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Abstract
Dental caries is characterized by a dysbiotic shift at the biofilm–tooth surface interface, yet comprehensive biochemical characterizations 
of the biofilm are scant. We used metabolomics to identify biochemical features of the supragingival biofilm associated with early 
childhood caries (ECC) prevalence and severity. The study’s analytical sample comprised 289 children ages 3 to 5 (51% with ECC) 
who attended public preschools in North Carolina and were enrolled in a community-based cross-sectional study of early childhood 
oral health. Clinical examinations were conducted by calibrated examiners in community locations using International Caries Detection 
and Classification System (ICDAS) criteria. Supragingival plaque collected from the facial/buccal surfaces of all primary teeth in the 
upper-left quadrant was analyzed using ultra-performance liquid chromatography–tandem mass spectrometry. Associations between 
individual metabolites and 18 clinical traits (based on different ECC definitions and sets of tooth surfaces) were quantified using 
Brownian distance correlations (dCor) and linear regression modeling of log2-transformed values, applying a false discovery rate multiple 
testing correction. A tree-based pipeline optimization tool (TPOT)–machine learning process was used to identify the best-fitting ECC 
classification metabolite model. There were 503 named metabolites identified, including microbial, host, and exogenous biochemicals. 
Most significant ECC-metabolite associations were positive (i.e., upregulations/enrichments). The localized ECC case definition (ICDAS 
≥1 caries experience within the surfaces from which plaque was collected) had the strongest correlation with the metabolome (dCor 
P = 8 × 10–3). Sixteen metabolites were significantly associated with ECC after multiple testing correction, including fucose (P = 3.0 × 
10–6) and N-acetylneuraminate (p = 6.8 × 10–6) with higher ECC prevalence, as well as catechin (P = 4.7 × 10–6) and epicatechin (P =  
2.9 × 10–6) with lower. Catechin, epicatechin, imidazole propionate, fucose, 9,10-DiHOME, and N-acetylneuraminate were among the 
top 15 metabolites in terms of ECC classification importance in the automated TPOT model. These supragingival biofilm metabolite 
findings provide novel insights in ECC biology and can serve as the basis for the development of measures of disease activity or risk 
assessment.
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Introduction
Early childhood caries (ECC) is a persistent clinical and public 
health problem with multilevel consequences (Casamassimo  
et al. 2009). The prevalence of untreated caries has almost 
halved during the past decade, but more than 1 in 3 US children 
are still affected by ECC. The disease is influenced by social, 
environmental, and behavioral factors, but fermentable carbo-
hydrate consumption and inadequate fluoride exposure are its 
most proximal and well-studied risk factors (Pitts et al. 2017). 
The pathogenesis of dental caries occurs at the biofilm–tooth 
surface interface as a result of a dysbiotic, cariogenic microbial 
community that interacts with environmental and host factors 
(Nyvad et al. 2013; Bowen et al. 2018). Despite notable 
advances in the basic and clinical sciences, comprehensive 
characterization of the molecular and biochemical profile of 
the ECC-associated microbial imbalance and virulence remains 
elusive.

Understanding the biological (i.e., microbial, biochemical, 
environmental) basis of ECC is arguably one of the missing 
keys needed for the development of effective diagnostic, pre-
ventive, and disease management approaches (Divaris 2016). 
Recent next-generation sequencing studies offer characteriza-
tions of the oral microbiome in higher resolutions than ever 
before (Nascimento et al. 2017; Mira 2018). Previously unrec-
ognized bacterial species, important for health and disease, 
have emerged (Hajishengallis et al. 2017; Rosier et al. 2018; 
Hurley et al. 2019). Interestingly, recent evidence indicates that 
Candida (Klinke et al. 2009; Xiao et al. 2018), viruses (Yildirim 
et al. 2010), and other nonbacterial organisms may be impor-
tant activists in the supragingival biofilm of children with 
ECC.

