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a b s t r a c t

COVID-19 made considerable changes in the lifestyle of people, which have led to a rise in energy use in
homes. So, this study investigated the relationship between COVID-19 and domestic hot water demands.
For this purpose, a nondimensional and principal component analysis were conducted to find out the
influencing factors using demand data before and after COVID-19 from our study site. Analysis showed
that the COVID-19 outbreak affected the daily peak time and the amount of domestic hot water usage,
the active case number of COVID-19 was a good indicator for correlating the changes in hot water de-
mand and patterns. Based on this, a machine learning model with an artificial neural network was
developed to predict hot water demand depending on the severity of COVID-19 and the relevant cor-
relation was also derived. The model analysis showed that the increase in the number of active cases in
the region affected the hot water demand increased at a certain rate and the maximum demand peak in
morning during weekdays and weekends decreased. Furthermore, if the number of active cases reached
more than 4000, the peak in morning moved to afternoon so that the energy use patterns of weekdays
and weekends are assimilated.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The COVID-19 pandemic changed the overall industrial
ecosystem and the daily life of people [1e5], and the energy in-
dustry was unable to avoid such changes either [6,7]. Changes in life
patterns brought unexpected shock to the production and demand
system of the energy industry; in particular, they brought consid-
erable changes in areas such as energy consumption, energy de-
mand peak, and demand [8,9]. The International Energy Agency
(IEA) published a study result that global energy demand in the first
quarter of 2020 was decreased by 3.8% from the previous year and
predicted that the demand will decrease by 6% in 2020. Further-
more, it was reported that throughout the world, coal demand will
decrease by 8%, petroleum demand by 5%, and aviation fuel by 25%
in the first quarter of 2020 [10].

Changes in energy demand caused by COVID-19 are deeply
related to local communities, national and global fossil energies,
and new renewable energy supply and demand, thereby causing a
large impact on these issues. Therefore, numerous studies were
r Ltd. This is an open access article
conducted to analyze the effects of COVID-19 on energy demand to
relieve the shock [11e13].

Werth et al. [14] analyzed the effects of COVID-19 on the energy
grid market in Europe. Because of COVID-19, electricity consump-
tion in each European country was largely decreased, which caused
a tremendous negative impact on the development of electric po-
wer generation. To provide solutions for this problem, methods
such as energy trade between countries and the modification of
new renewable energy production plans were proposed. Through a
simulation on complex buildings, Zhang et al. [15] predicted that
electricity consumption will increase by 14.3%e18.7%, whereas
space heating (SH), space cooling, and domestic hot water (DHW)
consumption will decrease by 7.1%e12.0% after COVID-19.

In addition to changes in energy use at national or governmental
levels, certain studies were conducted to analyze the increase or
decrease in energy consumption based on changes in life patterns
at residential buildings, which accounts for 20% of the global energy
consumption (2018) [16]. Most studies related to energy in industry
and transportation fields predicted that energy demand will
decrease. However, other studies, which suggested that the energy
consumption of residential buildings will rather increase, were
more common. Zanocco et al. [17] studied the effects of Shelter in
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/
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Nomenclature

a hourly domestic hot water usage
a normalized hourly domestic hot water usage
A list of hourly domestic hot water usage for the day
AC number of active case (log10)
A normalized list of hourly domestic hot water usage

for the day
b bias
Cp specific heat capacity (kJ kg�1 K�1)
h hour (h)
m mass flow rate (kg h�1)
n number of datapoints
Q domestic hot water demand (MWh)
Qinc increase of domestic hot water demand by the

COVID-19 (%)
R2. coefficient of determination
T temperature (�C)
w weight
X input
x standardized input
Y output
Y averaged output
y standardized output

Greek letters
m mean
s standard deviation

Subscripts
cw city water
i index of households
inc increment
j neuron number in input layer
k neuron number in first hidden layer
l neuron number in second hidden layer
m neuron number in third hidden layer
nw nationwide
pred prediction
sma Seoul metropolitan area

Acronyms
ANN artificial neural network
CHP combined heat and power
COV covariance
COVID-19 Severe Acute Respiratory Syndrome-Coronavirus-2

(SARS-CoV-2)
DHW domestic hot water
HEX heat exchanger
KPCA kernel principal component analysis
MAE mean absolute error
MSLE mean squared log error
ND non-dimensional
PC principal component
PCA principal component analysis
ReLU rectified linear unit
RMSE root mean square error
SH space heating
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Place Order of California on the life patterns of people, changes in
domestic energy consumption, and the prospect of smart home
technology. Cvetkovic et al. [18] analyzed changes in behavioral
patterns of people in residential spaces because of COVID-19 and
predicted that natural gas, electricity, and water consumption will
largely increase. Cheshmehzangi [19] analyzed the impact of
COVID-19 on transportation, food, leisure, air conditioning and
heating, and lighting energy consumption in residential buildings
and reported that changes in transportation, air conditioning, and
heating energy were particularly significant.

