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Abstract

Learning in dynamic environments requires integrating over stable fluctuations to minimize the 

impact of noise (stability) but rapidly responding in the face of fundamental changes (flexibility). 

Achieving one of these goals often requires sacrificing the other to some degree, producing a 

stability-flexibility tradeoff. Individuals navigate this tradeoff in different ways, with some people 

learning rapidly (emphasizing flexibility) and others relying more heavily on historical 

information (emphasizing stability). Despite the prominence of such individual differences in 

learning tasks, the degree to which they relate to broader characteristics of real-world behavior or 

pathologies has not been well explored. Here we relate individual differences in learning behavior 

to self-report measures thought to collectively capture characteristics of the Autism spectrum. We 

show that young adults who learn most slowly tend to integrate more effective samples into their 

beliefs about the world making them more robust to noise (more stability), but are more likely to 

integrate information from previous contexts (less flexibility). We show that individuals who 

report paying more attention to detail tend to use high flexibility and low stability information 

processing strategies. We demonstrate the robustness of this inverse relationship between attention 
to detail and formation of stable beliefs in a heterogeneous population of children that includes a 

high proportion of Autism diagnoses. Together, our results highlight that attention to detail reflects 

an information processing policy that comes with a substantial downside, namely the ability to 

integrate data to overcome environmental noise.

Keywords

Learning; Autism; Integration; Flexibility; Cognitive Control

Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. http://www.springer.com/gb/open-
access/authors-rights/aam-terms-v1

Corresponding Author: Matthew R. Nassar, Department of Neuroscience, Brown University, Providence, RI 02912-1821, Phone: 
607-316-4932, matthew_nassar@brown.edu. 

Publisher's Disclaimer: This Author Accepted Manuscript is a PDF file of a an unedited peer-reviewed manuscript that has been 
accepted for publication but has not been copyedited or corrected. The official version of record that is published in the journal is kept 
up to date and so may therefore differ from this version.

Open Practices Statement:
All data and analysis code associated with this paper will be made available upon acceptance of the publication on the authors website 
(https://sites.brown.edu/mattlab/resources/). None of the experiments reported here were preregistered.

HHS Public Access
Author manuscript
Cogn Affect Behav Neurosci. Author manuscript; available in PMC 2022 June 01.

Published in final edited form as:
Cogn Affect Behav Neurosci. 2021 June ; 21(3): 607–623. doi:10.3758/s13415-020-00848-8.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.springer.com/gb/open-access/authors-rights/aam-terms-v1
http://www.springer.com/gb/open-access/authors-rights/aam-terms-v1
https://sites.brown.edu/mattlab/resources/


Introduction

Successful decision making requires inferring important quantities such as the values and 

probabilities associated with potential decision outcomes through sequential observations 

over time. This inference process is difficult in changing environments, where optimal 

inference requires tracking the environmental statistics necessary to determine the most 

appropriate rate of learning (Behrens, Woolrich, Walton, & Rushworth, 2007; Browning, 

Behrens, Jocham, O’Reilly, & Bishop, 2015; McGuire, Nassar, Gold, & Kable, 2014; 

Nassar, McGuire, Ritz, & Kable, 2019b; Nassar et al., 2012; Prescott Adams & MacKay, 

2007; Wilson, Nassar, & Gold, 2010; Yu & Dayan, 2005). In general, learning should be 

slow during periods of environmental stability in order to average over as many relevant 

observations as possible, but fast during periods of environmental change that render prior 

observations irrelevant to the problem of predicting future ones (Behrens et al., 2007; 

Browning et al., 2015; Nassar et al., 2016; Nassar, Wilson, Heasly, & Gold, 2010; Vaghi et 

al., 2017; Wilson, Nassar, & Gold, 2013). Human behavior, fMRI BOLD responses, and 

measures of physiological arousal display qualitative hallmarks of this sort of learning rate 

adjustment, suggesting that the brain implements meta-control over its own rate of learning 

in order to optimize behaviorally relevant inferences (Behrens et al., 2007; Browning et al., 

2015; McGuire et al., 2014; Nassar et al., 2012; Nassar, McGuire, Ritz, & Kable, 2019b; 

Prescott Adams & MacKay, 2007; Wilson et al., 2010; Yu & Dayan, 2005).

However, learning rate, and adjustments thereof, differ dramatically across individuals, age 

groups, and clinical populations (Behrens et al., 2007; Browning et al., 2015; Nassar et al., 

2010; 2016; Vaghi et al., 2017; Wilson et al., 2013). Some individuals tend to adjust beliefs 

rapidly irrespective of environmental statistics, leading to flexible but unstable beliefs, 

whereas others tend to adjust more slowly giving rise to inflexible but stable beliefs (Nassar 

et al., 2010). In principle, such differences might arise through learning about environmental 

statistics over a much longer time course, such as over development (Nassar et al., 2016) or 

even evolution (Krugel, Biele, Mohr, Li, & Heekeren, 2009; Stein, Newman, Savitz, & 

Ramesar, 2006). This longer timescale meta-learning might in some cases appropriately bias 

an individual towards one end of the stability/flexibility spectrum; however in other cases it 

could potentially go awry and give rise to pathological belief updating. For example, recent 

work has suggested individuals with obsessive compulsive disorder tend to over-learn from 

new information (Vaghi et al., 2017), limiting stability of beliefs. Consistent with a 

prominent theory of autism (Sinha et al., 2014), similar conclusions have been made about 

autistic individuals under some conditions (Lawson, Mathys, & Rees, 2017), although other 

studies have failed to identify differences between autistic individuals and controls 

(Manning, Kilner, Neil, Karaminis, & Pellicano, 2016).

These mixed results may result in part from heterogeneity within the autism spectrum. 

Autism is a broad diagnostic category characterized by deficits in social communication as 

well as restricted and repetitive patterns of behavior (RRBs). RRBs include inflexible 

adherence to routines, inflexibility to changing contexts, rigid thinking patterns, and 

increased attention to detail. Although the neural origins of an increased focus on details 

remains unknown, it has been described colloquially as “missing the forest for the trees” and 

theoretically as “weak central coherence” (Frith, 1989; Happé & Frith, 2006), “enhanced 
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discrimination and reduced generalization” (Plaisted, 2001), “enhanced perceptual 

functioning” (Mottron, Dawson, Soulières, Hubert, & Burack, 2006), as well as other 

theoretical explanations (Belmonte et al., 2004; Just, Keller, Malave, Kana, & Varma, 2012; 

Kana, Libero, & Moore, 2011; Lawson, Rees, & Friston, 2014; Williams, Goldstein, & 

Minshew, 2006).

