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Abstract

A large proportion of the complexity and redundancy of LC-MS metabolomics data comes from 

adduct formation. To reduce such redundancy, many tools have been developed to recognize and 

annotate adduct ions. These tools rely on predefined adduct lists that are generated empirically 

from reversed-phase LC-MS studies. In addition, hydrophilic interaction chromatography (HILIC) 

is gaining popularity in metabolomics studies due to its enhanced performance over other methods 

for polar compounds. HILIC methods typically use high concentrations of buffer salts to improve 

chromatographic performance. Therefore, it is necessary to analyze adduct formation in HILIC 

metabolomics. To this end, we developed covariant ion analysis (COVINA) to investigate 

metabolite adduct formation. Using this tool, we completely annotated 201 adduct and fragment 

ions from 10 metabolites. Many of the metabolite adduct ions were found to contain cluster ions 

corresponding to mobile phase additives. We further utilized COVINA to find the major ionized 

forms of metabolites. Our results show that for some metabolites, the adduct ion signals can be 

>200-fold higher than the signals from the deprotonated form, offering better sensitivity for 

targeted metabolomics analysis. Finally, we developed an in-source CID ramping (InCIDR) 

method to analyze the intensity changes of the adduct and fragment ions from metabolites. Our 

analysis demonstrates a promising method to distinguish the protonated and deprotonated ions of 

metabolites from the adduct and fragment ions.

Introduction

LC-MS-based metabolomics aims to comprehensively characterize small molecule 

metabolites in biological samples. Modern mass spectrometry can offer both high sensitivity 

and high mass resolution, making it possible to detect hundreds or thousands of metabolites 
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in a single biological sample.1–3 As a result, raw LC-MS data are highly complex. A typical 

25-minute LC-MS run on an Orbitrap instrument may produce 4000 spectra, each with 

>500–1000 peaks in the mass-to-charge ratio (m/z) domain. To reduce the data complexity, 

untargeted metabolomics data analysis starts with feature detection.4,5 Each LC-MS feature 

is a combination of an accurate m/z and a retention time. The features are expected to have a 

decent chromatographic peak shape in the time domain and may correspond to actual 

metabolites, isotopic peaks, dimer ions of metabolites, adduct ions, in-source fragment ions 

or background matrix components. To facilitate downstream metabolite identification and 

statistical analysis, this feature list needs to be optimized and annotated. The optimization 

step removes duplicate and false positive features.6 The annotation step recognizes and 

annotates the adduct ions and natural isotopic ions.7–9 These data processing steps 

dramatically reduce the complexity of metabolomics data. Mahieu et al. reported the 

analysis of an E. coli metabolomics dataset in which 25,000 features were reduced to fewer 

than 1,000 unique metabolites.10 This example highlights the complexity and redundancy of 

a typical metabolomics dataset.

The majority of adduct ion annotation tools fall into two categories. One involves calculating 

the correlations of peak intensities across samples from the feature list.6,8,11,12 The other 

involves reading the extracted ion chromatograms (XICs) in the raw data and calculating the 

correlation of chromatographic peaks.7,9 Even though each tool has demonstrated utility, the 

adduct ions in a metabolomics dataset are often insufficiently annotated. Glutamate, for 

example, was reported to produce more than 100 spectral peaks, but many of the complex 

adducts did not have a chemical annotation.10 Lin et al used isotope-labeled samples to 

facilitate the annotation of metabolites and their adduct ions and observed ions that had a 

large m/z but contained very few carbon atoms. These ions were considered unreasonable 

and were filtered out during the annotation. In fact, these ions indicated the existence of 

large adducts.12 It is noteworthy that many adduct annotation tools rely on a predefined list 

to identify the adduct ions.13,14 The incompleteness of adduct lists limits the performance of 

adduct annotation tools. This limitation is further amplified in hydrophilic interaction liquid 

chromatography (HILIC) ESI-MS metabolomics studies. In recent years, HILIC has become 

a popular metabolomics technique due to its resolving power for very polar cellular 

metabolites.15 HILIC typically involves the use of buffer salts to improve separation and 

peak shape.16,17 These salts have a significant impact on the ionization of metabolite 

molecules and adduct formation. Erngren et al. reported the formation of adduct ions that 

contain multiple sodium and potassium formate moieties.18 These cluster ions are not 

included in common adduct lists, making adduct annotation difficult. We aim to further 

investigate adduct ion formation under our HILIC conditions to elucidate frequently 

occurring m/z distances that should be included in annotation tool lists.