While important new information regarding the composi-
tion of the ECC-associated biofilm is emerging, little is known 
about its biochemicals and their functional activity. The meta-
bolic profile of dental plaque is arguably “where the rubber 
meets the road” for the pathogenesis of dental caries. One 
study to date has examined childhood caries-associated metab-
olites in the supragingival biofilm among 11 caries-active and 
4 caries-free children between ages 10 and 15 y (Zandona et al. 
2015). Those results indicated the existence of biofilm metabo-
lites with the potential to provide a metabolomics signature for 
caries activity. We embarked upon the present study with the 
overarching goal of addressing the knowledge gap in biofilm 
metabolomics for ECC. Specifically, we sought to identify bio-
chemical metabolites in the supragingival biofilm that are 
associated with ECC prevalence and severity.

Methods

Study Population and Characterization

The initial study population comprised 300 preschool-age chil-
dren attending public preschool (Head Start) centers in North 
Carolina, participants of a community-based, cross-sectional, 
epidemiologic study (ZOE 2.0) of early childhood oral health 
(Divaris and Joshi 2020; Divaris et al. 2020). Children were 

between 36 and 71 mo old. Their legal guardians provided 
written informed consent for clinical data and biospecimen 
(saliva and dental plaque) collection. The study received ethics 
approval by the University of North Carolina (UNC)–Chapel 
Hill Institutional Review Board (#14-1992). Children under-
went comprehensive dental examinations recording dental car-
ies experience using International Caries Detection and 
Classification System (ICDAS) criteria by trained and cali-
brated examiners between August 2016 and February 2019. 
Detailed descriptions of the clinical examination (Ginnis et al. 
2019), biofilm collection, and analysis protocols (Divaris et al. 
2019), as well as the parent study’s cohort profile (Divaris et al. 
2020), have been reported in detail in previous publications.

Supragingival Biofilm Sample Collection

The supragingival biofilm samples were collected prior to the 
dental examinations, which took place before or at least 30 min 
after breakfast or snack. The families were instructed not to 
brush their child’s teeth the morning of the clinical encounter. 
A plaque sample for metabolomics analyses was collected 
from the facial/buccal surfaces of the upper-left quadrant 
(Universal system: #F, #G, #H, #I, and #J; FDI system: #61, 
#62, #63, #64, and #65). Examiners used sterile toothpicks for 
plaque collection, and the samples were immediately frozen at 
the collection site (−20°C using CoolBoxes, BCS-575, Brooks 
Life Sciences) until being transferred to a university core facil-
ity and stored long term at −80°C until further processing.

Metabolomics Analyses

The metabolomic analysis was done by Metabolon using the 
proprietary DiscoveryHD4 (Metabolon Inc) platform (Evans et 
al. 2009, 2014) that includes multiple mass spectrometry meth-
ods, a large reference library of authenticated metabolite stan-
dards, and a suite of patented informatics and quality control 
software. This global metabolomics methodology allows for the 
detection of metabolites in all major metabolite classes. The ultra-
performance liquid chromatography–tandem mass spectrome-
try pipeline enables the identification of biochemical metabolites 
in the plaque samples by comparison to library entries of puri-
fied standards or recurrent unknown entities, using metrics 
including the retention time/index, mass-to-charge ratio, and 
chromatographic database criteria on all molecules in the 
library maintained by Metabolon. Detailed descriptions of the 
metabolomics data generation procedures, including laboratory, 
informatics, normalization, and quality control procedures, 
have been previously reported (Divaris et al. 2019).

Clinical Comparison Groups

We initially selected 300 study participants for this nested 
case-control metabolomics study, aiming to maximize power: 
the first 150 presenting as “established” ECC cases (i.e., had at 
least 1 restored or missing surface due to caries or caries 
lesions detected at the ICDAS ≥3 threshold) and 150 
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participants who did not meet this criterion. 
Subsequently, 1 participant was excluded 
from analyses because, although eligible at 
study enrollment, he or she was 73 mo old 
at the time of clinical examination and thus 
outside the age range of ECC definition. 
Ten additional participants (3 with ECC 
defined at the ICDAS ≥3 threshold and 7 
without) were excluded from analyses 
based on a high proportion of missing indi-
vidual metabolite data (>30%) (Appendix 
Fig. 1) and clustering close to blank control 
specimens during quality control procedures.