An accurate understanding of energy consumption is important
for establishing national, municipal, or building level energy policy,
and for the effective utilization of energy sources. Because energy
demand characteristics were largely changed by the effect of the
COVID-19 pandemic, conducting studies for increasing the under-
standing of energy consumption in this situation is important.
Although certain studies were conducted on changes in energy
demand caused by COVID-19, most studies focused on the elec-
tricity sector. Among the various types of energy, heat energy ac-
counts for approximately 69% of the total energy amount used in
residential area, and approximately 23% of heat energy is used in
hot water [16], which accounts for a large proportion in the total
energy consumption. However, studies conducted on analyzing the
importance of heat demand are relatively insufficient. This is
because DHW sub-meters are not installed wherein individual
heating systems. Although the DHW sub-meters separately mea-
sures the hot water demand wherein district heating systems, they
normally measure only the accumulated flow, not the heat con-
sumption. In the district heating system, measuring the calorific
amount of SH is easy as the sub-metering uses a difference between
the supply and return temperatures. However, it is difficult to
measure the calorific value of DHWbecause the difference between
2

hot water temperature in each household and make-up city water
temperature in a central substation needs to be measured.

The purpose of this study is to identify changes in DHW demand
and usage patterns caused by the COVID-19 pandemic, and a cor-
relation between the transmission rate of the COVID-19 and DHW
consumption, to develop a prediction model that clarifies the ef-
fects of COVID-19. A district heating supplied apartment complex
with 16 buildings, 918 households was selected to collect demand
data and develop the model. Thereafter, the actual DHW con-
sumption amount and climate data gathered for three years in the
complex were combined to analyze the following from various
aspects such as hourly, daily, monthly, and onweekdays/weekends:
changes in DHW demand before and after the outbreak of COVID-
19, DHW demand pattern by hours, and cause-and-effect rela-
tionship with external factors. Major factors that affect DHW con-
sumption characteristics were extracted, and their correlation was
analyzed. Based on these results, machine learning model with an
artificial neural network (ANN) that can predict the DHW con-
sumption by climatic conditions, time, and COVID-19 conditions
was developed. Through this model, the actual consumption
amount based on the spread of COVID-19, and changes in the DHW
consumption patterns were identified. Moreover, a mathematical
correlation was proposed to predict the rate of increase in DHW
consumption because of the transmission rate of COVID-19.

2. Description of measuring data

The place for data collection was an apartment complex in
Seongnam-si, Gyeonggi-do, Republic of Korea, which belongs to
one of the regions in the Seoul metropolitan area. This region has a
representative continental climate characteristic and a large tem-
perature difference throughout a year having four distinct seasons
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[20]. Fig. 1 shows the outdoor temperature in the region between
November 2017 and October 2020, and Table 1 shows the infor-
mation of the region and our study site.

Fig. 2 shows the detailed secondary sidewith DHW submetering
in the district heating system. After the heat is delivered from the
CHP via the primary side to the central substation of the apartment,
the exchanged heat is distributed as the SH and DHW to each
household. The calorific amount of DHW used by each household
can bemeasured by combining city water temperaturemeasured in
the central substation, hot water temperature and flow rate
measured by DHW smart meter in each household [22]. The calo-
rific amount of DHW for all the entire 918 households in the
apartment complex can be calculated through Eq. (1):

Q ¼
X918
i¼1

2
64 ðhend

hstart

n
cp;water �mi �

�
Tsupply; i � Tcity water

�o375 (1)

The gathered information includes DHW accumulated energy,
flow, temperatures, and household information. Table 2 shows the
data type of this information. This study used hourly data, and data
collection simultaneity was maintained within 15 s tominimize the
time mismatch of energy usage. In this study, the analysis was
conducted based on data gathered from November 2017 to October
2020.

In Republic of Korea, after the first COVID-19 confirmed case
emerged on January 20, 2020, the accumulative number of
confirmed cases steadily increased to reach 26511 by October 31,
2020. During that time, two large waves of COVID-19 occurred
where the first wave mostly occurred in regions located 270 km
away from the study site; however, the second wave occurred at
Seoul metropolitan area where the study site is located. Fig. 3
shows the daily number of COVID-19 confirmed cases and the
accumulated number of confirmed cases throughout the nation-
wide and the Seoul metropolitan area. The first and second waves
occurred in mid-February and mid-August 2020, respectively, and
COVID-19 confirmed cases have steadily emerged since then.
Fig. 1. Changes in the trend of outdoor temperature in the region during the past three
years.

