
α7 nicotinic acetylcholine receptors as therapeutic targets in 
schizophrenia: update on animal and clinical studies and 
strategies for the future

Alvin V. Terry Jr.1,2, Patrick M. Callahan1,2

1Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 
Augusta, Georgia, 30912.

2Small Animal Behavior Core, Medical College of Georgia, Augusta University, Augusta, Georgia, 
30912

Abstract

Schizophrenia is a devastating mental illness and its effective treatment is among the most 

challenging issues in psychiatry. The symptoms of schizophrenia are heterogeneous ranging from 

positive symptoms (e.g., delusions, hallucinations) to negative symptoms (e.g., anhedonia, social 

withdrawal) to cognitive dysfunction. Antipsychotics are effective at ameliorating positive 

symptoms in some patients; however, they are not reliably effective at improving the negative 

symptoms or cognitive impairments. The inability to address the cognitive impairments is a 

particular concern since they have the greatest long-term impact on functional outcomes. While 

decades of research have been devoted to the development of pro-cognitive agents for 

schizophrenia, to date, no drug has been approved for clinical use. Converging behavioral, 

neurobiological, and genetic evidence led to the identification of the α7-nicotinic acetylcholine 

receptor (α7-nAChR) as a therapeutic target several years ago and there is now extensive 

preclinical evidence that α7-nAChR ligands have pro-cognitive effects and other properties that 

should be beneficial to schizophrenia patients. However, like the other pro-cognitive strategies, no 

α7-nAChR ligand has been approved for clinical use in schizophrenia thus far. In this review, 

several topics are discussed that may impact the success of α7-nAChR ligands as pro-cognitive 

agents for schizophrenia including the translational value of the animal models used, clinical trial 

design limitations, confounding effects of polypharmacy, dose-effect relationships, and chronic 

versus intermittent dosing considerations. Determining the most optimal pharmacologic strategy at 

α7-nAChRs: agonist, positive allosteric modulator, or potentially even receptor antagonist is also 

discussed.
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1. Introduction

Schizophrenia is a debilitating mental illness characterized by positive symptoms (e.g., 

hallucinations, delusions), negative symptoms (e.g., depressed mood, anhedonia, social 

withdrawal) and cognitive impairments (e.g., deficits in information processing, attention, 

working memory, executive function, Green and Braff, 2001). Among these diverse 

symptoms, cognitive impairment is a core feature of schizophrenia that often appears prior 

to the onset of psychotic symptoms, it persists throughout the course of the illness, and it has 

the greatest long-term impact on functional outcomes (reviewed, Kahn and Keefe, 2013; 

Green and Harvey, 2014, Kahn, 2019). Unfortunately, the most commonly prescribed 

treatments for schizophrenia, the antipsychotics, while effective at improving positive 

symptoms in some patients, are not reliably effective at improving cognitive function. This 

unmet medical need has been an important focus of drug discovery efforts in both academia 

and the pharmaceutical industry for several decades; however, to date no pro-cognitive agent 

has been approved for clinical use in schizophrenia.

A key challenge to developing novel treatments for the cognitive dysfunction in 

schizophrenia is the complex and poorly understood etiology and pathophysiology of the 

illness. Multiple neurotransmitter systems have been implicated in the illness (Goff and 

Wine, 1997; Kapur and Mamo, 2003) including dopaminergic, serotoninergic, 

glutamatergic, adrenergic, and cholinergic pathways and accordingly, new compounds 

designed to target these various systems have been developed and evaluated. Cholinergic 

targets, particularly nicotinic acetylcholine receptors (nAChRs) have been a focus of a 

number of drug discovery programs over the last 20–25 years based on multiple lines of 

behavioral, neurobiological, and genetic evidence. From the behavioral perspective, a 

remarkable observation in schizophrenic patients is their especially heavy abuse of tobacco 

products. According to the National Institute on Drug Abuse (NIDA, 2020) tobacco smoking 

rates in schizophrenia patients range as high as 70–85%, which is dramatically higher than 

the general population (~19–20%) and significantly higher than in any other mental illness 

(George and Krystal, 2007). Smokers with schizophrenia have also been documented to 

extract more nicotine per cigarette and to smoke a higher number of cigarettes per day 

compared to smokers in the general population (Olincy et al., 1997; Strand and Nybäck, 

2005). It has been suggested that this high level of nicotine consumption may represent an 

attempt of schizophrenia patients to self-medicate the cognitive symptoms, particularly 

deficits of information processing and attention (Olincy et al., 1997; Leonard et al., 2007).

