

distributed copies of (Ai, Li, Yi) will be observed, where Ai is the binary treatment 

(exposure) status for participant i such that Ai = 1 if participant i received treatment and 

Ai = 0 otherwise, Li is a vector of baseline covariates measured prior to Ai or unaffected 

by treatment Ai, and Yi is the observed outcome for participant i. The outcome Yi may be 

continuous or discrete.

The aim of the observational study will be to estimate the effect of treatment A on outcome 

Y. Specifically, let Y1i denote the potential outcome if an individual i, possibly counter to 

fact, receives treatment. Similarly let Y0i denote the potential outcome if individual i does 

not receive treatment, such that Yi = AiY1i + (1 − Ai)Y0i. Inference from the observational 

study will focus on parameters of the MSM E(Ya) = β0+β1a, with particular interest in the 

parameter β1 which equals the average causal effect ACE = E(Y1)−E(Y0) = μ1 −μ0. Note the 

MSM is saturated and thus does not impose any restrictions on the assumed structure of the 

data.
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Under certain assumptions, the parameters of the MSM can be consistently estimated using 

IPTW. In particular, assume conditional exchangeability holds, i.e., Ya ⊥ A | L for a ∈ 
{0, 1}. Also assume that positivity holds such that Pr(A = a | L = l) > 0 for all l such 

that dFL(l) > 0 and a ∈ {0, 1}, where FL is the cumulative distribution function of L. 

Estimating the average causal effect under the stated assumptions with the IPTW estimator 

first entails estimating the propensity score for each participant, defined as pi = Pr(Ai = 1 | 

Li) (Rosenbaum and Rubin, 1983). A model is fit to obtain pi, each participant’s estimated 

probability of treatment conditional on observed covariates Li. The estimated IPTW is 

then equal to W i = I Ai = 1 pi
−1 + I Ai = 0 1 − pi

−1, where I(Ai = a) is a {0, 1} treatment 

indicator for participant i. The estimated average causal effect β1 is obtained by regressing 

the observed outcome Y on treatment A with weights W  using weighted least squares. 

The resulting IPTW estimator is a difference in Hájek estimators for the two causal means 

(Hernán and Robins, 2020; Lunceford and Davidian, 2004):

ACE = μ1 − μ0 =
∑i = 1

n W iY iI Ai = 1
∑i = 1

n W iI Ai = 1
−

∑i = 1
n W iY iI Ai = 0

∑i = 1
n W iI Ai = 0

(2)

Augmented IPW estimators, which incorporate both outcome and treatment models, may 

be used instead of (2) to estimate the ACE. Such estimators are doubly robust and will be 

more efficient than (2) if both the treatment and outcome models are correctly specified 

(Robins et al., 1994; Lunceford and Davidian, 2004). Thus, the power and sample size 

calculations derived below, which are based on (2), will be conservative for studies analyzed 

with augmented IPW estimators when the outcome model is correctly specified.

2.2 The Design Effect for a Single Causal Mean

Define the design effect to equal the ratio of the (finite sample) variance of μa divided by 

the variance of a naïve causal mean estimator if, counter to fact, no confounding was present 

and weighting was not needed. That is,

deffwa =
V ar μa
V ar μa

where μa = ∑i = 1
n Y iI Ai = a / ∑i = 1

n I Ai = a . The derivation of the design effect 

estimator relies on the following proposition. The proposition assumes that the weights 

are known and are denoted by Wa = P(A = a | L)−1 for a ∈ {0, 1} with W = AW1+(1−A)W0. 

Let σa2 = V ar Y a  for a ∈ {0, 1}.