Although these psychological models differ in terms of the origin of these deficits, they all 

generally describe an imbalance of global and local information processing, with RRBs 

emerging from overstimulation stemming from increased local/primary sensory information 

processing. Here we extend this notion of locality to the temporal domain. For the purposes 

of learning in dynamic environments, we refer to ‘flexibility’ as the ability to prevent 

integration of information across a change point. We propose that such flexibility might be 

enhanced through a focus on local details, such as the most recent observation, rather than 

more global information, such as a long term average over observations. From this 

perspective, the greater reliance on local information characteristic of heightened attention to 
detail in individuals with autism might result in a particular learning profile favoring 

flexibility as opposed to stability.

One factor limiting much of the previous research on attention to detail is the focus on 

dichotomous groups of individuals with or without an ASD diagnosis, a study design that 

does not take into account that behavioral manifestations of ASD. Importantly, local/global 

perception has also been shown to vary in the general population (Dale & Arnell, 2013; 

McKone et al., 2010; Scherf, Behrmann, Kimchi, & Luna, 2009). Thus, quantitative 

measurement of attention to detail along with measurement of learning behavior that differs 

based on information processing policies in those with and without ASD would be 

particularly powerful. Recent work that has used the approach has shown that quantitative 

traits of autism measured both in the general population and within clinically-diagnosed 

cohorts are associated with the ability to disembed a smaller figure from a larger shape 

(Sabatino DiCriscio & Troiani, 2017; 2018). Further, it has been shown that the ability to 

disembed a local part from a global whole are not present in every individual with ASD, 

indicating that measuring trait dimensions is important in heterogeneous disorders like 

autism (DiCriscio, Hu, & Troiani, 2019). Additional studies have used the AQ to screen 

participants and split them into “High AQ” and “Low AQ” groups or to link quantitative 

measures of autism traits to a given behavior. These studies also show that there is a 

documented relationship between visual perceptual skills and autism traits in neurotypical 

individuals as measured by the AQ (Burghoorn, Dingemanse, van Lier, & van Leeuwen, 

2020).

Here we use a trait dimension approach to examine the relationship between attention to 
detail, a prominent feature of autism, and the degree to which individuals implement 

learning policies favoring either stability or flexibility. We relate individual differences in 

learning behavior (stability/flexibility tradeoff) to a quantitative measure of autism traits 

(Autism Spectrum Quotient; AQ), designed to capture characteristics of autism that extend 

outside of traditional diagnostic boundaries. We examine this in two separate populations: 

healthy young adults and children with a range of developmental abilities, including autism. 

We show that the young adults who update beliefs the least in the face of conflicting 
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information integrate more effective samples into their beliefs about the world, making them 

more robust to noise (more stability), but also are more likely to integrate information from 

previous contexts (less flexibility). The individuals who show the opposite pattern of results 

(high flexibility/low stability), tended to score higher on the attention to detail subscale of 

the AQ. We confirm this inverse relationship between attention to detail and formation of 

stable beliefs in a population of children that includes a high proportion of clinical autism 

diagnoses. Together, our results highlight that attention to detail reflects an information 

processing policy that comes with a substantial downside, namely the inability to integrate 

data to overcome environmental noise.

Methods

Subject populations:

Experiment 1: 43 young adults (20 female, mean[std] age = 2.4[3.4] years, Mean[std] WASI 

FSIQ = 112[10.4]) were recruited from a local community population to participate in our 

first behavioral study.

Experiment 2: 37 children (17 female, mean[std] age = 9.5 [2.5]) were recruited to 

participate in our second behavioral study. In order to obtain a range of autism traits in the 

sample, we identified participants using a broad recruitment strategy. This included 

identifying participants based on patient referral to a neurodevelopmental clinic in 

Lewisburg, Pennsylvania, as well as from health system wide advertisement and the 

surrounding community. On the day of research testing, all participants completed a 

cognitive assessment to document IQ (WASI-II: Wechsler abbreviated scale of intelligence, 

2nd edition; Wechsler, 2011). If an IQ test was ascertained as part of their clinic appointment 

that day, we used the clinically ascertained IQ score. All participants assented to protocols 

approved by the institutional review board (IRB) at the authors’ home institution. Twelve of 

our participants had a clinical diagnosis of autism or ASD based on assessment by our 

neurodevelopmental pediatricians and support staff.

Study Session:

Each experimental session involved performing a computerized predictive inference task 

(Nassar et al., 2016; Nassar, Bruckner, & Frank, 2019a), completing the Autism Quotient 

questionnaire, and a cognitive assessment (WASI FSIQ). Thirteen of the 43 young adult 

participants did not complete the WASI FSIQ due to time constraints.

Predictive inference task:

Each participant completed a computerized predictive inference task that required them to 

infer the location of an unobservable helicopter based on the locations of bags that had 

previously fallen from it (McGuire et al., 2014). The task included two conditions that favor 

different adaptive learning strategies (d’Acremont & Bossaerts, 2016; Nassar, Bruckner, & 

Frank, 2019a). In one condition the helicopter was generally stationary but occasionally 

underwent “changepoints” (hazard rate = 0.125) at which its position was reset to a random 

horizontal position on the visible screen (arbitrarily defined using screen positions on a scale 

from 0 to 300), and in the other condition the helicopter “drifted” slightly from trial-to-trial 
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(implemented as a normal random walk with standard deviation = 10 screen units). On each 

trial a bag would fall from the top of the screen, horizontally displaced slightly from the true 

horizontal position of the helicopter (noise standard deviation = 20 screen units), providing 

the participant with some information about the helicopter location. In the changepoint 

condition this information was always relevant – as bag locations were normally distributed 

around the helicopter position. However, in the condition with the drifting helicopter, bags 

were occasionally (hazard rate = 0.125) sampled from a uniform distribution extending 

across the entire screen, giving rise to “oddball” events that were unrelated to the true 

helicopter location. On half of trials, the contents of bags were worth points that 

accumulated in the bucket across trials and were translated into incentive payments at the 

end of the session. On the other half of trials contents were worthless, but nonetheless bag 

positions provided important information about the position of the helicopter, and thus 

upcoming bag locations. The value of bag contents was designated by color 

(counterbalanced across participants) and could not be predicted such that the best strategy 

on each trial was to move the bucket to the inferred location of the helicopter in order to 

maximize the chances of “catching” valuable tokens.

Subjects were trained separately and explicitly on each of the two conditions. Training on 

each task condition consisted of 1) a set of instructions slides that explicitly described the 

generative environment (eg. changepoint or oddball condition; see appendix 1 for complete 

instructions) and 2) a visible helicopter training version of the task in which participants 

could observe the bags fall from the helicopter directly. After performing 50 trials of the 

visible helicopter training task for a given condition, participants were told that the 

helicopter would be obscured by clouds and that they would need to infer its position based 

on previous bag locations. Thus, participants were made explicitly aware of the condition 

that they were in (changepoint/oddball) prior to beginning each condition of the predictive 

inference task. Performance of both cohorts on the visible helicopter task indicated a general 

understanding of the task (Fig S1).