3

3. Analysis of changes in DHW demand caused by COVID-19

3.1. Changes in DHW demand

Fig. 4 compares changes in the daily outdoor temperature of the
study site, daily average city water temperature, and daily average
DHW demand. Trends showed that changes in city water temper-
ature follow the changes in outdoor temperature after several days,
and DHW demand shows the opposite trend from the city water
temperature. Because DHW demand is highly related with the city
water temperature, it decreases in summer when the city water
temperature is high, as shown in Fig. 5.

Fig. 5 shows the relationship between DHW demand and the
city water temperature before and after the COVID-19 pandemic,
where black circular points show DHW demand before the COVID-
19 pandemic (based on February 16, 2020), and red circular points
show the same after the pandemic. Under the same city water
temperature condition, DHW demand after the COVID-19 signifi-
cantly increased compared to pre COVID-19. Therefore, it can be
inferred that DHW demand largely increased during the COVID-19
pandemic because of changes in the life patterns of people such as
the lockdown policy, working from home, closing of schools, and
increased awareness of personal hygiene. In some period (around
15 and 23 �C of city water temperature), the increased DHW de-
mand seems to be temporarily small. This is because the number of
COVID-19 cases during the period (early May, early August) was
small, and the life patternwas similar to that of pre-COVID-19 years
as shown in Figs. 3 and 4.

Fig. 6 shows the monthly rate of DHW demand change after the
COVID-19 pandemic and difference in the city water temperature
before (average of the past 3 years) and after COVID-19. If the city
water temperatures difference before and after COVID-19 (red
square and line) is more than 0, it indicates that the monthly city
water temperature in 2020 was higher than the previous city water
temperature. DHW demand after the outbreak of COVID-19 is
higher and demand increased more during weekdays compared to
weekends. This is presumed to be because in-house hours and the
number of people staying inside during the weekdays are
increased. The maximum increase in the DHW demand was
observed in August, the second period when the number of
confirmed cases rapidly increased, to reach up to 58.98%. However,
these rates of increase cannot be assumed to be simply caused by
COVID-19 because the city water temperature was coupled except
for July and October 2020, when the average city water tempera-
ture was similar to the previous year. August 2020 was a month
when the number of COVID-19 confirmed cases rapidly increased.
However, the city water temperature in August 2021 was 3.48 �C
lower than the annual average because of the record-breaking
abnormal temperature. Thus, the increase in DHW demand was
caused by a combination of the COVID-19 pandemic and low city
water temperature. Moreover, although June 2020 showed the
reduced DHW demand, the fact that city water temperature was
rather higher compared to the previous year shall be considered.
Therefore, there exists a limitation in decoupling the reason of the
rate of DHW demand change caused only by COVID-19 when the
DHW demand is simply compared with past data.



Table 1
General information of country and study site.

Information Description

Population (Nationwide) 51.78 million (2019) [21]
Population (Seoul metropolitan area) 25.89 million (2019) [21]
Climate of the country 'Dwa' in K€oppen-Geiger classification
Our study site information Location Gyeonggi province, Republic of Korea (Located in Seoul metropolitan area)

Latitude: 37.378, Longitude: 127.118
Housing type Apartment complex (16 buildings)
Number of households 918
Floor areas 103e228 m2

Heat supply method District heating
Four pipe system having central substation Separate central SH and DHW heat exchanger

Sub-metering method SH and DHW submeters in each household

Fig. 2. The district heating system and the secondary side DHW sub-metering using
smart meter.

Table 2
Information on the gathered data.

Information Description

Period From 11e01e2017 to 10-31-2020
Data interval used One hour
Data collection simultaneity 15 s
Measuring parameter DHW energy and flow usage, flow rate, supply temperature, city water temperature, outdoor temperature

Fig. 3. Trend comparison of the daily number of COVID-19 confirmed cases.

Fig. 4. Trend comparison of the daily outdoor temperature, city water temperature,
and DHW demand.
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3.2. Change in daily demand pattern

As daily DHW demand pattern has a tendency where most of
the demands are located in peak hours, it requires a different
approach method than the daily demand analysis method. In
general, the daily DHW demand pattern shows two peak periods,
4

i.e., one each in morning and afternoon [23], and this was also
similar in this study. In addition, because of changes in life patterns
caused by the COVID-19 pandemic, large changes occurred not only
in the abovementioned daily andmonthly DHWdemand but also in
the daily DHW demand pattern.