Proposition 1: 

n μa − μa
d N 0, Σa

where
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Σa = σa2
E W 2I(A = a)

[E W I(A = a) ]2
+ R L, Ya

and

R L, Ya = E W a − E W a Ya − μa
2

with

R L, Ya ⩽ V ar W a V ar Ya2 − 2μaYa

for a ∈ {0, 1}

Proposition 1 implies that for large n the variance of μa can be approximated as:

V ar μa ≈
σa2
n

E W 2I(A = a)

[E W I(A = a) ]2
+ n−1R L, Ya

Because, for large n, V ar μa ≈ σa2/ nP (A = a) , it follows that

deffw
a ≈

P (A = a)E W 2I(A = a)
[E W I(A = a) ]2 + Era (3)

where Era = P (A = a)/σa2 R L, Y a , which by Proposition 1 is bounded by:

Era ⩽ P (A = a)/σa2 Var W a Var Ya2 − 2μaYa

An approximation of (3) that does not depend on the potential outcome Ya omits the 

remainder term Era:

deffw
a =

P (A = a)E W 2I(A = a)
[E W I(A = a) ]2 (4)

When planning an observational study, prior or pilot study data may be available to estimate 

(4). In particular, suppose based on a pilot study np copies of (Li, Ai) are observed. 

Then replacing P(A = a) with Na/np where Na = ∑i = 1
np I Ai = a , E W 2I(A = a)  with 

np−1∑i = 1
np W i

2I Ai = a , and E{WI(A = a)} with np−1∑i = 1
np W iI Ai = a , a consistent estimator 

of (4) is:
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deffw
a =

Na∑i = 1
np W i

2I Ai = a

∑i = 1
np W iI Ai = a

2 (5)

This estimator has the same form as Kish’s design effect (1), applied to treatment group A = 

a. When prior data are not available, the design effect can be approximated using (4) based 

on an assumed distribution for A | L and the marginal distribution of L. The bias of (4) or 

(5) as an approximation to (3) in a given application depends on the value of Era. Bias of 

(4) and (5) for varying outcome types and confounding structures is evaluated empirically in 

simulation studies presented in Section 4. A modified design effect estimator that accounts 

for the remainder is considered in Section 6.

3. Sample Size Calculations using the Design Effects

When ACE is the focus of inference for the observational study being planned, the large 

sample distribution of ACE can be used for power or sample size calculations. As n → ∞, 

ACE is consistent and asymptotically normal. In particular, from (A.1) in Web Appendix A 

and the delta method it follows that

n(ACE − ACE) d N 0, Σ* , (6)

where Σ* = Σ1 + Σ0. Treating the weights as fixed or known leads to a larger asymptotic 

variance for ACE compared to appropriately treating the weights as estimated, i.e., Σ* is 

at least as large as the true asymptotic variance of ACE (Lunceford and Davidian, 2004). 

Therefore, sample size formulae derived based on Σ* would in general be expected to be 

conservative.

The results in Proposition 1 and (6) allow for sample size calculations for studies that will 

be analyzed using MSM with IPTW. Suppose the sample size for the observational study 

being planned is to be determined on the basis of the power to test H0 : ACE = 0 versus 

Ha : ACE ≠ 0 or equivalently H0 : β1 = 0 versus Ha : β1 ≠ 0. Define the test statistic 

t = ACE V arn(ACE) −1/2, where V arn(ACE) = nP (A = 1) −1σ1, adj
2 + nP (A = 0) −1σ0, adj

2 , 

with σa, adj
2 = σa2deffw

a  for a ∈ {0, 1}. For large n, under the null t is approximately standard 

normal, thus H0 is rejected when |t| > z1−α/2, where α is the type I error rate and zq is the qth 

quantile of the standard normal distribution.

Proposition 2:

The sample size required to achieve power 1−β for effect size ACE = δ and type I error rate 

α is approximately:

ndeff =
(1 + k) z1 − α/2 + z1 − β

2(σ1, adj
2 /k + σ0, adj

2 )
δ2 (7)
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where k = P(A = 1)/P(A = 0) is the marginal odds of treatment in the population. Note ndeff 

is the total required sample size across the two treatments.