We defined and examined 18 traits of 
ECC prevalence and severity according to 3 
definitions: caries experience including 
early stage lesions detected at the ICDAS 
≥1 threshold or classic ECC (Pitts et al.  
2019), caries experience including estab-
lished/advanced caries lesions detected at 
ICDAS ≥3 threshold, and untreated disease 
only defined as lesions at the ICDAS ≥3 
threshold. Traits were defined within 3 sets 
of tooth surfaces, i.e., the entire dentition 
(88 surfaces), all surfaces of the sampled 
teeth (22 surfaces), and the 5 facial/buccal 
surfaces from which plaque was collected 
(Fig. 1). ECC was measured using a con-
tinuous measure of disease experience (i.e., 
the sum of decayed, restored, or missing 
tooth surfaces [dmfs index] for each defini-
tion and tooth set) and a corresponding 
binary case definition (dmfs >0 for caries 
experience, ds >0 for untreated disease). 
ECC measures defined within the 22 sur-
faces of the sampled teeth are presented 
with subscript-2 indicators (i.e., dmfs2), and 
those defined within the 5 specifically sam-
pled surfaces (i.e., the localized traits) are presented with sub-
script-3 indicators (i.e., dmfs3).

Analytical Approach

We used feature-wise quantile regression imputation of left-
censored data (QRILC) (Wei et al. 2018) to impute missing 
metabolite data. We examined the correlation of ECC traits and 
candidate covariates with the entire metabolome using 
Brownian distance correlations (dCor) (Székely and Rizzo 
2009) and corresponding P values that were obtained with a 
permutation bootstrap (999 replicates). Upon examination of 
metabolome correlations with children’s age (measured in 
months), gender (male, female), and race/ethnicity (non- 
Hispanic White [NHW], African American [non-Hispanic 
Black, NHB], other), we found significant associations with 
age (dCor = 0.233, P = 3 × 10–2) and race/ethnicity (dCor = 
0.234, P = 1 × 10–3) but not gender. Therefore, individual 
metabolite associations were examined using crude 

and age- and race/ethnicity-adjusted estimates from linear 
regression modeling of log2-transformed values. A false dis-
covery rate (FDR) multiple testing correction (Benjamini and 
Hochberg 1995) and a 5% significance level were used to iden-
tify statistically significantly altered metabolites.

We used an automated machine learning (ML) approach to 
identify the best ECC classification model using all informa-
tion contained in the metabolome (i.e., all 503 metabolites) and 
determine the discriminatory ability of the significantly altered 
metabolites in this context. For this application, we prioritized 
the binary ECC case definition with the highest Brownian dis-
tance correlation with the metabolome. We used a tree-based 
pipeline optimization tool (TPOT)–based automated algorithm 
(Olson and Moore 2019) that employs genetic programming to 
build pipelines of ML methods for classification, along with 
preprocessing operators such as data transformers and feature 
selectors. In the algorithm optimization phase, various combi-
nations of transformers are combined with ML methods into a 
pipeline in a tree-based manner, and the best-performing 
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Figure 1.  Visual representations of the early childhood caries (ECC) traits that were defined 
and used in metabolomics analyses according to 3 different sets of tooth surfaces and summary 
of the significantly associated metabolites. (A) Entire dentition (88 surfaces, continuous and 
binary traits for 2 International Caries Detection and Classification System [ICDAS] thresholds 
and untreated disease). (B) All surfaces of teeth from which biofilm was sampled (22 surfaces), 
green highlighted. (C) The specific 5 facial/buccal surfaces from which biofilm was sampled, 
green highlighted. (D) Venn diagram and UpSet plot of metabolites significantly associated with 
more than 1 dental caries trait (linear regression of log2-transformed metabolite values with 
false discovery rate correction, q < 0.05). Arrows indicate the direction of the association. 
Catechin, epicatechin, fucose, and N-acetylneuraminate were associated with 2 localized ICDAS 
≥1 disease traits, and creatine was associated with a localized binary ICDAS ≥1 trait and the 
ECC person-level case definition at the ICDAS ≥3 detection threshold.
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pipeline is selected at the end of that process. Fifty random 
seed TPOT replicates were run for a maximum of 24 h, using 
10-fold cross-validation with balanced accuracy (i.e., 
unweighted average of the number of correct predictions from 
all predictions calculated on per-class basis) as the perfor-
mance estimate. The TPOT-identified model performance was 
compared against grid search–optimized logistic regression, 
random forest, and gradient boosting classifiers. Once the 
model was identified, we estimated individual metabolites’ 
predictive ability or “feature importance” coefficients and cor-
responding rank orders using a permutation feature importance 
(PFI) approach (Breiman 2001), as in a recent metabolomics 
application (Orlenko et al. 2020). Analyses and visualizations 
were done using R and Python packages and Stata 16.1 
(StataCorp LP). Reporting of this observational study con-
forms with the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) guidelines (von Elm et al. 
2007). The log2-transformed QRILC imputed data set used for 
the present analysis alongside metabolite biochemical infor-
mation is available in the Appendix. The raw metabolomics 
data have been deposited to the EMBL-EBI MetaboLights 
database (Haug et al. 2020) with the identifier MTBLS2215. 
The data set can be accessed at https://www.ebi.ac.uk/metabo-
lights/MTBLS2215.