In this work, we set out to analyze the adduct and fragment ion formation from metabolites 

in HILIC ESI-MS, for which we developed an algorithm named covariant ion analysis 

(COVINA). Unlike existing tools, which search for coeluting peaks in an extracted feature 

list, COVINA is a targeted tool that analyzes one metabolite peak at a time by reading the 

mzXML files directly. By doing so, COVINA can avoid false positives and false negatives in 

the feature extraction and misgrouping in the peak alignment and grouping steps. Using this 

tool, we found a number of cluster adduct ions from metabolites. To help assign the 
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chemical identity of these adduct ions, the HILIC mobile phase was prepared with 2H-

labeled acetic acid. Using this method, we completely annotated 201 adduct and fragment 

ions resulting from 10 metabolites. We then used this new HILIC adduct list to annotate 

untargeted metabolomics datasets using existing tools and observed improved performance.

We also developed an in-source collision-induced dissociation (CID) ramping (InCIDR) 

method to help determine the neutral molecular mass of the metabolites. Adduct annotation 

tools implement heuristic algorithms to score hypotheses on metabolite neutral masses based 

on the detection of the expected adduct ions.9,19 InCIDR is a completely orthogonal 

approach that utilizes COVINA to analyze the intensity changes of the adduct and fragment 

ions with increasing in-source CID energy levels. In general, as the in-source CID energy 

level increases, the fragment ions increase in intensity, while the adduct ions decrease in 

intensity. InCIDR monitors all the covariant ions and detects such patterns to score the 

hypothesized neutral masses. Examples show that InCIDR is a robust and promising means 

of supplementing existing adduct annotation tools.

Experimental

Chemicals.

LCMS-grade methanol (A456), acetonitrile (A955), acetic acid (A35) and water (ACROS 

61515) were purchased from Fisher Chemicals (Pittsburgh, PA). 2H4-Acetic acid (99.5% 

isotopic purity, DLM-12) was purchased from Cambridge Isotope Laboratories (Tewksbury, 

MA). Other chemicals, including ammonium hydroxide (09859), sodium pyruvate (P2256), 

sodium L-lactate (L7022), leucine (L8912), isoleucine (I5281), NAD hydrate (N7004), ATP 

disodium salt hydrate (A2383), D-glucose-6-phosphate dipotassium salt hydrate (G7375), 

D-fructose-6-phosphate disodium salt hydrate (F3726), L-malic acid (112577) and D-

fructose-1,6-bisphosphate trisodium salt hydrate (F6803), were purchased from 

MilliporeSigma (Burlington, MA).

Cell lysate preparation.

The L3.6 human pancreatic ductal adenocarcinoma cell line was obtained from ATCC. 

These cells were seeded in 100 mm dishes and cultured in RPMI supplemented with 10% 

bovine serum (Fetal Clone III, HyClone), 100 units/ml penicillin and 100 μg/ml 

streptomycin. Cells were grown to ~85% confluency for metabolite extraction. Before 

harvesting the cells, the media was aspirated and then quickly overlaid with 1 ml 40:40:20 

mixture of methanol:acetonitrile:water with 0.5% (V/V) formic acid. The plates were 

incubated on ice for 5 min, and then 50 μl of 15% (m/V) NH4HCO3 was added to neutralize 

the formic acid. Cells were scraped into microfuge tubes and centrifuged for 10 min at 

15,000 x g at 4°C. The supernatant was collected for LC-MS.

Liquid chromatography.

HILIC separation was performed on a Vanquish Horizon UHPLC system (Thermo Fisher 

Scientific, Waltham, MA) with an XBridge BEH Amide column (150 mm × 2.1 mm, 2.5 μm 

particle size, Waters, Milford, MA) using a gradient of solvent A (95%:5% H2O:acetonitrile 

with 20 mM acetic acid, 40 mM ammonium hydroxide, pH 9.4) and solvent B (20%:80% 
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H2O:acetonitrile with 20 mM acetic acid, 40 mM ammonium hydroxide, pH 9.4). For the 
2H4-acetic acid mobile phase experiment, the acetic acid in both mobile phases A and B was 

replaced with 2H4-acetic acid at the same concentration. The gradient was 0 min, 100% B; 3 

min, 100% B; 3.2 min, 90% B; 6.2 min, 90% B; 6.5 min, 80% B; 10.5 min, 80% B; 10.7 

min, 70% B; 13.5 min, 70% B; 13.7 min, 45% B; 16 min, 45% B; 16.5 min, 100% B; and 22 

min, 100% B. The flow rate was 300 μl/min. The injection volume was 5 μL, and the column 

temperature was set to 25°C. The autosampler temperature was set to 4°C, and the injection 

volume was 5 μL.