Autism Spectrum Quotient (AQ):

The AQ is a self-report measure aimed to assess ASD-like traits across the general 

population (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001). This measure 

assesses five trait domains, including communication, social skills, attention switching, 

imagination, and attention to detail. Using a 4-point Likert scale, a participant responds with 

how strongly they agree or disagree with a given statement. Each item is scored based on 

whether a given trait is endorsed, with half of the items requiring an agree and half requiring 

a disagree response to endorse an ASD-like trait. Item scores are summed to generate both a 

total score as well as subscale scores. In Experiment 1, young adults completed a self-report 

version of the AQ, while in Experiment 2, parents completed a parental-report version of the 

AQ on their child’s behavior.

Subject Exclusion

For both studies, subjects were excluded if they did not meet a basic performance standard 

designed to determine whether they were actually attempting to complete the task (mean 

distance between bucket and helicopter position of less than 45 units). This performance 
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standard was met by all participants in the young adult population but did lead to exclusion 

of one participant in the developmental cohort (see fig S7). In addition, 8 participants in the 

developmental cohort did not complete the AQ due to time constraints, and thus were not 

included in the correlations between AQ measures and task performance. After participant 

exclusion, our developmental cohort included 29 participants who had completed the AQ, 9 

of whom had an autism diagnosis.

Normative learning model:

Normative learning was assessed using a reduced Bayesian model that has been described 

previously for the changepoint (Nassar et al., 2010) and oddball (Nassar, Bruckner, & Frank, 

2019a) conditions. In both conditions, model updates correspond to an error driven learning 

rule where the learning rate depends on trial-by-trial estimates of the probability of an 

extreme event (referred to as changepoint or oddball probability, depending on the block 

type), which is computed according to Bayes rule:

p(extreme event on trial t) = Ωt =
H

300
N PE; 0, σ2 (1 − H) + H

300
Eq 1

Where H is an a priori expectation about the rate of extreme events (hazard rate), PE refers 

to the difference between the actual and expected outcomes (prediction error), and σ2 is the 

variance on the models estimate of the current helicopter location. This variance is derived 

from two sources, the irreducible variability attributable to the width of the bag distribution 

σN
2  and the uncertainty attributable to imprecise estimates of the helicopter location σμ2 . 

For normative model simulations, σN
2  was set to its true value in the task (20 screen units) 

and σμ2 was inferred on each trial as has been described previously for the changepoint 

(McGuire et al., 2014) and oddball conditions (Nassar, Bruckner, & Frank, 2019a).

The fraction of total uncertainty (σ2) that is due to an imprecise estimate of the helicopter 

location σμ2  is termed relative uncertainty:

τt + 1 = σμ2

σN
2 + σμ2

Eq 2

In the changepoint condition, learning rates in the model are driven up by both the 

probability of an extreme event and the relative uncertainty about the helicopter position:

αt(cℎangepoint condition) = Ωt + τt − Ωtτt Eq 3

This is not the case for the oddball condition, where probable oddballs should be ignored:

αt(oddball condition) = τt − Ωtτt Eq 4
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Single trial learning rates:

Participant bucket positions and computer generated bag locations were used to compute 

trial-by-trial prediction errors (the difference between bag location and the center of the 

bucket on a given trial) and prediction updates (the bucket location on a subsequent trial 

minus the bucket location on the current trial). In order to estimate the degree of influence of 

each bag on the subsequent behavior of the participant, we computed a single trial learning 

rate by dividing the update made on each trial by the prediction error observed on that trial 

(Nassar et al., 2010). Learning rates computed in this way that were greater than 1 or less 

than 0 were set to 1 or 0, respectively. Single trial learning rates were also categorized into 

three groups: 1) total updates [> 0.8], 2) moderate updates [0.2 to 0.8], and 3) non-updates 

(<0.2).

Characterizing the content of participant beliefs

To better understand how the exact sequence of learning rates employed by each participants 

affected the precision and flexibility of their beliefs, we re-represented participant beliefs 

(bucket position) on each trial as a weighted mixture of previous outcomes (bag locations). 

This is made possible through the following equivalency for error driven learning systems 

(Sutton & Barto, 1998):

Bt = 1 − α tB0 + ∑
i = 1

t − 1
αi 1 − αi + 1 1 − αi + 2 … 1 − αt Xi

Where Bt is the belief on timestep t, Xi is the position of the bag on the ith trial, and αi is the 

empirical learning rate describing how the participant updated his or her bucket position in 

response to that observed bag position. Thus, the contribution of the ith outcome to the 

belief on trial t is greatest when a participant used a high learning rate in response to that 

outcome (αi) and extremely small learning rates in response to all subsequent outcomes ((1 

− αi +1) …).

We implemented this procedure by stepping through the sequence of single trial learning 

rates and for each trial to 1) assign weight to the newest outcome in proportion to the 

learning rate on that trial αi, and 2) updated the weight assigned to all previous outcomes by 

multiplying their weight (computed on the previous trial) by one minus the current trials 

learning rate (1 − αi +1). This procedure produced a vector of weights that, when multiplied 

by the corresponding vector of bag positions, resulted in the exact belief of the participant. 

We note that this procedure does not involve any model fitting and only relies on the Markov 

assumption that the influence of each bag impacts immediate beliefs immediately, without 

having any delayed effects.

In order to understand how stability and flexibility of beliefs might be assessed through the 

weight attributed to previous outcomes, it is useful to consider what optimal inference might 

look like, when recast as a set of weights to previous outcomes. If a changepoint is correctly 

identified, then optimal inference would correspond to a flat weight profile across all 

outcomes subsequent to the most recent changepoint, and zero weight attributed to all 

outcomes prior to the most recent changepoint. A belief updating strategy that attributes 
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weight to outcomes preceding the most recent changepoint could be considered inflexible, in 

that it failed to replace information from an irrelevant context. A belief updating strategy 

that unevenly attributes weight to the relevant outcomes, in the extreme giving all weight to 

a single outcome, could be considered unstable and imprecise, in that it limits the degree to 

which noise in individual observations can be averaged out, and thus would provide a less 

precise estimate of the underlying mean.

With these considerations in mind, to assess the flexibility of beliefs, we quantified the 

proportion of the weight profile that was attributed to relevant outcomes (proportion 

relevant). In the changepoint condition, relevant outcomes were defined as those having 

occurred since the most recent changepoint (eg. bags that fell from the current helicopter 

location). In the oddball condition, all non-oddball outcomes were considered to be relevant 

(eg. bags normally distributed around helicopter).

