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Abstract

Several studies have shown that direct brain stimulation can enhance memory in humans and 

animal models. Investigating the neurophysiological changes induced by brain stimulation is an 

important step towards understanding the neural processes underlying memory function. 

Furthermore, it paves the way for developing more efficient neuromodulation approaches for 

memory enhancement. In this study, we utilized a combination of unsupervised and supervised 

machine learning approaches to investigate how amygdala stimulation modulated hippocampal 

network activities during the encoding phase. Using a sliding window in time, we estimated the 

hippocampal dynamic functional network connectivity (dFNC) after stimulation and during sham 

trials, based on the covariance of local field potential recordings in 4 subregions of the 

hippocampus. We extracted different network states by combining the dFNC samples from 5 

subjects and applying k-means clustering. Next, we used the between-state transition numbers as 

the latent features to classify between amygdala stimulation and sham trials across all subjects. By 

training a logistic regression model, we could differentiate stimulated from sham trials with 67% 

accuracy across all subjects. Using elastic net regularization as a feature selection method, we 

identified specific patterns of hippocampal network state transition in response to amygdala 

stimulation. These results offer a new approach to better understanding of the causal relationship 

between hippocampal network dynamics and memory-enhancing amygdala stimulation.

I. Introduction

The hippocampus has a long-established role in declarative memory, with its various 

subregions thought to mediate different processes related to memory formation [1]. The 

hippocampal network receives input from a variety of brain areas, including the basolateral 
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amygdala [2]. This connection is thought to be particularly important in the context of 

memory, since amygdala regulates emotional processing, which can affect how memories 

are consolidated [3], [4].

A recent study explored how amygdala affects memory consolidation in humans, by 

performing direct electrical stimulation using depth electrodes in epilepsy patients [5]. When 

the amygdala was stimulated during presentation of novel images, the patients subsequently 

showed stronger memory of these images, compared to sham trials. Furthermore, amygdala 

stimulation led to increased spectral coherence between the hippocampus and perirhinal 

cortex during retention, indicating that hippocampal connectivity with other important brain 

regions was affected. However, it is still unclear how stimulating the amygdala affects 

hippocampal network connectivity at the time of stimulation, and why that leads to better 

memory. In this study, we are leveraging this dataset of intracranial recordings of 

hippocampal subregions to explore the effects of the amygdala stimulation on hippocampal 

networks.

To study the interactions between different hippocampal subregions and how they evolve 

over time, we employed the use of dynamic functional connectivity (dFNC), which is a 

metric for time-varying changes in interregional dynamics, as measured by functional 

connectivity [6]. dFNC has been commonly used in fMRI recordings during cognitive tasks, 

but recent studies have used it in on EEG signals [7].

To shed light on hippocampal dynamics over time, we are measuring the dFNC of all 

recorded hippocampal subregions - CA1, CA3, dentate gyrus (DG) and, subiculum (SUB) – 

and how it is affected by amygdala stimulation. Furthermore, we are assessing the 

differences of stimulated and sham trials by comparing the transitions observed between 

different hippocampal dFNC states in both cases. Through this novel approach, we can start 

exploring how different network states relate to memory formation and how use this 

knowledge to potentially improve direct brain stimulation.

II. Method

A. Experiment Procedure

Five patients with drug-resistant epilepsy that were implanted with intracranial EEG 

electrodes in the hippocampus participated in an image recognition memory task, as 

described in the original study [5]. During memory encoding, 160 images were presented to 

the patients for three seconds each. Half of the images followed by amygdala stimulation 

were labeled as Stimulation trials and the other half were considered as Sham trials. The 

local field potential (LFP) signals of the hippocampus were recorded using depth electrodes 

(Ad-Tech; 0.86 mm diameter, 2 mm length platinum-coated contacts, typically spaced along 

5-mm intervals) and recording systems (XLTEK EMU 128FS; Natus Medical) at each 

clinical site. LFPs were recorded at a sampling rate of either 500 Hz (3 subjects) or 1000 Hz 

(2 subjects). A research neurostimulator (CereStim M96; Blackrock Microsystems) was 

used to deliver the current regulated, charge-balanced, biphasic rectangular pulses at 0.5 mA 

for 1s in eight trains of four pulses at 50 Hz to the amygdala precisely at the offset of image 

presentation for a randomized half of the studied images. No seizure activity or after 
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discharges to stimulation were detected during testing or in a thorough post-test review of all 

recorded LFP channels by a clinical epileptologist [5]. All procedures were by the Emory 

University Institutional Review Board.