Mass spectrometry.

The mass spectrometry analysis was performed on Thermo Q Exactive PLUS instrument 

with a HESI source, which was set to a spray voltage of −2.7 kV in negative mode and 3.5 

kV in positive mode. The sheath, auxiliary, and sweep gas flow rates were 40, 10, and 2 

(arbitrary units), respectively. The capillary temperature was set to 300°C, and the aux gas 

heater was set to 360°C. The S-lens RF level was 45. The m/z scan range was set to 72 to 

1000 m/z in either positive or negative ionization mode. The AGC target was set to 3e6, and 

the maximum IT was 200 ms. The in-source CID energy level was set to 0 eV unless 

otherwise specified. The resolution was set to 70k unless using in-source CID ramping. In 

the data acquisition of InCIDR, each scan cycle consisted of 8 scan events with in-source 

CID energy levels of 0 eV, 2 eV, 4 eV, 6 eV, 8 eV, 10 eV, 15 eV and 20 eV. InCIDR uses 

17.5k resolution to achieve a scan rate of 2 Hz.

Covariant ion analysis (COVINA).

COVINA is a targeted approach to search for coeluting ion species for the metabolite of 

interest in the raw mzXML files. In short, COVINA builds XICs for all the ions detected 

together with the metabolite of interest, and returns a list of ions that are highly correlated 

with the metabolite of interest. The full COVINA algorithm works as the following: when 

the m/z of a metabolite (base m/z) is specified, COVINA first looks for the scan at the apex 

of the corresponding XIC (Figure 1A). If multiple peaks exist in one XIC, the scan number 

can be specified to focus on the metabolite of interest. This selected scan is used as the 

reference spectrum. For each m/z in the reference spectrum that is above a specified 

intensity threshold, COVINA builds an XIC within an adjustable mass tolerance. Each of 

these XICs is compared to the reference XIC of the metabolite of interest. Covariant ions are 

identified by evaluating the Pearson correlation between the base reference XIC and the 

query XIC (Figure 1B, Table 1). The adduct, fragment and isotopic ions usually show very 

good correlation (R>0.9) with the base m/z. These covariant ions plus the base m/z peak 

form the pseudospectrum of the metabolite (Figure 1C).

Covariant feature annotation.

Adduct features identified by the COVINA algorithm were annotated utilizing both mixed 

integer linear programming and manual identification. A list of simple ions such as Ca2+, Na
+, Ac− and NO3

− is provided by the user as input. For each adduct feature detected, mixed 

integer linear programming is used to generate a combination of simple ions that matches 

the observed Δm/z. If the algorithm fails to find an ion combination that is close enough to 

the observed Δm/z, the ion list is expanded to include more ions such as Fe2+ and H3SiO4
−. 
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The sample code, input table and output results are in our Github repository (see the link 

blow). All annotations were evaluated based on their mass accuracy and manual inspection.

Code and example data availability.

COVINA is implemented in R (version 3.6.1). The code as well as the sample data are 

available at https://github.com/XiaoyangSu/COVINA.

Results and Discussion

Investigating adduct and fragment ion formation using COVINA

A common approach to studying adduct formation is to inject chemical standards directly 

into the mass spectrometer via a syringe pump, either coupled to the normal LC flow or not. 

This method is conceptually simple, but the adduct signals are mingled with background 

signals, making complete adduct annotation difficult.18 Another approach used in many 

common adduct annotation tools is to group related m/z values in the feature lists. The 

feature lists used by these annotation tools are generated from a peak picking algorithm such 

as centWave5, which produces thousands of features from a typical dataset. Despite 

significant improvement and refinement of the grouping algorithms, the feature grouping is 

usually insufficient for placing all of the adduct and fragment ions in the same group as the 

parent metabolite ion. We tested the grouping performance of CAMERA7 and CliqueMS9. 

Both tools placed the adduct ions resulting from 10 metabolites into more than 20 different 

groups (Figure S1). To systematically study the patterns of metabolite adduct and fragment 

formation, it is necessary to optimize the detection of adducts and fragments in the data 

analysis process.