2. Focus on α7-nAChRs

In drug discovery programs for neuropsychiatric illnesses, the heteromeric α4β2 and 

homomeric α7-nAChRs have been the most commonly targeted nAChR subtypes to date 

since they are the most predominant subtypes found in the mammalian brain. However, the 
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α7-nAChR has been more commonly targeted for the cognitive deficits in schizophrenia. 

This is likely based, in part, on several factors including postmortem evidence of α7-nAChR 

deficits in the frontal cortex and hippocampus of schizophrenic patients (Guan et al., 1999) 

and linkage analysis implicating chromosome 15q14 (the region that includes the α7-

nAChR gene). Polymorphisms in the core promoter of the α7-nAChR gene (CHRNA7; 

GeneBank accession no. Z23141) have been associated with reduced inhibition of the P50 

evoked response to repeated auditory stimuli in schizophrenic patients, which is indicative of 

sensory gating abnormalities (reviewed, Freedman et al., 2003). α7-nAChR deficits may 

also contribute to abnormalities of smooth pursuit eye movements, sustained attention, and 

other domains of cognition in schizophrenia (reviewed Martin et al., 2004). In addition to 

schizophrenia, the CHRNA7 gene is also linked to multiple disorders where cognitive 

deficits are present including bipolar disorder, autism spectrum disorders, attention deficit 

hyperactivity disorder, Alzheimer disease, epilepsy, and sensory processing deficits 

(reviewed in Corradi and Bouzat, 2016).

The information in the paragraph above regarding the importance of α7-nAChR as a 

potential therapeutic target for the cognitive defects in schizophrenia is also supported by 

extensive preclinical evidence. From a neurobiological and neuropharmacological 

perspective, α7-nAChRs modulate multiple (cognition-related) processes in neurons that are 

calcium-dependent including neurotransmitter release (McGehee et al., 1995; Gray et al., 

1996), postsynaptic signaling (Chang and Berg, 1999; Hefft et al., 1999) and neuronal 

survival (Messi et al., 1997; Berger et al., 1998). Moreover, α7-nAChRs are also abundant in 

regions of the brain that are important for learning and memory and executive function such 

as the hippocampus and prefrontal cortex (Gotti et al., 2007). In addition, agonists of α7-

nAChRs have been shown to increase the phosphorylation of ERK and CREB (signaling 

pathways linked to long-term potentiation and memory formation) in the rodent brain 

(Bitner et al., 2007, 2010). There is also extensive evidence that α7-nAChR ligands improve 

behavioral processes that are relevant to schizophrenia (see Fig 1) such as auditory-evoked 

gating and prepulse inhibition in rodents, as well as multiple domains of cognition including 

attention, working memory, reference memory, social cognition, and executive function in 

rodent models as well as non-human primates (see reviews, Young and Geyer, 2013; 

Freedman, 2014; Bertrand and Terry, 2018). Table 1 provides a list of representative α7-

nAChRs ligands that have been developed as pro-cognitive agents for potential use in 

schizophrenia and other disorders of cognition. Although not all-inclusive, Table 1 includes 

α7-nAChR agonists, partial agonists, and positive allosteric modulators (PAMs), a summary 

of some of the positive behavioral properties associated with each compound, and 

representative references.

3. Clinical Trial Failures

Despite extensive preclinical evidence to support the pro-cognitive effects of α7-nAChR 

ligands noted above (and summarized in Table 1) and positive results in some early (Phase I 

and II) clinical trials, to date, no compound has met the primary objective of cognitive 

improvement in schizophrenic patients in a large phase III, double blind, placebo controlled 

clinical trial or unanticipated side effects emerged (see review, Tregellas and Wylie, 2019). 

The failure of pro-cognitive agents in schizophrenia clinical trials have reduced the 
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enthusiasm of pharmaceutical companies and, unfortunately, many have abandoned this line 

of research. While it is possible that the lack of robust (pro-cognitive) efficacy or side effect 

burden may represent real limitations of α7-nAChR ligands, it should be noted, that given 

the number of compounds that have been developed, only one agent have been evaluated in a 

large scale Phase III clinical trial in schizophrenia patients (Encenicline-EVP-6124, see 

Table 2). Moreover, there is an increasing amount of discussion about possible limitations of 

both the preclinical and clinical studies conducted to date that may have resulted in the so-

called “treatment failures” of pro-cognitive agents. Some of these potential limitations are 

listed in Table 3. See also several recent reviews (Bertrand and Terry, 2018, Terry and 

Callahan, 2019; Tregellas and Wylie, 2019) on this subject.