Results
Study participants had a mean age of 52 mo (range, 36–71), and 
53% were male and of mixed racial/ethnic distribution: NHB 
(37%), NHW (30%), and others, including Hispanics and those 
with more than 1 race (32%). The distribution of the 18 ECC 

clinical traits is presented in Table 1—noteworthy, most partici-
pants (95%) had ECC using the classic case definition (corre-
sponding dmfs mean = 14), half of them (51%) had ECC 
according to the established/severe (ICDAS ≥3) definition (cor-
responding dmfs mean = 7), and a third (34%) had at least 1 
untreated caries lesion (corresponding ds = 1.7). These estimates 
were lower but still appreciable when considering subsets of 
tooth surfaces; for example, 39% of participants had classic 
ECC when considering its localized definition (dmfs3 >0).

The metabolomics analysis yielded a total of 503 biochemi-
cal metabolites of known identity, which were carried forward 
to statistical analyses in tandem and individually (Table 1). Ten 
ECC traits showed significant correlations with the metabo-
lome (i.e., all metabolites), the strongest one being for the 
localized classic ECC definition (dmfs3 >0; dCor P = 8 × 10–3), 
followed by the quantitative caries experience on these 5 sur-
faces (dmfs3, dCor P = 1.9 × 10–2). Of note, all untreated dis-
ease traits also showed significant correlations with the 
metabolome. In terms of individual metabolite associations, 
numerous associations were found to be differentially abun-
dant in ECC traits at a nominal statistical significance level 
after adjustment for participants’ age and race/ethnicity. Most 
associations were positive (i.e., upregulations/enrichments; 
e.g., 52 versus 14 negative associations for the localized ECC 
case definition). The number of unrestored caries lesions (at 
the ICDAS ≥3 threshold) was the trait with the largest dCor 
value (dCor = 0.230).

Sixteen metabolites remained statistically significantly 
associated with ECC after FDR correction (Table 2), and 5 of 
those were associated with 2 traits. These identified biochemi-
cals included microbial and host metabolites, as well as 

Table 1.  Distribution Characteristics of the Examined Clinical Traits of ECC Experience and Their Associations with the Metabolome and 
Significantly Altered Individual Metabolites.

Characteristic

dmfs >0 (ICDAS 
≥1), Proportion 

(SD)

dmfs (ICDAS 
≥1), Mean (SD); 
Median (Range)

dmfs >0 (ICDAS 
≥3), Proportion 

(SD)

dmfs (ICDAS 
≥3), Mean (SD); 
Median (Range)

ds >0 (ICDAS 
≥3), Proportion 

(SD)

ds (ICDAS ≥3), 
Mean (SD); 

Median (Range)

Descriptive information of the 18 examined ECC traits

  Entire dentition (88 surfaces) 0.95 (0.22) 14.23 (15.61);
 8 (0, 74)

0.51 (0.50) 7.03 (13.76); 
1 (0, 69)