In order to assess precision and stability of beliefs, we quantified the effective number of 

outcomes from which they were composed. Specifically, we computed effective samples as 

follows:

p = 1
σtot2 = 1

w1σsamp
2 + w2σsamp

2… + wt − 1σsamp
2 Eq 5

Effective samples = p
σsamp2 Eq 6

where p reflects the precision (inverse variance) of beliefs, σtot2  is the variance on the 

weighted mean of samples, σsample
2  is the variance on each sample, and w reflects the weight 

given to that sample during updating. Our effective samples measure simply normalized the 

belief precision in terms of the precision of a belief based on a single observation allowing 

absolute values to be more interpretable. The resulting measure of effective samples reflects 

the effective number of samples comprising the current prediction.

Statistical analysis:

Rank order correlations between task measures and AQ sub-scale measures were computed 

using Spearman’s Rho. Linear regression was used for followup analyses designed to 

statistically control for other factors including IQ, age, and gender. When additional factors 

were used as covariates, missing data was replaced with group mean values. All analyses 

and models were implemented in Matlab (The MathWorks, Natick, MA) and all code and 

anonymized data will be made available upon publication on the corresponding author’s 

website (https://sites.brown.edu/mattlab/resources/).

Results

Experiment 1

Young adults made predictive inferences in both changepoint and oddball contexts. 

Participants specified predictions about the location of an unobservable helicopter (Fig 1A, 
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prediction panel) in order to catch bags (Fig 1A, outcome panel). Predictions were updated 

on each trial (Fig 1A, update panel) according to the most recently observed bag location, 

and knowledge of the underlying generative structure (changepoint/oddball). In the 

changepoint condition, normative learning (Fig 1B, pink line) prescribed rapid updating in 

response to unexpected bag locations, as these outcomes were likely associated with a 

change in the helicopter location. In contrast, in the oddball condition normative learning 

(Fig1B, pink) required ignoring unexpected bag locations, which were likely to be oddballs 

unrelated to the actual helicopter position. Predictions made by an example participant 

(Fig1B&C, blue) conform well to normative model predictions. The normative learning 

model adjusts learning rate from trial to trial according to the probability that the observed 

outcome reflects a changepoint (Fig 1D, orange) or oddball (Fig 1E, orange), depending on 

the current task condition, as well as an estimate of uncertainty about the current helicopter 

location (Fig 1D&E, yellow; (Nassar et al., 2012)).

In order to better understand how participants adjusted learning across trials and conditions, 

we computed single trial learning rates based on the prediction errors that participants 

experienced on each trial and the bucket updates that they produced (Fig S2). The 

distribution of single trial learning rates used by participants differed across the two 

conditions, qualitatively in accordance with the normative predictions. On changepoint 

trials, participants tended to use high learning rates (Fig 2A), whereas on oddball trials 

where bag locations were equally surprising but unrelated to the true helicopter location, 

participants tended to use learning rates near zero (Fig 2B). Distribution of learning rates 

across unsurprising trials tended to be more similar across the conditions, with a fair number 

of small and moderate learning rates employed (Fig 2C&D). These relative patterns of 

learning were consistent across subjects, with total-updates (learning rate > 0.8) decreasing 

with increasing trials after a changepoint (Fig 2E; linear effect of trials after changepoint on 

total updating: t = −8.0, df = 42, p=5×10−10) and non-updates (learning rate < 0.2) elevated 

on oddball trials (Fig 2F; contrast non-updating on oddball versus other trials: t = 2.9, df = 

42, p=0.007). On average, young adult participants demonstrated context-sensitive 

adjustments in learning that qualitatively matched model prescriptions for how learning 

should be adjusted according to surprise (Fig S3).

Despite the preservation of context sensitive adjustments of learning across participants, 

individuals differed markedly in their overall learning rate distributions, with some 

participants almost never making a total update and others using total updates on 

approximately six out of ten trials. In principle, these differences could reflect different 

policies toward optimizing either the stability or flexibility of beliefs. In order to test 

whether such a stability/flexibility tradeoff exists, we examined how individual differences 

in total update frequency related to performance in each of the task conditions. In the 

changepoint condition, higher total update frequency tended to be associated with smaller 

errors on changepoint trials (Figure 3A; Spearman’s rho = −0.34, p = 0.02) but larger errors 

during periods of stability (Figure 3C; Spearman’s rho = 0.66, p = 1.5 × 10−6), supporting 

the idea that individuals may differ in their relative concern for stability versus flexibility of 

beliefs. Performance in the oddball condition, in contrast, tended to favor more stable belief 

updating strategies, with more frequent total updates leading to worse performance on 

oddball trials (Fig 3B&D; Spearman’s rho = 0.66, p = 1.5 × 10−6). Thus, individual 
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differences in learning, specifically the frequency of total updating, predicted individual 

differences in performance in a manner that suggests different policies regarding toward 

optimizing stability or flexibility.

In order to more explicitly test for individual differences in the stability and flexibility of 

beliefs, we used the sequence of learning rates preceding each prediction to determine the 

weighted contribution of each previous outcome to that prediction (see methods; Fig. 4a). In 

order to demonstrate how the method works, we first applied it to behavior of model agents. 

When applied to simple fixed learning rate models, the method revealed the expected 

exponential decay of weight across previous outcomes, with higher learning rates 

corresponding to higher rates of decay (Fig. 4b, blue&yellow). Applying the method to our 

normative learning model identifies weights with more complex dynamics, which are 

approximately uniform across trials since the most recent changepoint, but zero on trials 

prior to the most recent changepoint (Fig. 4b, green).

The weight profile characterizing the influence of outcomes on the normative learning 

model reveals hallmarks of both flexibility and stability. The lack of weight attributed to 

outcomes prior to the previous changepoint affords the normative model flexibility (Fig. 4b, 

green), which is to say an ability to disengage from irrelevant information after a change in 

context. With this in mind, we could quantify the flexibility of any agent, or indeed our 

subjects, by calculating the fraction of the weight profile that is attributed to “relevant” trials, 

which, in the case of the changepoint environment, occurred subsequent to the most recent 

changepoint (proportion relevant). The stability of beliefs held by the normative model is 

evident in the roughly uniform weighting of outcomes since the previous changepoint (Fig 

4b, green, relevant trials). This near-equal weighting of relevant outcomes “averages out” the 

independent noise associated with each individual outcome, providing more stable beliefs, 

which more precisely estimate of the mean (helicopter location) that gave rise to them (Fig 

4a, bottom). This benefit in stability/precision can be quantified through the number of 

effective samples comprising the current prediction, which grows nearly linearly for the 

normative model during periods of stability but rapidly decays to one after a changepoint 

(Fig 4c, green; effective samples). Note that a simple high fixed learning rate model, which 

is flexible in that it rapidly discards old and potentially irrelevant information (Fig 4b, blue), 

never accumulates even two effective samples (Fig 4c, blue), and is therefore highly 

sensitive to the noise inherent in individual outcomes. This illustrates the stability flexibility 

tradeoff – rapid learning can promote flexibility (high proportion relevant) at the expense of 

precision during periods of stability (low effective samples). Our analysis methods allow us 

to characterize this tradeoff, even in the presence of response variability (Fig S4), in order 

carefully examine how individuals might differentially navigate it.