4. Translational Gaps and Overreliance on Rodent Models

The unfavorable results of clinical trials for pro-cognitive agents in schizophrenia described 

above have led to questions about the “translational validity” of animal models used in 

preclinical studies (see Lewis et al., 2018). In drug discovery research for schizophrenia and 

other neuropsychiatric disorders, addressing the translational elements, face, construct, and 

predictive validity in animal models is particularly challenging. In this context, multiple 

challenges include the subjective nature of many of the human symptoms, the lack of 

biomarkers and objective diagnostic tests, and our relatively poor understanding of the 

neurobiology and genetics of neuropsychiatric disorders (see review Nestler and Hyman, 

2010; Monteggia et al., 2018). One of the goals of the Research Domain Criteria (RDoC) 

paradigm launched in 2010 by the National Institute of Mental Health (NIMH) was to 

improve translation between animal experiments and clinical studies in psychiatry research. 

The basic concept in the preclinical realm was to encourage basic scientists to identify 

molecular or neural mechanisms (or neural circuitry) that contributes to specific domains of 

a mental function rather than creating animal models of diseases. In the clinical realm, 

researchers were encouraged to conceptualize normal human behavior, emotion, and 

cognition as dimensional, with mental illnesses as dimensional extremes as opposed to being 

restricted by DSM diagnostic categories (see Morris and, Cuthbert, 2012; Ross and 

Margolis, 2019). However, more that 10 years after the introduction of the RDoC paradigm, 

it is unclear if it has improved research progress in psychiatry especially in the drug 

discovery arena and its clinical relevance is increasingly being questioned (see Carpenter, 

2016; Ross and Margolis, 2019).

Regarding translational validity, rodent models are undoubtedly important in basic research 

for testing disease-related hypotheses and the early evaluations of novel therapeutic agents, 

however, it is likely they have been relied upon too much in neuropsychiatric drug discovery 

especially at the later preclinical stages of drug development. Compared to humans, the 

behavioral repertoire of rodents is quite limited and, while debated (see, Laubach et al., 

2018), there are major anatomical differences in their brains, most notably, the development 

of cortical regions of the forebrain, particularly the dorsolateral prefrontal cortex (DLPFC). 

This portion of the brain of humans and more advanced non-human primates (e.g., 

macaques) has been implicated specifically in the most complex cognitive processes such as 

working memory, sustained attention, decision taking, and executive function (reviewed, 

Barbey et al., 2013).
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Regarding, α7-nAChRs, there are also significant differences in the genetics, pharmacology, 

biophysical properties, and neuronal localization of α7-nAChRs between rodents and 

humans that could underlie different outcomes in preclinical and clinical trial evaluations of 

α7-nAChRs ligands (reviewed Bertrand and Terry, 2018). From a genetics standpoint, the 

recent findings of Yin et al., 2017 are particularly notable. In humans with 15q13.3 

microdeletion syndrome, caused by heterozygous deletions involving the CHRNA7 gene, 

behavioral abnormalities often observed in neuropsychiatric conditions such as 

schizophrenia and autism were observed, whereas Chrna7 knockout mice did not exhibit 

similar neurobehavioral phenotypes. From a pharmacological perspective, the effects of 

specific agonists in vitro differ between human and rodent sequences coding for α7-

nAChRs. For example, the partial agonist DMXB-A (GTS-21) activates the rat α7-nAChR 

to a maximal response greater than twice that of the human α7-nAChR, and the Ki of 

GTS-21 at the rat receptor is roughly an order of magnitude less than at the human receptor 

(Meyer et al., 1998), suggesting that similar serum levels might have disparate effects 

between the species. Finally, differences in the synaptic receptor expression between rodents 

and humans may be relevant as suggested by a recent study in nonhuman primates where 

postsynaptic localization of α7-nAChRs on spines were demonstrated in glutamatergic 

synapses of layer III dorsolateral prefrontal cortex (Yang et al., 2013). Most physiological 

studies in rodent frontal cortex, in contrast, have demonstrated presynaptic α7-nAChR 

actions and it has been suggested that spine α7-nAChRs are not prevalent or only have 

subtle effects on neuronal physiology in rodents compared to primates. Collectively, the 

information discussed here would appear to justify a renewed interest in the use of 

nonhuman primate species (see Monteggia et al., 2018) in neuropsychiatry and drug 

discovery research, given their richer behavioral repertoire and more homologous brain 

anatomy with humans compared to rodents.

5. Polypharmacy and Drug Exposure History

In both preclinical and clinical evaluations of α7-nAChR ligands, it is uncommon for the 

subject of polypharmacy and chronic antipsychotic drug history to be adequately addressed. 