The sample size formula (7) is the standard sample size equation commonly used to 

design RCTs, but with σa2 replaced by σa, adj
2  (Chow et al., 2017, page 48). Thus, 

Proposition 2 simplifies power and sample size calculations for observational studies by 

allowing researchers to design studies as if they were designing an RCT, but inflating 

the assumed variances by the approximated design effects. The researcher first assumes 

that no confounding is present, specifies the desired α and 1−β, and makes assumptions 

about σ0
2, σ1

2, δ and k. The design effect is then approximated. When data from a pilot 

or prior study are available, deffw
1  and deffw

0  can be approximated based on (5) for 

each treatment group. When no prior study data are available, the distribution of the 

anticipated weights can be estimated based on assumptions about the distribution of L and 

A | L and the design effect can be calculated based on (4). While these assumptions may 

not be easy to make, this approach notably requires no assumptions about the potential 

outcomes Y0 and Y1 and their associations with A and L. Further discussion about these 

practical considerations is included in Section 5. Once the design effects are approximated 

by deffw
a  or deffw

a , adjusted variances σa, adj
2  can be estimated by σa, adj

2 = σa2deffw
a  or 

σa, adj
2 = σa2deffw

a , respectively, for a ∈ {0, 1}.

4. Simulation Study

4.1 Simulation Scenarios

Simulation studies were conducted to demonstrate use of the design effect in study design 

under a variety of confounding structures and outcome types. Data were simulated according 

to Scenarios 1–4 shown in Table 1 and also Scenario 5 described below. For all scenarios, α 
= 0.05 and 1 − β = 80% were chosen.

4.2 Sample Size Calculation

Two general approaches can be used to design a study with the design effect approximation: 

when prior study data are not available, as in Scenarios 1–4, and when prior study data are 

available, as in Scenario 5. One example from each general approach is presented in detail.

4.2.1 Example 1: No prior study data (Scenario 1b).—Suppose no prior study 

data are available to design the study of interest. Then, the researcher must make the 

same assumptions and design choices as when designing an RCT, namely by specifying 

α, 1 – β, σ0
2, σ1

2, δ, and k. In general, σ1
2 can be determined by deriving the marginal 

distribution of Y1 based on the assumed distributions of Y1 | L and L. For Scenario 

1b, P Y 1 = 1 = ∑l = 0
1 P Y 1 = 1 ∣ L = l)P (L = l) = 0.58, and thus σ1

2 = 0.2436. Similarly, 

σ0
2 = 0.1971. Here, the average causal effect is assumed to be δ = −0.15. The proportion 

of the population receiving treatment can be derived by integrating the distribution of A 

| L over L. For Scenario 1b, P (A = 1) = ∑l = 0
1 P (A = 1 ∣ L = l)P (L = l) = 0.65, and thus k 
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≈ 1.857. When prior study data are not available, the distribution of the IPTWs must be 

assumed at the design phase. Based on the assumptions in Table 1, four possible values of W 
exist. These assumed values of W, along with the joint distribution of A and L, allow for the 

computation of the design effects using (4). This leads to deffw
0 = 1.12 and deffw

1 = 1.04, 

with approximated adjusted variances of σ0, adj
2 = 0.2208 and σ1, adj

2 = 0.2533.

Under the assumptions outlined in Table 1 for Scenario 1b, to achieve 80% power to detect 

an average causal effect of −0.15 at the α = 0.05 level, a sample size of approximately 

ndeff = 356 is required based on Proposition 2. The design effects and required sample sizes 

for Scenarios 1a, 1c, and Scenarios 2–4 can be determined similarly and are presented in 

Table 2. Note Scenarios 1 and 3 have the same design effects because in both instances the 

joint distribution of A and L is the same. Likewise, Scenarios 2 and 4 have the same design 

effects.

4.2.2 Example 2: Prior study data (Scenario 5).—Prior study or pilot data may 

allow for better informed assumptions about σ0
2, σ1

2, δ, and k. Because σa2 = E Y a
2 − E Y a

2, 

σa2 can be estimated by obtaining E Y a
2  and E Y a  from fitted MSMs based on the prior study 

data. The estimate ACE and prevalence of the exposure or treatment in the prior study can 

inform assumptions about δ and k.