The stability flexibility tradeoff was also evident from individual differences in the 

changepoint condition of our task. Individuals who were most flexible (eg. had a high 

proportion of weight associated to relevant outcomes) tended to base predictions on fewer 

samples (Fig 4d; Spearman’s rho = −0.49, p = 9.1 × 10−4) in the changepoint condition. 

Conversely, individuals who incorporated more outcomes into their predictions, tended to 

include a higher proportion of irrelevant outcomes, making their predictions less flexible in 

the face of changepoints. In the oddball condition, where task-relevance was unrelated to 
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recency, this relationship reversed such that participants who incorporated the most samples, 

also tended to have the highest proportion of relevant ones (Fig4e; Spearman’s rho = 0.53, p 

= 3.1 × 10−4). Taken together, these results suggest that individuals differ in their relative 

emphasis on the precision of beliefs, or their flexibility in the face of changing contexts.

An important motivating question of this work was to examine the degree to which such 

differences in stability/flexibility policy might relate to broader patterns of real-world 

behavior, with respect to traits that are elevated in ASD. In line with this idea, healthy young 

adults who scored highest on the attention to detail subdomain of the AQ incorporated fewer 

effective samples into beliefs in the changepoint condition (Fig 5A; Spearman’s rho = −0.43, 

p = 0.005), but those samples tended to be more relevant (Fig 5C; Spearman’s rho = 0.33, p 

= 0.03). Consistent with attention to detail reflecting an emphasis on flexibility, as opposed 

to stability, it was associated with more frequent use of high learning rates, and less frequent 

use of low ones (Fig S5). Both relationships between attention to detail and key metrics of 

changepoint task behavior (effective samples & proportion relevant) persisted in a regression 

model that included IQ and age as covariates: (effective samples: t=−2.7, dof = 37, p = 0.01; 

proportion relevant: t = 2.8, dof = 37, p = 0.007). The relationship of attention to detail to 

belief precision, as quantified by effective samples, was robust to exclusion of individual 

subjects and remained statistically significant after controlling for multiple comparisons to 

account for other AQ subdomains (Bonferroni corrected p = 0.02). The relationship between 

attention to detail and belief flexibility, as quantified by proportion relevant samples in the 

changepoint condition, was less robust, and not statistically significant after removing the 

lowest attention to detail participant (rho = 0.29, p = 0.07) or after controlling for all five 

possible comparisons (Bonferroni corrected p = 0.15). As might be expected, the lower 

precision beliefs in high attention to detail individuals conferred a small performance 

disadvantage during periods of stability in the changepoint task (correlation between mean 

relative error > 5 trials after a changepoint and attention to detail: rho = 0.35, p = 0.02), 

whereas the trend toward higher flexibility did not produce a significant performance 

advantage immediately after changepoints (correlation between mean relative error on trial 

after changepoint and attention to detail: rho = −0.16, p = 0.33). Thus, attention to detail 
conferred a clear disadvantage in terms of belief precision, and our data hints that this 

disadvantage comes with a benefit of increased flexibility, although the data are less clear on 

that issue.

No relationships between these measures of stability and flexibility were observed in 

relation to other sub-domains of the AQ (see Fig S6 for all pairwise correlations and relevant 

statistics) or in relation to IQ (p = 0.16, 0.28). There was a trend toward the same negative 

relationship between precision and attention to detail in the oddball condition (Spearman’s 

rho = −0.30, p = 0.06), however the advantage of high attention to detail individuals in terms 

of sample relevance was not apparent in this condition (Spearman’s rho = −0.22, p = 0.17). 

Taken together, these results suggest “attention to detail”, one specific aspect of behavioral 

variability that has been associated with ASD, directly relates to stability/flexibility policy, 

with individuals higher on “attention to detail” favoring flexibility at the expense of stability.
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Experiment 2

In order to test the generality of the relationship between attention to detail and stability/

flexibility and to examine it across a wider range of behavioral phenotypes that includes 

individuals with ASD, we conducted a second behavioral study in a heterogenous population 

of children (N = 37, mean[STD] age = 9[2.5], 17 female). The group included 12 

participants diagnosed with ASD, as well as 25 children recruited from the local community. 

Overall performance of the developmental cohort was considerably worse on the task than 

that of our young adult cohort, owing in part to a lack of context dependent learning rate 

adjustments in the developmental group (Fig S2).

More generally, behavior of the children included far fewer updates than that of the young 

adult population. Non-updates were the most common updating category, even on 

changepoint trials that should require total updates (Figure 6). In principle, non-updates 

could limit flexibility by reducing responsiveness to new information after a changepoint, 

but could also limit precision of beliefs during periods of stability by preventing 

incorporation of new information into existing beliefs (Fig 4a, non-update). Consistent with 

this idea, there was no evidence for a stability flexibility tradeoff in either condition for the 

developmental cohort (Figure 7A; Spearman’s Rho 0.21, p = 0.2 for the changepoint 

condition and Rho −0.03, p = 0.87 for the oddball condition).

Despite the lack of evidence for a stability flexibility tradeoff in this heterogenous 

population of children, attention to detail was still related across participants to lower 

precision beliefs, as quantified by effective samples. The average number of effective 

samples in participant beliefs aggregated across conditions was greatest for individuals with 

the lowest attention to detail scores (Spearman’s Rho = −0.50, p = 0.006). This relationship 

was similar in the two conditions (Fig 8A&B), but only reached statistical significance in the 

oddball condition (Spearman’s Rho for CP and ODD conditions: −0.25, −0.56; p values: 

0.19, 0.001). Unlike in the young adult population, attention to detail did not confer any 

advantage in terms of flexibility to children (Fig 8C&D; p-value for correlations in both 

conditions > 0.5), likely due to additional variance in flexibility measures attributable to 

non-updating at changepoints (Fig 6E, pink). The relationship between attention to detail 
and belief precision was robust to inclusion of IQ, age, and gender into the explanatory 

model (Mean[95% conf int] beta for extended regression model = −0.20[−0.33, −0.06], t = 

−3.0, dof = 24, p = 0.006). The relationship was selective for attention to detail and 

categorical autism diagnosis did not relate to any of our task measures (Fig S8). Taken 

together, these results suggest that attention to detail comes at a significant cost to the 

precision of beliefs, whereas the potential benefits of attention to detail in terms of belief 

flexibility are population dependent.