B. Preprocessing

In this study, 2800 ms of the LFP signal, recorded from CA1, CA3, dentate gyrus (DG), and 

subiculum (SUB), at the offset of electrical (shown in red) and sham (shown in blue) 

stimulation has been used as shown in Fig. 1. To eliminate the residual effect of the 

stimulation, 200 ms after the stimulation offset was discarded. The data were first digitally 

filtered with a low pass cutoff of 1 Hz to attenuate low frequency artifacts and a high pass 

cutoff of 249 Hz. The median LFP across all available recording electrodes was then 

subtracted from each channel to remove non-local (global) artifacts.

C. Dynamic Functional Network Connectivity (dFNC)

The dFNC of each trial (N=160 for each subject), was estimated using a sliding window 

with a window size of 14 ms in steps of 3.5 ms. First, we segmented the time-course signal 

to 270 windows, Then, we calculated the covariance matrix of each window to measure the 

dFNC between channels. We concatenated dFNC estimates of each window for each subject 

to form a C × C × T array (where C=4 denoted the number of channels and T=270 denoted 

the number of windows in time), which represented the changes in brain connectivity 

between channels as a function of time. This process is shown in Step 1 of Fig. 1 [8].

D. Clustering and finding the latent features

After calculating the dFNC for each trial, we concatenated all trials across all subjects as 

shown in Step 2 of Fig. 1 and applied a k-means clustering algorithm to these dFNC 

windows to partition the data into a set of separated clusters [8]. The optimal number of 

centroid states was estimated using the elbow criterion based on the ratio of within to 

between cluster distance [9]. In a search window of k from 3 to 8, we found that the optimal 

number of clusters was 5. In addition, the correlation between samples was used as a 

distance metric in this k-means clustering algorithm with 1000 iterations. After applying k-

means clustering, we will have a state vector for each trial as shown in Fig. 1. A state vector 

showed how the hippocampus changes between any pair of states over the time. Next, using 

the state vector, we calculated the number of times that the hippocampus network transitions 

from one state to another one within a trial. This state transition modeled by the equations 

below:

aij = N(s(t + 1) = i s(t) = j) (1)

where Si denotes the state and aij, used as a latent feature showed the number (N) of 

transition from state j at time t to state i at time step t+1. Overall, this led to 25 latent 

features for each trial (Step 3 of Fig.1).

E. Classification and feature learning

A logistic regression (LR) was used to perform classification between stimulated and sham 

trials, by using the latent features of each trial across all five subjects. We utilized elastic net 
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regularization (ENR), which used both L1-and L2-penalization to find the most important 

features in this classification [10], [11]. We used leave-one subject-out nested cross-

validation (CV), in which one subject was used for testing and the remaining four subjects 

were used for training and validation [12]. In the nested CV, we divided data into training 

and test sets in any outer-fold. Then, we divided the training data into another training and 

validation dataset in any inner-fold. The best set of parameters were chosen by training 

different models using inner-loop training data and validating using a validation dataset. In 

this approach, the hyperparameters of each model were tuned to minimize the inner-fold CV 

error of the generalization performance. By sweeping the penalty parameter logarithmically 

from 10−5 to 105, we found the best value of the parameter that minimizes the CV error. The 

receiver operating characteristic (ROC) of the CV was computed, and the area under the 

curve (AUC) was calculated as a measure of the accuracy of the classifier (Step 4 of Fig. 1).

III. Results

A. Hippocampal dFNC states

Five reoccurring dFNC states, named States 1–5, were identified by k-means clustering as 

shown in Fig. 2a. In this figure, each state represents the centroid of the associated cluster. 

As shown in this figure, there appeared to be some differences in the connectivity patterns of 

the different states. In State 1, we observed high connectivity between DG, CA1 and SUB, 

with CA3 mostly unengaged. On the other hand, in State 2, a high serial connectivity was 

observed. In State 3, a strong connectivity among CA1, CA3, and SUB was observed. In 

State 4, there was a negative connectivity between DG and the rest of the nodes. Finally, in 

State 5 there was high connectivity between SUB and CA3.

B. Classification result between stimulated and non-stimulated trials

Using the number of between-state transitions as a latent feature and 5-fold nested CV, we 

trained a LR to classify between stimulated and sham trials. In each fold, we left one subject 

out for testing and trained a LR model using the other four subjects. The overall AUC of the 

model was 0.67 ± 0.08, that is shown in Fig. 2b. Changes in the dFNC state transitions may 

be used as a potential biomarker of the effect of amygdala stimulation on the hippocampal 

networks. Fig. 2c shows the important sparse features in the ENR process that minimized 

classification error. In this graph, the red color shows higher transition probability in 

stimulated trial and blue color shows a lower transition probability in stimulated trials. 