As an example, consider designing a new study based on the National Health and Nutrition 

Examination Survey Data I Epidemiologic Follow-up Study (NHEFS) example presented 

in Chapter 12 of Hernán and Robins (2020). Hernán and Robins use MSM with IPTWs 

to estimate the average causal effect of smoking cessation (A) on weight gain after 

approximately 10 years of follow-up (Y ) based on the NHEFS sample of smokers (n = 

1566), assuming conditional exchangeability based on nine baseline confounders L: sex, 

age, race, education, smoking intensity, duration of smoking, physical activity, exercise, and 

weight.

Making the same assumptions as Hernán and Robins (2020), Scenario 5 considers the 

design of a new study to estimate the average causal effect of smoking cessation on 10-year 

weight gain. Based on the NHEFS data, assume that σ0
2 = 56.1 and σ1

2 = 74.0, obtained by 

fitting MSMs with IPTWs to estimate E Y a
2  and E(Ya). In the Hernán and Robins example, 

ACE = 3.441kg. The new study will be designed to provide approximately 80% power to 

detect a difference in weight gain of δ ∈ {1.0, 2.0, 3.0}kg for Scenarios 5a-5c, respectively. 

From the NHEFS sample, assume k ≈ 0.346.

When prior study data are available, deffw
0  and deffw

1  can be estimated using (5). For 

the NHEFS data, deffw
0 = 1.03 and deffw

1 = 1.24. This leads to approximated adjusted 

variances of σ0, adj
2 = 57.78 and σ1, adj

2 = 91.76. Based on these assumptions, a sample size of 

ndeff = 853 is needed to achieve approximately 80% power to detect an average causal effect 

of 2.0kg at the α = 0.05 level using MSM with IPTWs.
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4.2.3 Naïve Sample Size Calculations.—As a comparison, sample sizes nrct were 

calculated naively under the assumptions of an RCT, ignoring the effect of weighting on 

the variances of the estimates. In other words, sample sizes were calculated as demonstrated 

above, except using σa2 instead of σa, adj
2  or σa, adj

2  from Table 2. The sample size nrct 

represents the total across the two treatments assuming that the marginal probability of 

treatment in the planned study is the same as in the population.

4.3 Evaluation

For Scenarios 1–4, empirical power based on samples of size ndeff was evaluated via 

simulation by following these steps:

i. Generate a superpopulation of size N = 1,000,000 based on distributions in Table 

1.

ii. Select a sample of size ndeff without replacement from the superpopulation, 

where ndeff is specified in Table 2.

iii. Estimate W i for each member of the sample based on the predicted values from 

the logistic regression of A on L.

iv. Fit the MSM E(Ya) = β0 + β1a using weighted least squares, treating the weights 

as estimated by stacking the estimating equations from the weight model with 

the estimating equations for the causal means and difference in causal means 

using the geex package in R (Saul and Hudgens, 2020).

v. Test H0 : β1 = 0 versus H1 : β1 ≠ 0 using a Wald test, rejecting H0 at the α = 0.05 

significance level.

vi. Repeat steps (ii)-(v) R = 2000 times and calculate empirical power as the 

proportion of simulated samples where H0 was rejected.

For Scenario 5, empirical power based on a sample of size ndeff was evaluated via simulation 

by following these steps:

i. Estimate the propensity score for each of the 1566 NHEFS participants from a 

logistic regression model of A on L as pi = Pr Ai = 1 ∣ Li = li . As in Hernán and 

Robins (2020), the logistic regression model includes main effects for each of the 

nine baseline confounders and quadratic terms for the four continuous covariates.

ii. For each participant, calculate Y ai, a ∈ {0, 1}, as the predicted value 

E Y ai ∣ Li = li  from the following linear regression model, fit only on 

participants with A = a: E(Yai | Li = li) = liβ, where li is a vector for participant 

i that includes an intercept term, the 9 previously defined covariates, and the 

four quadratic terms corresponding to continuous covariates. Also compute 

V ar Y ai ∣ Li = li = MSEa, where MSEa is the mean squared error from the 

model for E(Yai).