Discussion

Autism is a multi-dimensional construct with a broad behavioral profile. One autism-linked 

dimension, attention to detail, has been related to a focus on local, as opposed to global, 

stimulus information. Here we explored whether this local bias might exist in time as well as 

in space, and whether such a bias would manifest in highly flexible but unstable beliefs. We 

confirmed high attention to detail young adults were more prone to completely updating 
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beliefs in the face of contradictory information, and that this led them to form beliefs that 

were more flexible but which incorporated fewer observations, and thereby less robust to 

noise during periods of stability. We replicated the negative relationship between attention to 
detail and belief precision in a developmental cohort that included both typically developing 

and children with autism, but did not identify any advantages of higher attention to detail 
individuals in this population with respect to flexibility. Taken together, our results highlight 

that high attention to detail, a prominent feature of autism, has profound implications for the 

way that information is used over time – promoting the use of recent, rather than historical 

information, and limiting the degree to which beliefs integrate over multiple observations.

To a first approximation, our results are consistent with basic tenants of “Weak Central 

Coherence Theory” (Frith, 1989; Happé & Frith, 2006). Specifically, the “global” aspect of 

our task might be considered to be the entire sequence of bag locations falling from the 

current helicopter location, whereas the “local” aspect might be considered to be the most 

recent bag location. We found that individuals who are high on attention to detail, a trait 

sometimes associated with autism, tend to focus on temporally local information, and form 

beliefs that incorporate fewer samples from the “global” category. This work nicely parallels 

work in the perceptual domain that has defined local and global in terms of space 

(O’Riordan & Plaisted, 2001; Plaisted, Dobler, Bell, & Davis, 2006; Sabatino DiCriscio & 

Troiani, 2017; Suzanne Scherf, Luna, Kimchi, Minshew, & Behrmann, 2008).

Although perceptual differences in ASD have been conceptualized as a manifestation of 

RRBs, the relationship between the presence of motor stereotypies, circumscribed interests, 

and perceptual differences in a given individual remains unclear. For this reason, we do not 

intend to suggest that greater flexibility in our task would be necessarily linked to 

manifestations of all RRBs observed in those with ASD. Our work did not focus on the 

binary autism distinction, but rather directly linked to measures of attention to detail. Thus, 

this is only one of many traits that is prevalent in ASD and indeed, in our populations was 

only very minimally related to other autism-linked traits (See supplementary figures 6&8). 

Some RRBs, particularly those in the visual perceptual domain, likely extend into the 

general population, whereas others (motor stereotypies) do not. Thus, our focus on traits 

might have heightened our ability to see such an effect, where other recent work that has 

compared autism to controls has had mixed results (Lawson et al., 2017; Manning et al., 

2016). Given the heterogeneity of autism phenotype and manifestations of RRBs, it would 

be good for future work to delineate the relationship of various RRBs to each other and the 

presence of each RRB in the general population.

We find significant relationships with only the AQ Attention to Detail subscale. Given that 

performance on our task requires shifting responses in the face of altered contexts, one 

might expect a relationship between aspects of performance and the Attention Switching 

subscale. It may be that this subscale better captures aspects of visual pattern detection and 

detail-focused attention that scale with the particular type of performance pattern in this 

task. Others have also found distinct associations with the Attention to Detail subscale, 

including one study that demonstrated the Attention to Detail subscale was associated with 

better visual working memory (Richmond, Thorpe, Berryhill, Klugman, & Olson, 2013) as 

well as a study that found the Attention to Detail subscale was associated with improved 
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performance on the Embedded Figures Task, a classic paradigm to measure one’s ability to 

extract a small object from a larger context (Burghoorn et al., 2020). Thus, this work adds to 

a growing body of evidence linking the Attention to Detail trait dimension that favor local 

information processing. One interesting and open question is whether the individual 

differences in temporal information processing that emphasize flexibility, as the cost of 

stability, which we highlight here, might directly relate to the perceptual enhancements that 

have previously been reported in high attention to detail individuals.

Our results also speak to the more general tradeoff that the brain faces with respect to 

controlling the use of recent versus historical information. In stable regimes, optimizing this 

tradeoff requires integrating over all relevant historical observations, but changes in the 

environment require rapidly refocusing on recent observations to afford flexibility. We 

found, as had been reported previously, dynamic adjustments in the use of information 

according to environmental statistics, but we also noted an extremely wide range of overall 

learning behaviors (Figure 3). Note that this need not be the case from a computational 

perspective; participants were trained explicitly on the generative structure of the task, and 

had more than enough experience to estimate the rate of changepoints and oddballs, were 

they inferring these meta-parameters from the task observations (Nassar, Bruckner, & Frank, 

2019a; Wilson et al., 2010). Thus, if participants came into the task without strong 

predispositions towards favoring either stability or flexibility, then they should have all 

arrived at similar policies by the end of the training session. However, this is not what we 

observed. One might argue that the heterogeneity across the individual participants reflects 

completely different task strategies, however the link between attention to detail and learning 

policy observed in our two experiments (Figures 5&8) suggests that participants come to the 

task with a systematic predisposition toward a specific learning strategy, either favoring the 

use of recent information for flexibility (high attention to detail) or favoring the integration 

of data over time for stability (low attention to detail).

One interesting question stemming from this work relates to the developmental timescale 

and origin of these predispositions from a neural perspective. For example, many aspects of 

RRBs present in ASD are considered age appropriate for most neurotypical toddlers (i.e. 

insistence on sameness, circumscribed/hyperfocused interests, inflexibility). One reason 

these behaviors are considered atypical in ASD is that they persist in older children and 

adults with the diagnosis, significantly contributing to impairment in real-world situations. 

From the neural perspective, the heterogenous behavioral traits of ASD are not thought to 

stem from specific regions of the brain, but rather from atypical connectivity between brain 

regions. Atypical connectivity has been identified in numerous studies across multiple brain 

networks in ASD using various neuroimaging methods, including structural and functional 

MRI, EEG and MEG, and fNIRS (Hull et al., 2017; O’Reilly, Lewis, & Elsabbagh, 2017; 

Rane et al., 2015; Zhang & Roeyers, 2019). Although the findings of altered connectivity in 

ASD are vast, one finding that is particularly relevant to the current design is that 

Inflexibility of neural circuitry has been linked to behavioral inflexibility in ASD. For 

example, it is more difficult to discriminate functional connectivity of specific brain 

networks (namely, the salience network (SN), default mode network (DMN), and central 

executive network (CEN)) from each other in ASD relative to typical controls (Uddin et al., 

2014). The SN and CEN networks are associated with salient information processing and 
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cognitive control, respectively and nodes include the insula (SN), anterior cingulate (SN), 

dorsolateral prefrontal cortex (CEN) and posterior parietal cortex (CEN), which have been 

found to be relevant in performing the current task (see below).