Clearly, there are practical limitations in clinical trials, but the patient’s treatment history 

(which in many cases consists of multiple years of antipsychotic treatment) should be more 

carefully considered, not just concomitant antipsychotic treatment at the time of the clinical 

trial. Antipsychotics are well documented to have a variety of chronic effects on the 

mammalian brain including alterations of neurotransmitter receptor expression and neural 

plasticity (reviewed, Morrison and Murray, 2018), i.e., effects that could influence the 

response to a novel α7-nAChR ligand. Interestingly, guidelines related to polypharmacy and 

concomitant drug exposure have been developed for studies designed to evaluate potential 

pro-cognitive agents in schizophrenia trials. For example, a workshop on clinical trial design 

for evaluating cognitive enhancing drugs for schizophrenia was held in 2004 and it included 

experts from the FDA, NIMH, and scientists from academia and the pharmaceutical industry 

(see Buchanan et al., 2005). Among the various guidelines developed, it was recommended 

that polypharmacy (treatment with multiple antipsychotics) and combining a putative 

cognitive-enhancing agent with an antipsychotic with high affinity for the targeted receptor 

be avoided. However, it is unclear how closely such policies have been followed.
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In preclinical evaluations of potential pro-cognitive agents for potential use in schizophrenia, 

the concomitant administration of antipsychotics has only rarely been done and when it has, 

the antipsychotic has most commonly been administered acutely (e.g., Marquis et al., 2011). 

We recently conducted a series of experiments in rats where the α7-nAChR partial agonist 

tropisetron was administered to rats that had been exposed to either risperidone or quetiapine 

for 30 or 90 days then tested them in a novel object recognition task (Poddar et al., 2018). 

Tropisetron markedly improved NOR performance in rats treated with either antipsychotic 

for 30 or 90 days indicating that in this particular case, the antipsychotic treatment history 

did not interfere with the pro-cognitive effect of tropisetron. Thus, α7-nAChR ligands like 

tropisetron may have potential as adjunctive medications in schizophrenia since the pro-

cognitive effect was maintained in the presence of chronic antipsychotic treatment. However, 

in this study, tropisetron was administered acutely and future studies would need to be 

conducted to determine if this pro-cognitive effect of tropisetron is lasting.

Other factors related to polypharmacy and drug exposure history that have not been 

adequately addressed are how chronic nicotine exposure or the combination of chronic 

nicotine exposure and antipsychotic treatment might affect the efficacy of a pro-cognitive 

agent. Given the well-documented chronic effects of nicotine on nAChR expression (see 

Lewis and Picciotto 2013 for review), and the aforementioned high smoking rates in 

schizophrenia, this could certainly be an important consideration when evaluating an α7-

nAChR ligand for pro-cognitive effects. Levin and colleagues (see review, Levin and 

Rezvani, 2007) have performed some experiments in rodents to investigate nicotinic 

interactions with antipsychotic drugs and cognitive function. For example, they have shown 

that nicotine and some nicotine agonists can reduce cognitive impairments caused by some 

antipsychotic drugs. In other studies, they have shown that nicotine-induced cognitive 

improvements were attenuated by the some antipsychotics (e.g., clozapine). However, the 

specific questions raised above (i.e., how chronic nicotine exposure or the combination of 

chronic nicotine exposure and antipsychotic treatment might affect the efficacy of a pro-

cognitive agent including an α7-nAChR ligand) have not been rigorously investigated either 

in animal models or in clinical studies.

6. Pro-cognitive drug dose, frequency of administration, and duration of 

treatment

Another potential limitation of many clinical studies conducted to date to evaluate novel pro-

cognitive agents was the choice of dose, the frequency of administration, and the duration of 

treatment. Most of the rodent studies (where robust cognitive effects were observed) have 

employed acute or sub-acute dosing of α7-nAChR ligands, which contrasts with most of the 

clinical trials that were conducted over several weeks or months. All neuronal nAChRs 

(including α7-nAChRs) become temporarily inactive after prolonged exposure to an agonist 

(Quick and Lester 2002), thus the repeated administration of α7-nAChR agonists in the 

clinical studies may have resulted in receptor desensitization, or potentially even functional 

antagonism. To support this argument are the disparate effects of the immediate and slow-

release versions of DMXB-A (GTS-21) observed in clinical trials. Whereas, the immediate 

release formulation (which was rapidly absorbed, but quickly cleared) improved cognition 
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and P50 sensory gating in schizophrenic patients, the slow-release version was not effective 

(Olincy et al., 2006; Freedman et al., 2008; Kem et al., 2018). Another emerging hypothesis 

is that low concentrations of α7-nAChR ligands may be more effective than higher 

concentrations, as the latter will maintain receptors in a desensitized and unresponsive state 

(see Tregellas and Wylie, 2019). In many of the more recent animal studies, the greatest 

response to a nAChR agonist was observed with a low drug dose and increasing the dose 

often produced a decreasing effect, in an inverted U-shaped response curve, which is thought 

to be due to receptor desensitization. A particularly notable example was a non-human 

primate study where, a low dose of an α7-nAChR agonist (PHA543613) facilitated neuronal 

activity in the prefrontal cortex and improved performance of a spatial working memory 

task, whereas higher doses were not effective (Yang et al., 2013).