iii. Add 3.441 − δ to Y 0i for all participants, such that ACE = δ in the simulated 

population instead of 3.441 as in the NHEFS sample.
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iv. Select a sample of size ndeff with replacement from the NHEFS dataset, where 

ndeff is specified in Table 2.

v. Randomly sample Ai from Bernoulli pi .

vi. Let Y ai = Y ai + ϵai, where ϵai ∼ N(0, V ar Y ai ∣ Li = li ).

vii. Follow steps (iii)-(v) from the above list for Scenarios 1–4.

viii. Repeat steps (iv)-(vii) R = 2000 times and estimate empirical power as the 

proportion of simulated samples where H0 was rejected.

The estimated propensity score distributions from simulated data sets for each of Scenarios 

1–5 are displayed in Web Figure 5.

For each scenario, the steps above were repeated to calculate empirical power based on the 

naïve sample sizes, replacing ndeff with nrct.

The results of the simulation study are presented in Figure 1. For all simulation scenarios, 

when the sample size was calculated using the design effect, empirical power was close to 

or exceeded the nominal 80% level. That is, use of the design effects to calculate required 

sample sizes led to close to the intended level of statistical power (Figure 1A). On the other 

hand, ignoring the effect of weighting and basing sample sizes on the naïve assumptions 

of an RCT led to empirical power that was lower than the nominal 80% level for all but 

Scenarios 3a-3c (Figure 1B). These results demonstrate that ignoring the weights in power 

and sample size calculations can lead to significantly underpowered studies, particularly 

when there are strong confounders that lead to high variability in the weights.

4.4 Additional Simulations

The simulations summarized in Section 4.3 demonstrate the performance of the design effect 

approximation for Scenarios 1–4 when there is no pilot study data. Additional simulations 

were conducted to evaluate the design effect approximation in these scenarios when pilot 

study data are available to estimate k and σa, adj
2  for a ∈ {0, 1}. Results of these simulations 

are presented in Web Appendix B.1 and are similar to those presented in Section 4.3. 

Additional simulations were also conducted under the null hypothesis to empirically confirm 

type I error control; see Web Appendix B.2.

5. Practical Considerations

When prior study data are not available, specifying the design effects can be challenging. A 

few general guidelines are offered to help researchers determine reasonable assumptions to 

facilitate power and sample size calculations.

When only a few categorical covariates will be included in the weight model, researchers 

can use subject matter knowledge or prior study information to nonparametrically specify 

the joint distribution of A and L, or the marginal distribution of L and the conditional 

distribution of A | L (as in Example 1). Based on these assumptions, the anticipated weights 
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can be calculated nonparametrically and the design effects for each treatment group can be 

approximated.

When specification of these distributions is not feasible, researchers can forgo 

approximating the values of the weights and instead consider more generally how much 

variation is expected in the weights. The lower bound for deffw
a  is 1, which implies that the 

weights within both treatment groups are all equal and thus covariates are not predictive of 

the treatment. Design effects tend to increase when more covariates are added to the weight 

model. The presence of covariates that are strong predictors of treatment tends to increase 

the design effect. Care must be taken to identify the appropriate set of confounders to 

include in the weight model (Vansteelandt et al., 2012). Inclusion of instrumental variables, 

which are predictive of the exposure but which do not affect the outcome, inflate the 

variance of the ACE estimator without reducing bias (Rubin, 1997; Myers et al., 2011). The 

use of weight truncation will decrease the design effect.

Figure 2 depicts propensity score distributions for various values of the design effect and 

mean propensity score E(p) to aid researchers in choosing a design effect consistent with the 

expected variation in the weights. The propensity score distributions were generated by Na = 

1000 random draws from beta distributions with shape parameters set to achieve the desired 

E(p) and design effect. The corresponding weight distributions are included in Web Figure 

6. As variation in the propensity scores and thus the weights increases, so does the design 

effect approximation.