Instead, we utilize chromatography to analyze ion species that coelute with the metabolite of 

interest. The adduct ions and fragment ions should be chromatographically correlated with 

respect to peak shape to their parent protonated and deprotonated metabolite ions. COVINA 

detects such coelution correlation to filter out persistent background ions and generates a 

high-quality list of highly correlated covariant features. Unlike other annotation tools, 

COVINA does not use a feature list generated from a peak picking algorithm. Instead, 

COVINA is a targeted algorithm that analyzes one metabolite at a time. COVINA takes the 

input of the m/z value of a specific metabolite (base m/z) to build the XICs of this m/z and 

all other m/z values in the same spectrum and calculates the chromatographic correlation 

between the XIC of the base m/z and the other XICs. In the output data, COVINA produces 

a list of highly correlated m/z values that includes adduct and fragment ions and isotopic 

peaks.

Using our COVINA algorithm, we studied the adduct formation of some key metabolites in 

negative ionization mode. COVINA revealed multiple adducts for each of the metabolites in 

our chemical standard mixture. For example, Figure 2A shows the adduct occurrence of 

pyruvate, lactate, leucine, malate and glucose-6-phosphate (Glc6P). Interestingly, many 

adducts showed common m/z differences (Δm/z, m/z of an adduct – m/z of [M-H]−), 

suggesting that these adducts have the same chemical identity. Previous studies have shown 

that metabolites may form oligomer adducts ([2M-H]− or [3M-H]−) or heterodimer adducts 
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([M1+M2-H]−).20 These complex adducts were less frequently detected in our samples than 

the common adducts. The commonly observed Δm/z of 82.003 is important, as it was the 

only Δm/z observed for all five metabolites. Moreover, 82.003 was the common difference 

in some Δm/z series, such as 82.003/164.006/246.009, 97.968/179.972/261.973 and 

157.989/239.992/321.995/403.999 (Figure 2A). This observation suggests that some large 

adducts, such as 321.995 and 403.999, may have repeating units of 82.003. We also 

calculated the pairwise m/z differences of all the covariant ions detected in our standard 

mixture samples. The histogram of these Δm/z values confirmed that 82.003 was the most 

common mass difference among the covariant ions (Figure 2B). 164.006, which is 82.003×2, 

is also a common Δm/z value, again suggesting that 82.003 represented a repeating unit in 

the adduct ions.

Δm/z 82.003 matches the mass of sodium acetate (NaAc; calculated mass, 82.00253). While 

acetate is used in the mobile phase buffer, the sodium ions were not purposefully added to 

the mobile phase. Trace amounts of sodium may come from water, glassware or impurities 

in solvent additives. It is surprising to see NaAc moiety but not NH4Ac that presents in 

many adduct ions. To confirm that NaAc was the repeating unit in many adducts, we 

prepared the mobile phase using deuterium-labeled acetate ([2H3]-Ac−). In this labeled 

mobile phase, many adducts showed shifted m/z values (Figure 3). Pyruvate had an adduct 

[M-H+157.9890]− (m/z 244.9977) that was shifted to [M-H+164.027] (m/z 251.0356) in the 

deuterium-labeled mobile phase, showing that this adduct has 2 acetate moieties. Therefore, 

the chemical identity of this adduct can be determined as [M+CaAc2-H]− (Table 2). The 

high mass accuracy of the Orbitrap mass analyzer lends great confidence for accurate adduct 

identification. For example, the formula [M+CaAc2-H]− matches the detected m/z with a 

mass accuracy of −1.1 ppm. An alternative formula [M+KAc2]− has a mass accuracy of 

−37.6 ppm and should, therefore, be ruled out. Pyruvate adducts [M-H+239.9918]− and [M-

H+321.9952]− are shifted by 9.056 and 12.075 Da, suggesting that they have Ac3 and Ac4, 

respectively. They are annotated as [M+NaCaAc3-H]− and [M+Na2CaAc4-H]−. [M-H

+173.965]− did not shift in the deuterium-labeled mobile phase and, therefore, did not 

contain an Ac in its adduct moiety. This adduct is annotated as [M+H6Si2O7-H]−. The use of 

the deuterium-labeled mobile phase helps to narrow down the possible adduct formulas and 

leads to confident identification. The observation that many adduct ions contain cluster ions 

inspired us to utilized mixed integer linear programming21 to find the ion combinations for 

adduct annotations. The detailed procedure is described in the Method section. We also 

confirmed the annotations through manual inspection and curation.