0.34 (0.48) 1.66 (4.03); 
0 (0, 30)

  All surfaces of the upper-left quadrant 
teeth (22 surfaces)

0.84 (0.37) 4.08 (4.90);
 2 (0, 22)

0.38 (0.49) 2.12 (4.46); 
0 (0, 22)

0.22 (0.41) 0.52 (1.64); 
0 (0, 14)

  All facial/buccal surfaces of the upper-
left quadrant teeth (5 surfaces)

0.39 (0.49) 0.95 (1.45); 
0 (0, 5)

0.2 (0.4) 0.45 (1.08); 
0 (0, 5)

0.07 (0.25) 0.10 (0.44); 
0 (0, 3)

Estimates of association with the entire metabolome and numbers of individual positively and negatively associated metabolites for the 18 examined 
ECC traits

  Entire dentition (88 surfaces) ↑0.150 (0.799)
 ↑1 ↓8

↑0.216 (0.164)
 ↑14 ↓12

↑0.192 (0.021)
 ↑51 ↓7

↑0.204 (0.256)
 ↑2 ↓4

↑0.194 (0.029)
 ↑36 ↓50

↑0.230 (0.020)
 ↑28 ↓7

  All surfaces of the upper-left quadrant 
teeth (22 surfaces)

↑0.156 (0.559)
 ↑5 ↓7

↑0.206 (0.354)
 ↑11 ↓12

↑0.184 (0.046)
 ↑56 ↓1

↑0.192 (0.471)
 ↑2 ↓6

↑0.198 (0.014)
 ↑69 ↓2

↑0.226 (0.028)
 ↑17 ↓14

  All facial/buccal surfaces of the upper-
left quadrant teeth (5 surfaces)

↑0.208 (0.008)
↑52 ↓14

↑0.220 (0.019)
 ↑22 ↓11

↑0.172 (0.142)
 ↑38 ↓2

↑0.189 (0.277)
 ↑5 ↓7

↑0.201 (0.013)
 ↑80 ↓9

↑0.212 (0.010)
 ↑41 ↓16

↑indicates Brownian distance correlation coefficient (P value). ↑ indicates number of positively associated metabolites, and ↓ indicates number of 
negatively associated metabolites, at a nominal significance level (P < 0.05 without multiple testing correction), derived from a linear regression model 
of log2-transformed metabolite values adjusting for participants’ age and race/ethnicity.
dmfs, the sum of decayed, missing, and restored (i.e., “filled”) primary tooth surfaces due to caries; ds, the sum of decayed primary tooth surfaces (i.e., 
“unrestored disease”); ECC, early childhood caries; ICDAS, International Caries Detection and Classification System (1: first visual change in enamel 
[“initial lesion”]; 3: localized enamel breakdown [“moderate lesion”]).

https://www.ebi.ac.uk/metabolights/MTBLS2215
https://www.ebi.ac.uk/metabolights/MTBLS2215
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exogenous substances. As illustrated in Figure 1D, catechin 
and epicatechin were inversely associated with the localized 
classic ECC definition (dmfs3 >0) and the corresponding quan-
titative caries experience trait (dmfs3), while fucose and 
N-acetylneuraminate were positively associated with the same 
traits. The magnitude of these associations remained virtually 
unchanged after adjustment for participants’ age and race/ 
ethnicity (Table 2). The joint distribution of these metabolites’ 
log2-transformed abundances with the 2 ECC traits of interest, 
as well as correlations with participants’ characteristics, is pre-
sented in Appendix Figures 2 to 4. Additional significant posi-
tive associations with ECC were noted for imidazole 
propionate, 9,10-DiHOME, inosine, 3- (4-hydroxyphenyl) lac-
tate (HPLA), 1-stearoyl-GPG, 12, 13-DiHOME, xanthine and 
sedoheptulose-7-phosphate, and inverse associations for raffinose 
and stachyose (Appendix Figs. 5–8). Bivariate association 
results for creatine and creatinine with ECC are presented in 
Appendix Figure 9.