6. Estimating the Remainder with Pilot Study Data

The design effect estimators (4) and (5) omit the approximation error Era from (3). In 

this section estimators of the design effect are considered which include an estimate of 

Era. First we revisit the simulation study in Section 4 to examine the magnitude of the 

approximation errors for the data generating processes considered. Then we consider design 

effect estimators which incorporate an estimate of Era when pilot data are available.

Approximation errors Era were calculated for each of the scenarios included in the 

simulation study. For Scenarios 1–4, Era were calculated using the known distributions in 

Table 1 and are presented in Web Figure 4. For Scenario 5, Era were estimated empirically 

as approximately 0.03 for a = 0 and −0.03 for a = 1. Approximation errors were small for 

most scenarios and were in opposite directions for the two treatment groups, which tends 

to offset the effects of the errors (Web Figure 4). Scenario 2 had large approximation errors 

(Er0 = 0.59 and Er1 = −0.18 for Scenario 2b), but empirical power still equaled the nominal 

level when the design effect estimators (4) and (5) were used to calculate the sample size 

(Figure 1 and Web Figure 1). Note Scenario 2 is an extreme example, as it includes only a 

single and very strong confounding variable and only two possible and extreme values for 

W. For the binary outcome, this resulted in large approximation errors.

When pilot or prior data are available, Era can be estimated empirically rather than ignored, 

and a modified estimator of the design effect can be used for power or sample size 

calculations: deffw, rem
a = deffw

a + Era, where
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Era = Na/ npσa2
∑i = 1

np W iI Ai = a W i − E W a Yi − μa
2

∑i = 1
np W iI Ai = a

where E W a  is estimated empirically from the pilot sample and σa
2 is the estimator 

of σa2 described in Section 4.2.2. Adjusted variances σa, adj
2  can then be estimated by 

σa, adj
2 = σa

2deffw, rem
a  for a ∈ {0, 1}, and the sample size calculated using (7).

Additional simulations were conducted using deffw, rem
a  to calculate required sample sizes. 

The simulations are described in Web Appendix B.3 with the results in Web Figure 3 

and Web Figure 4. For Scenarios 1 and 3 (small design effect scenarios), estimates of Era 

were empirically unbiased, even for small pilot sample sizes (Web Figure 4). However, for 

Scenarios 2 and 4 (large design effect scenarios), estimates of Era demonstrate considerable 

empirical bias for small pilot samples, which was reduced as the pilot sample size increased. 

As shown in Web Figure 3, for all scenarios, empirical power was similar to the results in 

Figure 1. Thus, there may not be much benefit in using the modified design effect estimator 

deffw, rem
a  instead of deffw

a .

7. Discussion

The design effect approximation simplifies power and sample size calculations of 

observational studies. Using the design effect allows researchers to utilize standard power 

and sample size software (e.g., nQuery, SAS Proc Power) for randomized trials, but with 

variances inflated by the approximate design effects. An additional advantage of using the 

design effect approximation (4) that ignores the remainder term is that no assumptions are 

required about the relationship between the potential outcomes and either the treatment or 

the confounders. Empirical results demonstrate the design effect approximation can yield the 

nominal level of power over a range of confounding and outcome structures.

Approximating the design effect when planning an observational study may be challenging. 

In survey sampling, it is common practice to report estimated design effects in analytic 

reports for better understanding of the precision of the estimates and to assist other 

researchers who are designing similar studies (see, for example Center for Behavioral 

Health Statistics and Quality, 2019). Reporting the estimated design effects corresponding 

to treatment or exposure effect estimates in observational studies may assist researchers 

with future study designs. In time, as more studies analyzed with IPTW estimators start to 

report their design effects, rules of thumb and practical upper bounds for the design effects 

will likely emerge to aid in the design of future studies (see, for example, United Nations 

Statistical Division (2008, page 41), Daniel (2012, page 251), and Salganik (2006) from the 

survey sampling literature).