The neural mechanisms of trial-to-trial adjustments and individual differences in learning 

rate have also been the focus of much recent work. Dynamic fluctuations in learning rate 

relate to overall arousal levels as measured by pupil diameter (Nassar et al., 2012), as well as 

activation in a network that includes insula, dorsomedial prefrontal cortex, and parietal 

cortex, and parts of dorsolateral prefrontal cortex (Behrens et al., 2007; McGuire et al., 

2014; Payzan-LeNestour, Dunne, Bossaerts, & O’Doherty, 2013). Functional connectivity 

over a subgraph that includes many of these regions, and is closely related to both the 

salience and central executive networks described above, predicts individual differences in 

learning behavior (Kao et al., 2019). Given the well established connectivity differences in 

ASD, it is possible both attention to detail and adaptive learning in our task are jointly driven 

by individual differences in functional connectivity, and we hope that our work motivates 

future explorations of these brain-behavior relationships.

One important question is whether the brain networks that reflect learning rate are actually 

implementing a learning signal, or doing something more general such as assigning salience 

to unexpected observations. Two recent studies that clearly dissociate salience from learning 

using a generative structure like our oddball condition have suggested that the latter may be 

the case (d’Acremont & Bossaerts, 2016; Nassar, Bruckner, & Frank, 2019a). One recent 

idea that attempts to rectify differences between the relationship between brain activity and 

learning rate observed across different statistical environments is that learning rate 

adjustments are implemented through changes in the active latent state (Nassar, Bruckner, & 

Frank, 2019a; Nassar, McGuire, Ritz, & Kable, 2019b; Wilson, Takahashi, Schoenbaum, & 

Niv, 2014). When changes to this latent state are carried forward in time (eg. changepoints) 

then they could drive increases in learning rate, whereas when they are rapidly replaced (eg. 

oddballs) then they could drive reductions in learning rate (Razmi & Nassar, 2020). Within 

this framework, the fronto-parietal control network could be thought of as providing a signal 

to load a new state representation (Nassar, Bruckner, & Frank, 2019a), whereas regions 

including the orbitofrontal cortex seem to reflect the newly loaded state itself (Nassar, 

McGuire, Ritz, & Kable, 2019b). An important question raised by our work is where 

individual differences would fall in such a mechanistic process. If the primary determinant 

of individual differences were in the salience assignments then one might expect divergent 

individual difference relationships across the changepoint and oddball conditions. However, 

we observe similar individual difference relationships across the changepoint and oddball 

conditions, suggesting that attention to detail is less related to salience assignments than to 

the learning itself. This raises important questions about how such individual differences 

could emerge in the mechanistic model above, and should motivate future neuroimaging 

studies using individual differences in both task conditions to dissect the neural mechanisms 

through which attention to detail promotes flexible, but unstable, beliefs.

While our results provide some evidence for normative learning rate adjustment, they also 

highlight the impressive heterogeneity of learning strategies across individuals, and the 

degree to which all individuals fail to fully embody normative inference. The best 
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participants in the young adult condition reported beliefs that, by our measures, only 

averaged across 2–4 observations, thereby leaving them susceptible to noise inherent in 

single observations. The deviations from normative learning were even more extreme in the 

developmental cohort, which did not show context dependent adjustments of learning (Fig 

S3). It is tempting to speculate that such context dependent adjustments might require 

cognitive architecture that is refined late in development, however another possibility is that 

children simply lacked the ability to translate our explicit instructions into a useful belief 

updating policy. Thus our results highlight the need for future developmental work on 

context-dependent learning rate adjustment, particularly using tasks where generative 

structures are learned implicitly (Bakst & McGuire, 2019) removing instructional 

confounds. Our developmental group also deviated from normative inference in the frequent 

use of non-updates. This finding is in line with other recent work that has suggested that 

increased perseveration and increased response variability in children might both stem from 

a liberal satisficing policy that leaves children highly influenced by default beliefs 

(Bruckner, Nassar, Li, & Eppinger, 2020). Taken together, these findings suggest that despite 

showing qualitative hallmarks of adaptive learning, people deviate substantially from 

optimality in a manner that depends on factors including their age and attention to detail.

Conclusions

Our results identify a link between attention to detail, a trait elevated in autism, and learning 

policies that favor flexibility over stability. Individuals high on attention to detail pay a price 

in terms of stability, with beliefs that tend to incorporate fewer observations than they would 

otherwise. These results were specific to attention to detail and unrelated to IQ or other 

autism linked traits. Overall, our findings demonstrate a core negative consequence of 

attention to detail, namely that by focusing attention on the newest observation, it limits the 

ability to integrate relevant information across a broader temporal context.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix 1:: Task instructions

Instructions for one counterbalance condition of the predictive inference task are reproduced 

below. Instructions also included screenshots of the task, which are not reproduced here. All 

instructions were read aloud to participants in the developmental cohort.

General instructions:

“Instructions. Press any key to move onto the next screen.”
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“Bags of stones fall out of the helicopter. You’ll want to catch as many as you can”.

“Use the F,G,H, and J keys to move your bucket”

“When you are satisfied with the position of your bucket, press the space bar”.

Oddball context instructions:

“The helicopter will not stay in one location, it will make small but unpredictable 

movements. Most of the time, bags will fall near the helicopter. But on some trials, bags will 

be dropped from a plane way up above. On these trials the bag is equally likely to fall in any 

location.”

Screen display then indicates which color stones the participant will receive points for 

collecting (depends on counterbalance condition). They will not know which color stone the 

bag contains until it lands. Example text:

“Red stones are worth money

You will get paid an extra $5 for every 10 buckets you fill with red stones.

Green stones are not worth anything.

There is no way to tell what kind of stones are in the bag until it lands.”

[Run visible oddball block]

“Now the helicopter will be hidden by clouds. Everything else will be exactly the same as 

the previous blocks. You should continue to keep your bucket directly under the helicopter, 

even though you can no longer see it.”

[Run cloudy oddball block]

“Bags will fall near the helicopter but their exact position is random. Your best strategy is to 

keep the bucket directly underneath the helicopter.

The helicopter usually stays in one place, but occasionally it moves to a new location.”

[Run visible changepoint block].

“Now the helicopter will be hidden by clouds. Everything else will be exactly the same as 

the previous blocks. You should continue to keep your bucket directly under the helicopter, 

even though you can no longer see it.”