The TPOT approach outperformed all competitive auto-
mated ML strategies; the best-performing model for the local-
ized classic ECC case status classification consisted of a 
logistic regression classifier and 2 feature transformers (i.e., 
robust scaler and stacking estimator with the k-neighbor classi-
fier) and had 66% balanced accuracy. The final model had 
modest predictive performance (area under the receiver operating 
characteristic [ROC] curve = 0.75); nevertheless, it demonstrated 

the discriminant potential of several of the identified signifi-
cantly altered metabolites (Table 2). Catechin had the highest 
ECC classification importance (i.e., mean decrease in model 
accuracy = 1.1%) and epicatechin was second, whereas fucose, 
imidazole propionate, 9,10-DiHOME, and N-acetylneuraminate 
were among the top 15 metabolites in terms of ECC classifica-
tion importance (Fig. 2).

Discussion
We carried out a comprehensive untargeted metabolomics 
characterization of the supragingival biofilm in a sizable sam-
ple of 289 preschool-age children and identified several altered 
biochemicals associated with ECC. Our results offer evidence 
of an overall association between the supragingival biofilm 
biochemical composition and ECC and highlight the roles of 
several endogenous and exogenous metabolites. These metab-
olite associations remained robust to adjustments for partici-
pants’ demographic characteristics, and most emerged as 
important features in an ECC ML classification model. While 
these findings will need to be replicated in independent sam-
ples and validated mechanistically, they provide substantial 
new information on the supragingival biofilm metabolome of 
young children and its association with ECC.

We explored global metabolome associations with 18 ECC 
traits, a number that may initially appear high or unwarranted; 

Table 2.  Crude and Age- and Race/Ethnicity-Adjusted Estimates Association for the 16 Metabolites Significantly Altered with ECC Traits after False 
Discovery Rate Correction.

Metabolite Origin ECC Trait β (P Value), Crude

β (P Value), Age 
and Race/Ethnicity 

Adjusted
TPOT ML Feature 

Coefficient
TPOT ML Feature 
Coefficient Rank

Catechin Exogenous dmfs3 >0 −0.652 (4.7 × 10–6) −0.704 (4.3 × 10–6) 0.011 1
  dmfs3 −0.195 (5.2 × 10–5) −0.216 (3.1 × 10–5)  
Epicatechin Exogenous dmfs3 >0 −0.660 (2.9 × 10–6) −0.629 (3.6 × 10–5) 0.0087 2
  dmfs3 −0.213 (7.3 × 10–6) −0.204 (7.0 × 10–5)  
Fucose Microbial/host/exogenous dmfs3 >0 0.537 (3.0 × 10–6) 0.526 (2.3 × 10–5) 0.0048 9
  dmfs3 0.157 (5.6 × 10–5) 0.150 (3.6 × 10–4)  
N-acetylneuraminate Host dmfs3 >0 0.799 (6.8 × 10–6) 0.586 (1.8 × 10–3) 0.0043 14
  dmfs3 0.215 (3.5 × 10–4) 0.132 (3.7 × 10–2)  
Creatine Host/exogenous dmfs3 >0 0.448 (8.4 × 10–4) 0.359 (1.2 × 10–2) 0.0033 21
  dmfs >0 0.544 (3.1 × 10–5) 0.540 (7.5 × 10–5)  
Creatinine Host dmfs >0 0.586 (2.0 × 10–4) 0.625 (1.3 × 10–4)  
Imidazole propionate Microbial dmfs3 >0 0.682 (5.3 × 10–4) 0.589 (5.5 × 10–3) 0.005 8
9,10-DiHOME Exogenous/microbial dmfs3 >0 0.583 (2.2 × 10–4) 0.675 (7.4 × 10–5) 0.0047 11
Inosine Microbial/host dmfs3 >0 0.565 (6.0 × 10–5) 0.449 (2.8 × 10–3) 0.0032 22
3-(4-Hydroxyphenyl) 