The ability to select the proper dose and frequency of administration of an α7-nAChR ligand 

for optimal target engagement could possibly be improved if functional biomarkers were 

identified for use in both preclinical and clinical studies. Noninvasive neuroimaging methods 

such as functional magnetic resonance imaging (fMRI) may be able to facilitate the 

identification of biomarkers since they can be used to investigate neural circuitry alterations 

that underlie symptoms of schizophrenia as well as how medications affect this neural 

circuitry. Here, a biomarker that can be linked to a disease mechanism is categorized as a 

type I biomarker and a biomarker that can be linked to a treatment response is categorized as 

a type II biomarker (see Wylie et al., 2016 for review). Interestingly, Tregellas and 

colleagues, using fMRI, linked hippocampal hyperactivity to smooth pursuit eye movement 

(SPEM) deficits in schizophrenia patients. The findings revealed a link between eye-tracking 

abnormalities and a hypothesized disease mechanism, thereby potentially qualifying 

hippocampal hyperactivity during SPEM as a type I biomarker. Additional studies in 

schizophrenia patients demonstrated that nicotine and the α7-nAChR partial agonist 

DMXB-A could normalize hippocampal hyperactivity during SPEM, suggesting that SPEM 

during fMRI could also represent a potential type II biomarker of treatment response (see 

Wylie et al., 2016; Tregellas and Wylie, 2019). In summary, while the use of fMRI for the 

development of biomarkers for schizophrenia and other neuropsychiatric disorders is in the 

early stages, it has the potential to facilitate drug development by improving the translation 

from animal models to the clinical realm as well to inform investigators as to the best dosing 

strategies to optimize target engagement.

7. Optimizing α7-nAChR activity

A large-scale effort to overcome the challenges related to nAChR desensitization and the 

administration of orthosteric agonists and partial agonists has been the development of 

positive allosteric modulators (PAMs). PAMs are thought to bind to sites that are distinct 

from the well-conserved (orthosteric) agonist binding domains and they require the presence 

of the endogenous ligand to increase receptor activity. Two date, two types of PAMs have 

been developed, designated Type I and Type II. Type I PAMs are defined as molecules that 

predominately affect the apparent peak current, agonist sensitivity, and Hill coefficient, but 

not the receptor desensitization profile. Type II PAMs possess the aforementioned properties 

described for Type I PAMs as well as the ability to modify the desensitization profile of 

agonist responses (see Bertrand and Gopalakrishnan, 2007). It has been argued that Type II 
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PAMs (compared to Type I PAMs) are less likely to induce tolerance, which may occur after 

the chronic administration of nAChR agonists, whereas, Type I PAMs, may have the 

advantage (compared to Type II PAMs) of minimizing the potential for calcium induced 

cytotoxicity (Ng et al., 2007, see also Nikiforuk et al., 2015). A large number of PAMs from 

both classes have been developed with pro-cognitive properties in animal models (see Table 

1); however, to date only a few clinical trials have been conducted (or are underway) with 

α7-nAChR PAMs (i.e., AVL-3288, galantamine, JNJ-39393406).

Finally, the classical view that nAChR stimulation is the key action responsible for the pro-

cognitive effects of α7-nAChRs ligands may require additional consideration given the 

observations that low doses of the selective α7-nAChR antagonist methyllycaconitine 

(MLA) can (in some cases) improve cognition in animal models (Hahn et al, 2011; Burke et 

al., 2014). and facilitate LTP induction in hippocampal region CA1 in rats (Fujii et al., 

2000). More recently, low concentrations/doses of MLA exerted surprising (positive) effects 

in several model systems. Specifically, in electrophysiological experiments, low 

concentrations of MLA potentiated receptor responses to acetylcholine in human α7-

nAChR-transfected oocytes, enhanced long term potentiation (LTP) in rat hippocampal 

slices, increased hippocampal glutamate efflux in microdialysis experiments in rats, and 

improved the acquisition of a novel object recognition task in rats (van Goethem et al., 

2019). Interestingly, the nonselective nAChR antagonist mecamylamine (in some cases) has 

also been found to exert pro-cognitive effects in working memory tasks in both rodents and 

monkeys as well as a recognition memory task in humans with attention deficit hyperactivity 

disorder (ADHD). For details of these studies, see Buccafusco et al., 2009; Bertrand and 

Terry 2018.