Similar to previous reports, complex ions such as adducts of fragments were detected.22 For 

Glc6P, [M-H+37.948]− was detected. This m/z matches [M+Ca-3H]− with a mass accuracy 

of 2.2 ppm. However, this adduct shifted to [M-H+40.965]− in the deuterated mobile phase, 

indicating 1 Ac group. This adduct is essentially an adduct of erythrose-4-phosphate ([E4P

+CaAc-2H]−), a known fragment of Glucose6P.23 Another example of an adduct of fragment 

is [NAD-H+57.921]−. Δm/z 57.921 does not match any chemical formula as a simple 

adduct. Using the deuterated mobile phase, it was demonstrated that this ion has 2 Ac groups 

and is annotated as [NAD-nicotinamide+NaCaAc2-2H]−. The combined use of COVINA 

and the deuterated mobile phase led to the complete annotation of 201 ion covariants 
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produced from 10 metabolites (covariant ions of lactate are shown in Table 2; see Table S1 

for the complete list).

We also manually inspected and confirmed a number of adduct ions detected from L3.6 

human PDAC lysate samples. Our results show that [M+NaAc-H]− was more common than 

[M+Na-2H]− (Figure 4A). In the annotation table, we observed a number of adducts that 

included salts. Due to the use of a high concentration of salt in HILIC metabolomics, some 

metabolites show higher ion counts in their adduct/fragment forms than in their protonated 

and deprotonated forms. This information is important, especially in targeted analysis of 

metabolomics data. Using COVINA, we investigated such cases using L3.6 cell lysates. The 

signal from acetyl-CoA in its divalent ion form [M-2H]2− was 8-fold higher than that in its 

[M-H]− form. The signal of phosphocholine was 350-fold higher in its acetate adduct form 

than in its [M-H]− form. S-Adenosyl-L-methionine (AdoMet) was detected in several 

fragment forms that had signals higher than the [M-H]− signal from AdoMet, including 

methylthioadenosine (MTA, 8-fold higher), the MTA acetate adduct (35-fold higher) and 

adenine (55-fold higher) (Figure 4B). These results enable better detection of key 

metabolites in the targeted metabolomics analysis workflow.

Adduct formation in HILIC metabolomics is largely affected by the solvent additives as well 

as other chemicals present in the system. NO3
− adducts, for example, may have originated 

from the nitric acid that we used to clean the ion transfer tube of the mass spectrometer. We 

have developed and utilized COVINA to demonstrate the detection of many condition-

specific adducts that should be added to adduct annotation lists. The systematic construction 

of the XIC for each feature in the reference scan, evaluation of the fidelity of the correlation 

between the base peak shape and the adduct peak shape, and manual verification of the 

feature annotation leads to confident identification of the adducts. These experimentally 

observed and well-credentialed adduct ions should be included in the adduct list. In addition, 

many adduct ions contain alkali metal ions and alkaline earth metal ions which have larger 

mass defects than common elements in metabolites (C, H, O, N, P and S). Because of the 

large mass defect of adduct ion, it is unlikely that a true metabolite ion is wrongly annotated 

as an adduct ion.24 Therefore, we believe the expanded adduct list will not give false positive 

adduct annotation, and we recommend using COVINA to generate an adduct list specific to 

each of the different HILIC conditions and instruments being utilized for analysis. We 

believe our adduct list is useful for systems operating with similar chromatographic 

conditions to those evaluated herein. Using such adduct lists, we can greatly improve the 

adduct annotation rate in untargeted metabolomics annotation tools such as CliqueMS. In 

L3.6 human pancreatic ductal adenocarcinoma cell lysate samples, CliqueMS annotated 

23.5% and 53.5% of the features as adducts using a built-in adduct list and COVINA-

generated list, respectively (Figure S2).

In essence, COVINA informs us about how metabolite molecules ionize. For instance, if the 

m/z and retention time of [M+H]+ are known, we can use COVINA to find all other ionized 

forms of M. However, not every metabolite has an easily detectable [M+H]+ form. Due to 

their pKa values, some metabolites, such as lactate and pyruvate, are much more 

predisposed to carry a negative charge than to carry a positive charge. Therefore, LC-MS 

metabolomics data acquisition is often performed in both positive and negative ionization 
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modes to maximize the metabolome coverage. It is possible, however, to detect carboxylic 

acids such as lactate in positive ionization mode with reasonable sensitivity. We modified 

COVINA to analyze alternating scans in negative and positive ionization modes (Figure 5A). 