lactate (HPLA)
Host dmfs3 >0 0.449 (4.2 × 10–4) 0.332 (1.4 × 10–2) 0.0024 36

1-Stearoyl-GPG Host dmfs3 >0 0.550 (9.2 × 10–4) 0.312 (6.8 × 10–2) 0.0019 47
12,13-DiHOME Exogenous/microbial dmfs3 >0 0.503 (7.3 × 10–4) 0.567 (4.0 × 10–4) 0.001 81
Xanthine Host/exogenous/ microbial dmfs3 >0 0.725 (1.0 × 10–3) 0.492 (3.5 × 10–2) −0.0007 204
Raffinose Exogenous dmfs3 >0 −0.758 (1.0 × 10–3) −0.739 (3.0 × 10–3) −0.0012 256
Stachyose Exogenous dmfs3 >0 −0.722 (6.6 × 10–4) −0.674 (3.1 × 10–3) −0.0027 402
Sedoheptulose-7-

phosphate
Microbial/host dmfs3 >0 0.475 (6.5 × 10–4) 0.301 (3.7 × 10–2) −0.0033 452

ML-derived feature importance coefficients and ranks are presented for the 15 metabolites that showed significant associations with the binary 
localized ECC trait (i.e., dmfs3 >0 defined at the ICDAS 1 threshold).
dmfs, the sum of decayed, missing, and restored (i.e., “filled”) primary tooth surfaces due to caries; ECC, early childhood caries; ICDAS, International 
Caries Detection and Classification System; ML, machine learning.
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however, this is an important and necessary step in our under-
standing of ECC metabolomics, as clinical trait definitions can 
and do vary considerably. We interrogated 2 different levels of 
caries severity (i.e., including or excluding noncavitated caries 
lesions) and a third, untreated disease category, all of which are 
clinically important. We considered disease prevalence and 
severity on the entire dentition, as well as on the specific teeth 
and specific surfaces (i.e., “localized disease”) where plaque 
was harvested from. We posited that the biofilm metabolome 
may be most informative for surfaces and teeth from which it 
was collected, rather than the entire dentition—this notion was 
verified by the strongest correlations being found for the 2 
localized disease traits. All untreated disease traits showed sig-
nificant correlations with the metabolome, although smaller 
numbers of significantly altered individual metabolites and only 
2 metabolites remained significantly associated with the person-
level ECC definition defined at the ICDAS ≥3 threshold after 
correction for multiple testing.

Most identified metabolite associations were 
positive (i.e., ECC prevalence and severity were 
associated with higher relative metabolite abun-
dance), a finding consistent with a biochemically 
active microbial community in the context of dental 
caries. Nevertheless, 2 of the strongest observed 
associations, for catechin and epicatechin, were 
negative. Both catechin and epicatechin are known 
dietary flavonoids (i.e., exogenous substances), a 
class of polyphenolic plant secondary metabolites 
with several biological properties. They are com-
monly found in food sources such as blackcurrants, 
cranberries, cocoa powder, chocolate, and green 
and white tea and have shown anticaries properties, 
including inhibition of cariogenic bacteria adhe-
sion, acid production, and biofilm formation (Jeon 
et al. 2011; Varoni et al. 2012; Li et al. 2019). A 
recent review by Hengge (2019) offers an insightful 
summary of the postulated mechanisms of a green 
tea polyphenol catechin in antagonizing bacterial 
biofilms, which may involve alterations of the pel-
licle (Rehage et al. 2017).

Fucose is present in host-derived glycoproteins, 
and it can be produced by bacteria and acquired 
from the diet (Becker and Lowe 2003). Its func-
tional role in the oral cavity is currently unclear; 
however, it can be used by certain fucosidase-
expressing streptococci and appears to mediate 
bacterial binding, including early streptococcal 
colonizers via antigen I/II adhesins (Cross and 
Ruhl 2018; You et al. 2019). Interestingly, free 
fucose has been shown to inhibit saliva-mediated 
aggregation and clearance of Streptococcus mutans 
(Demuth et al. 1990), potentially enhancing its 
adherence and accumulation on tooth surfaces. 
N-acetylneuraminate is the conjugate base of 
N-acetylneuraminic acid, the most abundant sialic 
acid in humans. Sialic acids are important in terms 
of host immunity regulation and biological func-

tions of health and disease-associated bacteria (Severi et al. 
2007).