[Run cloudy changepoint block].
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Figure 1: 
Predictive inference task measures learning in different statistical contexts. A) On each trial, 

participants were required to adjust the position of a bucket to catch bags of coins that would 

be dropped from an unobservable helicopter. Subjects were not able to observe the 

helicopter, and thus forced to use the history of bag locations and knowledge about the 

environmental statistics to inform bucket placement. B-C) Example data from a single 

subject performing the predictive inference task in changepoint (B) and oddball (C) 

conditions. B) In the changepoint condition, the helicopter (not shown) remained in a single 

screen position (ordinate) for a number of trials (abscissa), before occasionally relocating to 

a new screen position (changepoint). Bag locations (yellow and gray points) were drawn 

from a normal distribution centered on the helicopter location. Inferences about the 

helicopter location made by a normative learning model (pink line) and bucket placements 

made by an example subject (blue line) are both rapid to adjust after changepoints in the 

helicopter location. C) In the oddball condition, the helicopter position drifted slowly from 

one trial to the next, and bag positions were either drawn from a normal distribution centered 

on the helicopter location (90% of trials) or a uniform distribution across the entire task 

space (10% of trials). D&E) The normative learning model adjusted learning rate (green 
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line) on each trial according to uncertainty (yellow) and surprise (orange). In the 

changepoint condition (D) surprise was indicative of changepoints and increased learning 

rates, whereas in the oddball condition (E) surprise was indicative of an uninformative 

oddball and thus promoted lower learning rates.
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Figure 2: 
Participant learning rates were sensitive to task condition and surprising outcomes. A-D) 
Single trial learning rate frequency histograms for changepoint (A) and oddball (B) trials, as 

well as for non-changepoint (C) and non-oddball (D) trials. Single trial learning rates are 

categorized into three types: non updates, moderate updates, and total updates, depending on 

their value with respect to criterion values (dotted vertical lines). E-F) Mean/SEM 

proportion of each category of learning rates used as a function of time since the previous 

surprising event [changepoint (E) or oddball (F)].

Nassar and Troiani Page 23

Cogn Affect Behav Neurosci. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Individual differences in performance were driven by individual differences in the frequency 

of total updates. A-D) Relative error magnitude (ordinate) is plotted against frequency of 

total updating (abscissa) for each individual subject (points) in the two task conditions 

(changepoint = blue, oddball = green). Top panels reflect performance on the trial 

subsequent to a surprising outcome (A = post-changepoint, B = post-oddball) whereas 

bottom panels reflect performance during periods of stability (>5 trials after most recent 

changepoint (C) or oddball (D)). Relative error would be zero if participants were using only 

the most recent relevant outcome in order to make their prediction (dotted line) and thus 

achieving negative relative errors requires using bucket placements that integrate 

information from more than one previous outcome.
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Figure 4: 
Individual differences in performance are attributable to a fundamental tradeoff in the 

quantity and relevance of samples from which a belief is composed. A) Learning rates can 

be used to infer the weight attributed to previous outcomes, providing insight into the 

stability and flexibility of participant beliefs. Schematic (top) depicts an example where the 

bucket is placed halfway between two previous bag locations (t-2, t-3) and a new outcome is 

observed (t-1). Three different update strategies are depicted: non-update (left), moderate 

update (middle), and total update (right). After the bucket position is updated (arrow and X 

in schematics), the relative weight attributed to each previous outcome is assessed to reveal 

the contents of updated beliefs for each case (second row), the precision of those beliefs, and 

our normalized measure of belief precision, “effective samples”, which quantifies the 

effective number of previous outcomes incorporated into beliefs. Note that the total update 

pushes all weight onto the most recent outcome, leading to single effective sample, whereas 
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the moderate update (learning rate = 1/3) gives rise to a flat weight profile over the three 

observations, resulting in the highest possible effective sample size (3). B) In general, higher 

learning rates correspond to a greater proportion of weight attributed to recent observations 

(compare blue and yellow lines) and normative learning approximates a flat weighting of all 

observations since the previous changepoint (green). Observations occurring prior to the 

most recent changepoint are irrelevant to the inference process, and thus the proportion of 

weights attributed to observations occurring since the last changepoint quantifies the 

relevance of samples from which the belief is composed. C) For a bucket placement on a 

given trial, the distribution of weights over previous observations can be used to infer the 

effective number of samples incorporated into that belief (which scales with the precision – 

or inverse variance – of that belief). High learning rate models, which rely predominantly on 

the most recent observations, rely on beliefs with the fewest effective samples (blue). 

Normative learning approximates linear growth of effective samples during periods of 

stability, but rapid collapse of effective samples after observing a changepoint (green). D-E) 
Participants who incorporated the most samples into their beliefs (abscissa) tended to rely on 

less relevant information (ordinate) in the change-point condition (D), whereas this 

relationship reversed in the oddball condition (E).
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Figure 5: 
Attention to detail predicts individual differences in stability/flexibility policy. A-B) 
Individual differences in the effective sample size of beliefs (ordinate) were negatively 

related to self reported scores on the attention to detail subscale of the Autism Spectrum 

Questionnaire (abscissa) in both changepoint (A) and oddball (B) conditions. C-D) 
Individual differences in the proportion of samples attributed to relevant observations 

(ordinate) were positively related to self reported scores on the attention to detail subscale of 

the Autism Spectrum Questionnaire (abscissa) in the changepoint (A) but not the oddball (B) 

conditions.
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Figure 6: 
Non-updates are increased and condition-differences are less pronounced in a heterogeneous 

population of children. A-D) Single trial learning rate frequency histograms for changepoint 

(A) and oddball (B) trials, as well as for non-changepoint (C) and non-oddball (D) trials. 

Single trial learning rates are categorized into three types: non updates, moderate updates, 

and total updates, depending on their value with respect to criterion values (dotted vertical 

lines). E-F) Mean/SEM proportion of each category of learning rates used as a function of 

time since the previous surprising event [changepoint (E) or oddball (F)].
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Figure 7: 
Stability/flexibility tradeoff does not explain individual differences in updating among a 

heterogeneous population of children. A-B) For each participant (points), the mean 

proportion of samples composing the belief that are relevant to the current statistical context 

(abscissa) is plotted against the total number of effective samples composing the belief 

(ordinate) separately for changepoint (A) and oddball (B) conditions. Trend lines indicate 

least squares fit to data.
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Figure 8: 
Attention to detail is inversely related to the number of effective samples composing beliefs 

in a heterogeneous population of children. A-B) For each participant (points), the total 

number of effective samples composing the belief (abscissa) is plotted against self reported 

scores on the attention to detail subscale of the AQ (ordinate) revealing a negative 

relationship in both changepoint (A) and oddball (B) conditions. C-D) In contrast, the 

proportion of relevant samples (abscissa) was unrelated to attention to detail scores 

(ordinate) for both changepoint (A) and oddball (B) conditions.
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