The XIC of [M-H]− was used as the reference, and all the XICs for negative and positive 

ionization modes were used to calculate the chromatographic correlation coefficients. Our 

results show that lactate can be detected in positive ionization mode as [M-H+2Na]+, the 

intensity of which is approximately 15% of the intensity of [M-H]− in negative mode (Figure 

5B).

Finding a metabolite neutral mass using in-source CID ramping (InCIDR)

For untargeted metabolomics data processing, the goal of adduct annotation tools is twofold: 

1) to identify the adduct ions and exclude them from further analysis and 2) to find the 

neutral masses of the true metabolites for downstream structural elucidation and statistical 

analysis. To find the neutral mass of a metabolite out of many grouped coeluting ions, the 

annotation algorithm searches the mass differences between coeluting m/z values and 

matches the gaps to known adducts. The hypothesized metabolite neutral masses are scored 

based on the matching results and optionally the empirical frequency of the adducts.9,19 

From these scores, the most plausible neutral mass is returned as the result. Our data suggest 

that the performance of such algorithms can be improved by having a more complete adduct 

list generated from COVINA (Figure S3). Nonetheless, because of the heuristic nature of 

these algorithms, the metabolite neutral mass may not be picked correctly. Other approaches 

to reinforce metabolite neutral mass prediction are needed.

Here, we propose using in-source CID ramping (InCIDR) to predict the metabolite neutral 

mass. Instead of using an empirical adduct list and matching the mass differences, InCIDR 

predicts the m/z of the protonated or deprotonated metabolite ion by analyzing the covariant 

ion intensity change during the ramping of the CID energy level. InCIDR is based on the 

assumption that when the in-source CID energy level increases, the adduct ions collapse and 

decrease in intensity while the fragment ions increase in intensity. Lin et al. first described 

such fragment ion trends and used them to filter fragment ions from a feature list.12 Based 

on this work, we extended this analysis to encompass the adduct ions and built a data 

acquisition and analysis method called in-source CID ramping (InCIDR). Unlike the original 

method using different CID energy levels in repeated runs, the data acquisition in InCIDR 

consists of a series of alternating scan events with increasing in-source CID energy levels 

(Figure 6A). In this way, there is no need to run the same sample repeatedly at different 

energy levels, reducing instrument time. Second, the single run eliminates the ion intensity 

variations due to inconsistent injection or chromatographic separation. Third, there is no 

need to group peaks in different runs by retention time. Rather, the peaks can be perfectly 

grouped by matching the scan numbers.

We modified COVINA to work with InCIDR data. Similar to COVINA, InCIDR starts from 

an m/z of interest and finds all covariant ions associated with it. This starting m/z can be any 

m/z in the group of covariant ions. InCIDR analyzes the intensity of the covariant ions under 

all in-source CID energy levels and uses the trends to predict which one of them is the 

protonated or deprotonated ion. To validate the basic assumption of InCIDR, we investigated 
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the covariant ions of Glc6P. As predicted, m/z 96.9692, which is the [H2PO4]− fragment of 

Glc6P, increased in intensity when the CID energy level increased. In addition, m/z 

341.0255, which is the [M+NaAc-H]− adduct of Glc6P, decreased in intensity when the 

energy level increased. Finally, m/z 259.0223, which is the deprotonated ion of Glc6P, also 

decreased in intensity when the energy level increased due to increased fragmentation 

(Figure 6B). To describe the intensity trend in quantitative terms, we calculated the rank 

correlation coefficient τ for each of the covariant ions.

τ = 2
n n − 1 ∑

i < j
sgn Ii − Ij

In the above equation, n is the total number of CID energy levels, which is 8 in this study. 

Sgn() is the sign function that takes a value of 1, −1 or 0 if applied to a positive number, 

negative number or 0, respectively. Ii and Ij are the ion counts of the covariant ion at the i-th 

and j-th lowest CID energy level, 1≤i<j≤n. An adduct that strictly decreases in intensity as 

the energy level increases is assigned τ=1. A fragment ion that strictly increases in intensity 

as the energy level increases is assigned τ=−1. For Glc6P, all covariant ions with m/z values 

smaller than that of [M-H]− had negative values of τ. All ions but 1 with m/z values larger 

than that of [M-H]− had positive values of τ. Therefore, it is possible to use the τ pattern to 

find the m/z of [M-H]− among all the covariant ions. We calculated the rank score for all the 

covariant ions of Glc6P. For a specific m/z, the rank score is the sum of the τ values of ions 

above this m/z minus the sum of the τ values of ions below this m/z.