8. Additional Clinical Trial Design Issues

There is growing evidence that schizophrenia patients whose cognitive performance is 

comparable to healthy controls (i.e., up to 25% of patients) may not benefit from pro-

cognitive agents (Granger et al., 2018; DeTore et al., 2019). Therefore, the inclusion of such 

individuals in a clinical trial designed to determine a compound’s pro-cognitive efficacy may 

limit the power of the study. Unfortunately, a recent analysis of 87 randomized, double-

blind, placebo-controlled, clinical trials listed on ClinicalTrials.gov indicated that the vast 

majority of such clinical trials may have been underpowered due to the inclusion of 

cognitively “normal” patients (Cotter et al., 2019).

The argument that pro-cognitive strategies (specifically α7-nAChR-based approaches) 

should target subgroups of individuals who exhibit lower levels of cognitive function is 

supported by recent clinical studies with the selective α7-nAChR agonist CDP-choline in 

both healthy subjects and patients with schizophrenia. In healthy study participants showing 

relatively lower cognitive and sensory gating scores at baseline, CDP-choline was found to 

enhance multiple domains of cognition (Knott et al., 2015a, 2015b) and to improve sensory 

gating (Knott et al., 2014b). The same laboratory also reported CDP-choline-mediated 

improvements of P50 sensory gating scores in schizophrenia patients who exhibited 

impaired gating (Aidelbaum et al., 2018). They also demonstrated that combining CDP-

choline with galantamine (an acetylcholinesterase inhibitor and nAChR PAM) improved 
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sensory gating to speech stimuli in schizophrenia patients who expressed low baseline 

suppression (Choueiry et al., 2019).

Another factor that may be important to consider in the evaluation of pro-cognitive agents in 

schizophrenia is the chronicity of the illness. The duration of the disease and the efficacy of 

antipsychotics has been the subject of several reviews (e.g., Leucht et al., 2008), but the 

concept could also certainly apply to pro-cognitive drug evaluations. Most participants in 

antipsychotic clinical trials have been chronically ill having experienced multiple episodes 

and hospitalizations. While these patients may represent the “typical” cases of 

schizophrenia, there is increasing interest in the effects of medications on patients who have 

been recently diagnosed (e.g., first episode patients). As reviewed by Leucht et al., 2008, 

there are multiple differences between recent onset and chronic schizophrenic patients that 

could result in different outcomes in clinical trials. These differences include the level of 

cognitive impairment, the level of treatment compliance, the sensitivity to treatment side 

effects, and changes in brain morphology (Molina et al., 2005; Rabinowitz et al., 2006; Mori 

et al., 2007). Thus, studies explicitly recruiting recent onset or first episode patients should 

be conducted and in large clinical trials, these patients could be included along with 

chronically ill patients and the study outcomes stratified by group.

Another observation that has been commonly made in failed studies of pro-cognitive agents 

in neuropsychiatric patients is an improvement in symptoms across all treatment arms once 

patients are randomized, suggesting that being in a study itself may have a powerful 

therapeutic effect. It has been suggested that efforts to simplify the studies by reducing the 

number of interactions of patients with study staff prior to the drug evaluation phase be 

considered. Alternatively, efforts to ensure that all study procedures, staff interactions, and 

assessments are included in any run-in period prior to actual randomization of patients might 

also help to reduce this apparent practice or placebo effect (Marder et al., 2017).

From a meta-analytic review of placebo-controlled trials of antidepressant drugs, Undurraga 

and Baldessarini, 2012 argued that when drug evaluations progress to Phase III and 

additional testing sites are recruited to increase the number of study subjects, an 

unanticipated result is that the quality of the sites diminish (a factor that may contribute to 

the study failure). Thus, new policies should be developed for neuropsychiatric drug 

evaluations to focus more on the quality of the recruitment and site conduct rather than on 

the volume of patients enrolled, which may result in fewer but more productive study sites. 

Such policies would necessitate continual monitoring of the conduct of the study sites and 

contract research organizations and the termination of sites that do not perform properly 

(Marder et al., 2017).

9. Conclusions and Future Directions

There are now decades of preclinical evidence to support the argument that α7-nAChRs 

should be viable therapeutic targets for schizophrenia and other disorders of cognition. A 

wide variety of molecules developed to modulate α7-nAChRs exhibited pro-cognitive 

activity in animals and some have shown positive effects in early (Phase I and II) clinical 

trials. However, to date, there has been no large phase III clinical trial in schizophrenia 
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where an α7-nAChR ligand has shown clear efficacy as pro-cognitive agent without 

untoward side effects. A thorough review of the literature indicates that multiple factors can 

potentially affect the success of pro-cognitive agents in schizophrenia (including α7-nAChR 

ligands) such as the translational value of the animal models used, clinical trial design 

limitations, confounding effects of polypharmacy, and complex dose-effect and dose 

frequency considerations.