Based on the ENR results, only one transition probability (i.e. transition from state 1 to state 

2) was higher in the sham trials. All other transition probabilities were higher in the 

stimulated trials. Specifically, we observed a relatively higher transition from state 5 to state 

1, from state 2 to state 3, and from state 2 to state 5 in the stimulated trials, in which only the 

transition from state 2 to state 3, i.e. a32, was still statistically significant after a multiple 

comparison using the Benjamini-Hochberg approach (corrected p<0.05). Therefore, 

amygdala stimulation increased transition from State 2, which shows the regular serial 

connectivity expected from hippocampal networks, to State 3 with higher intrinsic 

connectivity between these subregions.
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IV. Discussion

In this study, we developed a novel approach to analyze LFP recordings to investigate the 

dynamics of the hippocampal functional connectivity that are induced by amygdala 

stimulation in human. We used recordings from four hippocampal subregions including 

CA1, CA3, SUB, and DG. Using a sliding window, we estimated the dFNC of each trial. We 

partitioned the dFNC state space into five different states, using the k-means clustering 

method. One of the network states (State 2) showed high serial connectivity agreeing with 

the information flow in the trisynaptic hippocampal circuit [13], as well as recent findings 

from our group [14]. State 3 showed strong interactions between DG, CA3 and CA1, while 

SUB, largely considered to be regulating hippocampal output [15], was showing weak 

connectivity. In addition, a segregated CA1 and DG was observed in State 1 and State 4, 

respectively. These results suggest that the functional connectivity in the hippocampal 

networks was highly dynamic, possibly representing different states of coordination between 

hippocampal subregions.

Next, to model the temporal changes of hippocampal FNC, we calculated the between-state 

transition number as a latent feature. Following the calculation of this latent feature for all 

the trials in all subjects, we classified stimulated and sham trials using an LR classifier with 

leave-one subject-out nested cross-validation. A 67 % AUC suggest between-state 

transitions may represent a potential biomarker of the effect of stimulation that differentiates 

stimulated trials from sham.

Finally, using an ENR as a feature learning method embedded in the LR classifier, we found 

that the between-state transition was statistically higher in the stimulated trials. This 

potentially suggests the effect of amygdala stimulation in increasing the dynamic of the 

hippocampal network. In addition, stimulation caused a transition from a state with less 

connectivity between CA1 and other subregion such as CA3 and DG (State 2) to a state with 

relatively higher connectivity between CA1/CA3/DG (State 3). This result was consistent 

with previous findings regarding the role of CA1/CA3/DG connectivity in both encoding 

and retention, and its association with successful memory [16].

Identifying and comparing dynamic network connectivity between stimulated and sham 

trials can help better understanding the underlying mechanisms of hippocampal network 

dynamics effected by amygdala stimulation and inform more effective stimulation 

paradigms. In sum, this work represented a novel approach to quantify the effect of 

amygdala stimulation on functional connectivity dynamics of the hippocampal networks in 

human.

V. Conclusion

In this study, we presented a novel approach for quantifying functional network dynamics in 

the hippocampus Using ENR feature learning method embedded in a LR classifier, we 

characterized functional connectivity state transitions as potential biomarkers of the effect of 

amygdala stimulation on the hippocampal network. The results of this study suggest that 

amygdala stimulation may enhance functional connectivity in the hippocampal networks.
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Fig.1. Schematic of the analysis pipeline.
A sliding window over the time course signal of independent components was used to 

calculate the dFNC of hippocampus in each trial (Step 1). Then, the dynamic states matrix 

and state transition vectors were computed by applying a k-means clustering method across 

all windows of all subjects (Step 2). The dFNC between-state transition numbers were 

calculated as a latent feature to model the temporal pattern of the state vector of each trial 

(Step 3). These latent features were used as an input to fit logistic regression to classify 

Stimulated (Stim) from Non-stimulated (Sham). We assessed classifier performance using 

the area under the receiver-operating characteristics curve (AUC). Feature selection used to 

model the difference between Stim and Sham trials and find the feature was the most 

predictive in discriminating between the two classes (Step 4).
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Fig.2: k-means clustering and the feature selection results.
a) The five dFNC states identified by the k-means clustering method. b) ROC of LR with 5-

fold ENR prediction of stimulated (Stim) from Sham trials across all subjects using latent 

feature obtained by k-means clustering method. (AUC: 0.67±0.08). the dashed line shows 

the change level. c) The distribution of biomarkers identified by ENR. The most important 

feature is a32 after adjusting p value using Benjamini-Flochberg approach (corrected 

p<0.05).
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