Rank Score m/z = ∑τ ≥ m/z − ∑τ < m/z

We predicted that [M-H]− would have the highest rank score out of all the covariant ions. 

Indeed, the [M-H]− 259.0223 had the highest rank score. In another example, we 

investigated the covariant ions of NAD using InCIDR. We observed abnormal adduct ions 

that increased in intensity when the in-source CID energy level was ramped, such as [M

+Na-2H]− and [M-nicotinamide+NaCaAc2-2H]−. The increase in intensity of the [M

+Na-2H]− adduct ions may have been due to the decomposition of even larger adduct ions 

into this sodium adduct. [M-nicotinamide+NaCaAc2-2H]− is an adduct ion of a fragment of 

NAD, so the higher in-source CID energy level may promote NAD fragmentation and 

formation of this ion. Nonetheless, m/z 662.1017 had the highest rank score out of all the 

covariant ions, which is indeed [M-H]− of NAD. The rank correlation coefficients and the 

rank scores for Glc6P and NAD are shown in Table S2. Using these two examples, we 

showed that the calculation of rank correlation coefficients and the rank scores ensures the 

robustness of InCIDR for finding the deprotonated and protonated ions and therefore the 

neutral mass of metabolites.

Conclusion

In this work, we investigated the ionized metabolite forms in HILIC-ESI-MS metabolomics. 

Using COVINA and a stable isotope-labeled mobile phase, we detected and annotated a 
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number of adduct ions and fragment ions from metabolites. HILIC metabolomics datasets 

contain a large number of adduct ions, especially cluster adduct ions. We annotated and 

curated these adduct ions in order to improves the performance of existing annotation tools 

such as CliqueMS. We also investigated the intensity changes of adduct and fragment ions 

using InCIDR. We showed that the metabolite neutral mass can be predicted by scoring the 

intensity trends of the covariant ions during ramping of the in-source CID energy level.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Covariant ion analysis (COVINA). (A) The reference mass spectrum at the apex of the XIC 

of the base m/z. (B) The XICs of the base m/z and all other m/z values in the reference 

spectrum. (C) COVINA generates a pseudospectrum containing the covariant ions (blue) of 

the base m/z.
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Figure 2. 
Common adducts found by COVINA. (A) Heatmap showing the intensity of the adduct ions 

relative to the intensity of [M-H]−. Δm/z is calculated as m/z(adduct)-m/z([M-H]−). The 

Δm/z values in the same arithmetic sequence are grouped together to show compounded 

repeating units of the same adduct. (B) Histogram of Δm/z pairwise differences of all the 

covariant ions within each metabolite group. The most common Δm/z values are highlighted 

in the plot.
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Figure 3. 
2H-acetic acid was used to determine the chemical identity of the adducts. The upper panel 

shows the adduct ions of pyruvate that were detected in the normal mobile phase. The lower 

panel shows the adduct ions of pyruvate that were detected in the mobile phase prepared 

with [2H4]-acetic acid. Each acetate moiety in the adduct ion should result in an m/z shift of 

3.018. The adduct ions m/z 244.9977, 327.0005 and 409.0039 were shifted by 6.038, 9.056 

and 12.075, respectively, in the 2H-labeled mobile phase, suggesting that 2, 3 and 4 acetate 

moieties are in these adduct ions, respectively. The m/z 260.9737 ion did not shift in the 2H-

labeled mobile phase, suggesting that no acetate moieties are in this adduct ion.
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Figure 4. 
Significant adduct ions and fragment ions of key metabolites in the L3.6 human pancreatic 

ductal adenocarcinoma cell lysate samples. (A) Comparison of the occurrence of adduct 

ions. The denominator is the number of metabolites with at least one adduct ion detected. 

(B) Significant covariant ions that are stronger than the molecular ions. Ion counts are shown 

as the mean +/− standard deviation, n=3.
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Figure 5. 
COVINA with polarity switching. (A) Scheme of COVINA with polarity switching. The 

XICs are built separately for each polarity, and the correlation with the reference XIC can be 

calculated using the standard COVINA method. (B) Example result for lactate adduct ions. 