From the preclinical perspective, more studies should be conducted where the pro-cognitive 

agent is evaluated in animals that have chronically been treated with an antipsychotic drug. 

Moreover, the number of chronic dosing paradigms in animal studies should be increased to 

parallel chronic administration in clinical populations. In both the preclinical and clinical 

evaluations of α7-nAChR ligands, a wider dose range (to include low doses) and the 

frequency of administration (repeated versus intermittent administration) should be 

evaluated. In the later phases of preclinical drug discovery, a greater emphasis should be 

placed on non-human primates (as opposed to rodents) given their more complex behavioral 

repertoire and brain homology with humans. From the clinical perspective, patients whose 

cognitive performance is comparable to healthy controls should be excluded and efforts 

should be made to reduce apparent practice or placebo effects associated with multiple 

interactions of patients with study staff prior to the drug evaluation. Recent onset or first 

episode patients should be included along with chronically ill patients and the study 

outcomes stratified by group. Finally, new policies should also be developed to focus more 

on the quality of recruitment sites rather than on volume of patients enrolled.
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Highlights

• Cognitive impairment is a core feature of schizophrenia that is debilitating.

• Currently, there are no clinically effective treatments for these impairments.

• α7-nAChRs are considered viable therapeutic targets for cognition in 

schizophrenia.

• However, to date no α7-nAChR ligand has been approved for schizophrenia.

• This review discusses the relevant α7-nAChR literature and future directions.
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Fig 1. 
Diagram illustrating several domains of cognition and other behaviors often targeted in drug 

discovery programs for schizophrenia and other neuropsychiatric disorders. The homomeric, 

low affinity α7-nicotinic acetylcholine receptor (α7-nAChR) is abundant in regions of the 

brain (e.g., hippocampus, prefrontal cortex) that are important for cognitive function. The 

receptor consists of five subunits arranged around a central channel that opens when 

endogenous ligands such as acetylcholine or exogenous ligands (nicotine) bind at the 

orthosteric site allowing cations (e.g., Ca++) to flow through the channel into the neuron 

causing depolarization. Allosteric sites are the target of positive allosteric modulators 

(PAMs) and they are located at a site which is distinct from the orthosteric where they serve 

to indirectly influence (modulate) the effects of the agonist.
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Table 1.

In vivo Pharmacological Effects of α7-nAChR Ligands

Compound Name α7 nAChR activity & 
other actions

Cognitive Domain 
Enhanced

Additional 
Behavioral 

Improvements

References

ABBF α7 full agonist & 5-HT3 
antagonist

object and social recognition, 
working memory

Boess et al., 2007

ABT-107 α7 full agonist attention, working memory, 
social recognition

auditory gating Bitner et al., 2010; Bordia et al., 
2015; Radek et al., 2012

A-582941 α7 full agonist working memory, social 
recognition, inhibitory 
avoidance

sensory gating Tietje et al., 2008

AQW051 α7 partial agonist object and social recognition, 
spatial reference memory

Feuerbach et al., 2015

AVL-3288 
(Compound 6, 
CCMI or XY4083)

α7 Type I PAM object recognition, social 
recognition, working memory, 
executive function

auditory gating, 
conditioned 
avoidance 
responding

Ng et al., 2007; Nikiforuk et al., 
2015

BMS-933043 α7 partial agonist object recognition, working 
memory, executive function

auditory gating Bristow et al., 2016

BMS-902483 α7 partial agonist & 5-
HT3 antagonist

object recognition, executive 
function

auditory gating Pieschl et al., 2017

Compound 7z α7 Type I PAM object recognition Hogenkamp et al., 2013

DMXB-A 
(GTS-21)

α7 partial agonist & 5-
HT3 antagonist

attention, object recognition, 
spatial reference memory, 
working memory

sensorimotor gating Meyer et al, 1997; Callahan et 
al., 2014; Jones et al., 2014

EVP-6124 
(encenicline)