There is unavoidable and unobserved complexity in what is 
sampled and measured in observational supragingival biofilm 
metabolomics studies like the present one. For example, the 
origins of the metabolome: Schulz et al. (2020) recently con-
ducted targeted metabolomics analyses of initially formed 
(10 min) pellicle in young children and found that the identi-
fied metabolites were not significantly different from what was 
quantified in saliva. Importantly, the most abundant metabo-
lites, including acetic acid, propionic acid, glycine, serine, 
galactose and mannose, lactose, glucose, palmitic acid, and 
stearic acid, were identified in the virtual absence of bacterial 
colonization. Examinations of the temporal development and 
contributions to the biofilm metabolome are logical areas for 
future study.

The performance of the best-fitting automated ML model 
showed that the metabolome alone did not contain sufficient 

metabolite importance

Figure 2.  Feature importance plot for the top 50 metabolites in the best-fitting 
tree-based pipeline optimization tool (TPOT) AutoML model. The metabolites 
are presented in order of descending “feature importance” in the AutoML model. 
The result for the top metabolite, catechin, can be interpreted as 1.1% relative 
classification performance decrease if catechin values are permuted in the TPOT 
prediction model.
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information to accurately classify (i.e., distinguish between) 
ECC cases and noncases in our study. This is not surprising 
given the amount of heterogeneity encompassed within the 
current ECC taxonomy in terms of severity and intraoral distri-
bution of caries lesions (Divaris 2016). However, the ML 
model independently prioritized several metabolites that 
emerged as significant in conventional statistical analyses of 
ECC among the top “predictive” ones, including catechin, epi-
catechin, imidazole propionate, fucose, 9,10-DiHOME, and 
inosine. Others (i.e., xanthine, raffinose, stachyose, and  
sedoheptulose-7-phosphate) were noncontributory to ECC 
classification. It is conceivable that in the future, information 
on a small number of features (versus full information on all 
omics), whether metabolites, microbial taxa, behaviors, or 
screening questions, may be efficiently used by automated ML 
pipelines to create useful clinical decision-making adjuncts for 
ECC classification or risk estimation.

This cross-sectional study is limited in its ability to make 
causal or true predictive inferences because it examined preva-
lent ECC. This is particularly true for untreated disease, 
wherein the clinical manifestations of ECC (i.e., cavitation) 
alter the microbial niche and biofilm function. The pooling of 
plaque samples from 5 specific tooth surfaces provided unifor-
mity across the entire study sample but limited our ability to 
link the metabolite associations with site-specific ECC mani-
festations. Future studies can and must expand upon our find-
ings by investigating site-specific variation and longitudinal 
changes in biofilm metabolic activity. Finally, it was not practi-
cally possible to collect fasting plaque (i.e., plaque unexposed 
to sugar for ≥12 h) or record the breakfast sugar content in this 
community-based, observational study among children aged 3 
to 5 y. Plaque samples were collected prior to or at least 30 min 
after breakfast and—importantly with regards to study validity—
all participants were exposed to largely similar conditions in 
the state’s public preschool system, while identical timing and 
plaque collection conditions applied to both ECC cases and 
controls.

In sum, our results point to several novel metabolite asso-
ciations with ECC, with plausible biological roles that need to 
be mechanistically validated. Certainly, these metabolites do 
not operate in a vacuum, and future studies should investigate 
their associations and potential interactions with the microbial 
community structure and activity (i.e., metagenomics, meta-
transcriptomics). Crucially, the measured supragingival  
biofilm biochemicals contained both host and exogenous sub-
stances, a demonstration of its complexity and unexplored 
potential beyond microbiota-derived metabolites. Several 
novel metabolite associations could be combined and serve as 
ECC biomarkers in the future; however, the information cur-
rently contained in the metabolome alone appears insufficient 
to accurately differentiate ECC cases from noncases. Our abil-
ity to accurately classify or predict ECC outcomes will likely 
improve with the addition and joint consideration of additional 
levels of microbial omics, host genomics, behavioral and envi-
ronmental factors, and a precise ECC taxonomy in the context 
of longitudinal studies.
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