Lactate is mainly detected as [M-H]− in negative ionization mode. The most abundant cation 

for lactate is [M-H+2Na]+, which produces a signal that is approximately 15% of the signal 

from [M-H]−.
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Figure 6. 
In-source CID ramping (InCIDR). (A) The data acquisition scheme of InCIDR. We used 8 

scan events in each cycle to examine the intensity change of the covariant ions. (B) The 

trend of the intensity change as the CID energy level is ramped. The fragment ion 

([H2PO4]−) and the adduct ion ([M+NaAc-H]-) of Glc6P follow the predicted pattern. (C-D) 

Example InCIDR results for Glc6P and NAD.
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Table 1.

Pseudocode for COVINA

Algorithm COVINA

1: procedure COVINA(input parameters: mzXML file(s), m/z; optional parameters: scan.number,

2: peak.width, mass.tolerance, intensity.threshold, correlation.threshold)

3:  Use the first mzXML file to do

4:   XIC.Base ← XIC of m/z within mass.tolerance

5:   if scan.number is not specified then

6:    scan.number ← scan with highest signal in XIC.Base

7:   end if

8:   scan.range ← scan.number ± peak.width

9:   mz.table ← all m/z values in the scan.number-th scan that are above

10:   intensity.threshold

11:   Base.Chromatogram ← XIC.Base within scan.range

12:   for each value in the mz.table

13:    Query.Chromatogram ← corresponding XIC within mass.tolerance and

14:    scan.range

15:    if correlation between Base.Chromatogram and Query.Chromatogram >

16:    correlation.threshold then

17:     add this m/z value to the covariant.ion.list

18:    end if

19:   end for

20:  end do

21:  In each mzXML file do

22:   covariant.ion.intensities ← Integrated peak area for each value in the

23:   covariant.ion.list within scan.range

24:  end do

25:  return covariant.ion.list, covariant.ion.intensities

26: end procedure
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Table 2.

Covariant ions of lactate

Observed m/z Relative 
Abundance Δm Chemical Annotation Calculated m/z Mass Accuracy 

(ppm)
Observed m/z in 

2H3-Ac

89.0244 100.00% 0.0000 [M-H]− 89.0244 −0.7 89.0245

90.0276 3.32% 1.0032 13C1-[M-H]− 90.0278 −2.2 90.0278

91.0289 0.69% 2.0045 18O1-[M-H]− 91.0287 2.5 91.0287

148.9905 0.40% 59.9661 [M+SiO2-H]− 148.9912 −4.8 148.9910

171.0276 13.20% 82.0032 [M+NaAc-H]− 171.0275 0.6 174.0462

172.0306 0.56% 83.0062 13C1-[M+NaAc-H]− 172.0309 −1.7 175.0496

174.0020 36.30% 84.9776 [M+NaNO3-H]− 174.0020 0.0 174.0019

175.0061 1.00% 85.9817 13C1-[M+NaNO3-H]− 175.0054 4.0 175.0052

177.9570 0.44% 88.9327 [M+FeO(OH)-H]− 177.9570 0.1 177.9572

185.0120 0.87% 95.9876 [M+H4SiO4-H]− 185.0123 −1.7 185.0123

201.0387 6.43% 112.0143 [2M+Na-2H]− 201.0381 3.1 201.0381

202.0426 0.43% 113.0183 13C1-[2M+Na-2H]− 202.0414 6.0 202.0415

231.0369 0.92% 142.0126 [M+MgAc2-H]− 231.0361 3.7 ND*

247.0135 5.70% 157.9892 [M+CaAc2-H]− 247.0136 −0.4 253.0513

253.0312 1.09% 164.0069 [M+Na2Ac2-H]− 253.0306 2.6 259.0681

262.9891 3.02% 173.9648 [M+H6Si2O7-H]− 262.9896 −1.8 262.9896

313.0396 0.51% 224.0152 [M+NaMgAc3-H]− 313.0391 1.3 ND*

329.0170 2.78% 239.9926 [M+NaCaAc3-H]− 329.0167 0.9 338.0732

411.0196 1.37% 321.9953 [M+Na2CaAc4-H]− 411.0198 −0.4 423.0950

493.0235 0.71% 403.9991 [M+Na3CaAc5-H]− 493.0228 1.3 508.1173

*
ND: Not detected. The counterparts of m/z 231.0369 and 313.0396 were not detected in the 2H3-Ac mobile phase and are annotated as Mg2+-

containing adduct ions. Presumably, 2H-HAc has a much lower level of Mg2+, so these adduct ions were not formed.
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