α7 partial agonist & 5-
HT3 antagonist

object recognition Prickaerts et al., 2012

EVP-5141 α7 full agonist & 5-HT3 
antagonist

object and social recognition, 
working memory

Boess et al., 2013

JNJ-39393406 α7 Type I, Type II PAM object recognition, executive 
function

auditory gating Winterer et al., 2013

Lu AF58801 α7 Type I PAM object recognition Eskildsen et al., 2014

NS1738 α7 Type I PAM object and social recognition, 
spatial reference memory

Marcus et al., 2016; 
Timmermann et al., 2007

PAM-2 α7 Type II PAM object recognition, executive 
function

social interaction 
model

Potasiewicz et al., 2017

PNU 120596 α7 Type II PAM recognition memory, spatial 
learning, working memory, 
executive function

auditory gating Dunlop et al., 2009; Nikiforuk et 
al., 2015; Stevens et al., 2015

PNU-282987 α7 full agonist recognition memory conditioned 
avoidance 
responding

McLean et al., 2016; Marcus et 
al., 2016

RG 3487 α7 partial agonist & 5-
HT3 antagonist

attention, object recognition, 
spatial reference memory, 
executive function

sensorimotor gating Wallace et al., 2011

SEN-12333 α7 full agonist & 
histamine H3 antagonist

object recognition sensorimotor gating Roncarati et al., 2009

SSR-180711 α7 partial agonist recognition memory, working 
memory, novelty 
discrimination

latent inhibition Pichat et al., 2007; Barak et al., 
2009

TC-5619 α7 full agonist object recognition sensorimotor gating Hauser et al., 2009
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Compound Name α7 nAChR activity & 
other actions

Cognitive Domain 
Enhanced

Additional 
Behavioral 

Improvements

References

Tropisetron α7 partial agonist & 5-
HT3 antagonist

attention, object recognition, 
working memory, spatial 
reference memory

sensorimotor gating Callahan et al., 2017; Hashimoto 
et al., 2005, 2006; Kohnomi et 
al., 2010; Pitsikas et al., 1997
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Table 2.

α7-nAChR ligands that have been evaluated in human clinical trials for pro-cognitive effects

Compound Name α7 nAChR activity & 
other actions

Clinical 
Stage

Clinical Endpoints References

ABT-126 Partial agonist Phase II Cognition, Negative 
Symptomology

Haig et al., 2016; Haig et al., 
2016; Haig et al., 2018

AQW051 Partial agonist Phase II Cognition, fMRI Brain 
Activation

Barch et al., 2016

AVL-3288 PAM Phase Ib Cognition, Auditory Sensory 
Gating Negative 
Symptomology

Gee et al., 2017; Kantrowitz et 
al., 2020

Cytidine 5’-
diphosphocholine 
(CDP-choline)

Full agonist Phase II Cognition, Auditory Sensory 
Gating

Knott et al., 2015; Aidelbaum 
et al., 2018; Choueiry et al., 
2019

DMXB-A (GTS-21) Partial agonist Phase II Cognition, Auditory Sensory 
Gating, Negative 
Symptomology

Olincy et al., 2006; Freedman 
et al., 2008

Encenicline 
(EVP-6124)

Partial agonist/5-HT3 
antagonist

Phase III Cognition, Negative 
Symptomology

Keefe et al., 2015

Galantamine PAM/acetylcholinesterase 
inhibitor

Phase II Cognition, Auditory Sensory 
Gating, Negative 
Symptomology

Choueiry et al., 2019; 
Buchanan et al., 2017

JNJ-39393406 PAM Phase Ib Cognition,Auditory Sensory 
Gating, Smoking Cessation

Winterer et al., 2013; Perkins et 
al., 2018

RG3487 Partial agonist/5-HT3 
antagonist

Phase II Cognition, Negative 
Symptomology

Umbricht et al., 2014

Tropisetron Partial agonist/5-HT3 
antagonist

Phase II Cognition, Auditory Sensory 
Gating, Negative 
Symptomology

Shiina et al., 2010; Zhang et al., 
2012; Noroozian et al., 2013

TC-5619 Full agonist Phase II Cognition, Negative 
Symptomology

Lieberman et al., 2013
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Table 3.

Limitations of Preclinical and Clinical Studies of pro-cognitive agents to date

Preclinical Clinical

Translational challenges due to the poor understanding of the 
etiology and pathophysiology of schizophrenia

Studies often underpowered due to the inclusion of cognitively 
“normal” patients

Overreliance on rodent models Polypharmacy and drug exposure history not properly addressed

Overreliance on acute dose-effect analyses Unanticipated practice effects masking a positive outcomes

Pro-cognitive agents not evaluated in test subjects that have been 
chronically treated with antipsychotic.

Chronicity of the illness not taken into account. Recently diagnosed 
and first episode patients should be evaluated.

Pro-cognitive agents not evaluated in test subjects that have been 
chronically treated with nicotine or nicotine plus antipsychotics

Inclusion of inexperienced trial sites and focus on volume of patients 
enrolled as opposed to the quality of the recruitment sites
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