In the absence of knowledge of estimated design effects from prior studies, the design effect 

may be approximated either using (4) or, if pilot data are available, (5). In either case, the 
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remainder in Proposition 1 is ignored, which in principle may introduce bias. The remainder 

may be large when individuals with extreme weight values tend to have potential outcomes 

that are also extreme relative to the mean. Nonetheless, simulation studies in Section 4 

demonstrate empirically that using either (4) or (5) for sample size determination tends 

to yield the desired power. Of course, there may be other scenarios where this is not the 

case, and thus care should be exercised in generalizing beyond the simulation scenarios 

considered in this paper. When pilot data are available, the approximation error Era can be 

estimated as in Section 6. Empirical power when approximating Era tended to be similar 

to power when the remainder was ignored. Thus the simpler estimator that ignores the 

remainder may be preferred in practice.

In conclusion, the design effect approximation can be a useful tool for the design of 

studies to estimate point exposure effects with IPTW estimators, as currently no power 

and sample size methods exist in this context. The design effect can also be used in 

precision calculations using approaches analogous to those described in this paper, i.e., 

basing calculations on the adjusted variances σa, adj
2  or σa, adj

2  rather than σa2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Empirical power from the simulation study by scenario across R = 2000 samples based 

on sample sizes (A) ndeff and (B) nrct from Table 2. Empirical power is the proportion of 

simulated samples in which the p-value for testing H0 : β1 = 0 versus H1 : β1 ≠ 0 was less 

than α = 0.05 for the MSM E(Ya) = β0 +β1a. (Scenario 5c excludes 2 and 5 simulations for 

(A) and (B), respectively, in which the geex package failed to converge when estimating the 

standard error of ACE.)
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Figure 2. 
Examples of propensity score distributions for various approximated design effects and 

mean propensity score E(p). Distributions were generated from Na = 1000 random draws 

from beta distributions with shape parameters set to achieve the desired E(p) and design 

effect.
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Table 1:

Simulation scenarios where no prior study data are available. B(p) indicates Bernoulli distribution with mean 

p, and N(m, v) indicates Normal distribution with mean m and variance v.

Scenario Confounders (L) Exposure (A | L = l) Potential Outcomes (Ya| L = l) δ

1 binary Y, small deffw
a B(0.6) B(0.5 + 0.25l) B(0.85 – 0.2l + δa)

(a) −0.10
(b) −0.15
(c) −0.20

2
binary Y,

large deffw
a B(0.5) B(0.1 + 0.8l) B(0.85 – 0.2l + δa)

(a) −0.10
(b) −0.15
(c) −0.20

3 continuous Y, small deffw
a B(0.6) B(0.5 + 0.25l) N(20 – 10l + δa, 144 + 112a)

(a) 2.5
(b) 5.0
(c) 7.5

4
continuous Y,

large deffw
a B(0.5) B(0.1 + 0.8l) N(20 – 10l + δa, 144 + 112a)

(a) 2.5
(b) 5.0
(c) 7.5
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Table 2:

Variances, approximated design effects, approximated adjusted variances, and required sample sizes for 

simulation scenarios by treatment.

Scenario a σa2 deffw
a

 or deffw
a σa, adj

2  or σa, adj
2

ndeff nrct

1 binary Y, small deffw
a 0

1
0.1971
0.2436

1.12
1.04

0.2208
0.2533

(a) 801
(b) 356
(c) 201

(a) 736
(b) 327
(c) 184

2
binary Y,

large deffw
a 0

1
0.1875
0.2400

2.78
2.78

0.5208
0.6667

(a) 1862
(b) 828
(c) 466

(a) 671
(b) 298
(c) 168

3 continuous Y, small deffw
a 0

1
168.0
280.0

1.12
1.04

188.2
291.2

(a) 1237
(b) 310
(c) 138

(a) 1143
(b) 286
(c) 127

4
continuous Y,

large deffw
a 0

1
169.0
281.0

2.78
2.78

469.4
780.6

(a) 3136
(b) 784
(c) 349

(a) 1129
(b) 283
(c) 126

5 prior study data, (NHEFS) 0
1

56.10
74.00

1.03
1.24

57.78
91.76

(a) 3409
(b) 853
(c) 379

(a) 2850
(b) 713
(c) 317
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