To analyze only the hourly demand pattern by excluding
changes caused by climatic or seasonal changes, the daily DHW
demand was normalized into values between 0 and 1 through min-
max normalization, which is shown in Eq. (2) [24].

a0i ¼
a i � A min

A max � A min
(2)

In this equation, A is the list of hourly demand on a day, which is
expressed as A ¼ ða0; a1; a2/aiÞ, and the range of i is 0e23. ai
refers to the specific demand between i hour and i þ 1 h Amax is the
maximum hourly DHW demand in a day, Amin is the minimum
hourly DHW demand in a day. The normalized hourly demand is a0



Fig. 5. Changes in DHW demand based on the city water temperature before and after
the COVID-19 pandemic.

Fig. 6. Increase rate of the monthly DHW demand after the COVID-19 pandemic and
annual difference in the city water temperature.

Fig. 7. Comparison of the hourly DHW demand pattern on (a) weekdays and (b)
weekends before/after the COVID-19.
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and the list of the a0 can be expressed as A0. Also, A0
min is 0 and A0

max

should be 1.
In general, the DHW demand pattern is largely affected by the

presence of holidays [25,26]. Fig. 7 shows box plot comparison in
demand pattern onweekdays and weekends before/after COVID-19
pandemic. For weekdays, the peak demand at 07:00e08:00 is
similar before and after the COVID-19 pandemic, but the value has
increased at every hour after the COVID-19 pandemic. This implies
that the usage at peak demand has relatively decreased. It was
determined that this phenomenonwas caused because activities in
workplaces and schools, which are the major causes of DHW de-
mand peak in weekday's morning time, were replaced by causes
such as working from home and self-learning. Moreover, it can be
presumed that the DHW demand rate increased in afternoon and
night because of the increased number of people staying inside.
During weekends, although DHW demand peak time in morning
was slightly lesser, changes in the pattern are not as large as that
during weekdays.

Fig. 8 shows the probability of the peak DHW demand appears
during weekdays (a) and weekends (b) before/after the COVID-19
5

pandemic. During weekdays, the number of days when peak de-
mand occurred between 07:00 and 09:00 before the COVID-19
pandemic accounted for 95.01%. However, the ratio of days when
peak demand occurs during the same time after the COVID-19
pandemic accounted for only 51.97%, which indicated a large dif-
ference from before the COVID-19 pandemic. The ratio of days
when peak DHW demand occurred between 19:00 and 22:00 after
the COVID-19 pandemic largely increased from 2.27% to 47.37%.
This seems to be because of the distribution effect of demand
because of the decreased amount of DHW used in the morning, as
mentioned previously.

When quantitatively looking at the distribution effect of de-
mand, 10.96% of daily demand was used during peak time on



Fig. 8. Probability of the peak DHW demand during (a) weekdays and (b) weekends
before/after the COVID-19.
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weekdays before COVID-19. However, 7.68% of daily demand was
used during peak time after COVID-19, which indicated the distri-
bution effect was 3.28%p. Like the previously conducted analysis,
during weekends, 7.85% and 7.57% of daily demand were used
during peak time before and after COVID-19. Thus, it did not show
considerable difference compared to weekdays.

Through the comparative analysis of data acquired before and
after COVID-19, it was identified that the daily DHW demand
pattern rapidly changed after the COVID-19 pandemic. However,
despite the same COVID-19 pandemic situation, DHW demand
pattern can be different depending on factors such as the effects of
the severity of COVID-19, the government's policy, and vacation or
school closing. Thus, expressing each daily DHWdemand pattern as
“a representative single value” could allow both identifying daily
demand pattern changes based on timeline at once and allow
6

comparing the abovementioned factors. Therefore, we used the
kernel principal component analysis (KPCA) [27] to represent the
daily DHW demand pattern as single number between �1 and 1.
Principal component analysis (PCA) [28] is a method of converting
high-dimensional data into low-dimensional data by extracting
principal components (PC), which can provide the explanation of
distribution in high-dimensional data. KPCA used in this study is
kernel methods-applied PCA. KPCA method is described in the
reference in detail [27].

In this study, PC was extracted from the DHW demand pattern
data for assessing the impact of COVID-19. Fig. 9 shows the com-
parison between daily PC values of 2019 (blue circle for weekdays
and blue cross for weekends) and 2020 (red circle and red cross). In
2019, which was before the COVID-19 pandemic, the distribution of
weekdays and weekends were clearly distinguished. Usually, PC in
weekends located between �0.5 and �0.8, and PC in ordinary
weekdays except school vacation season located between 0.4 and
0.6. Moreover, during the summer and winter school vacation, PC
located between weekdays and weekends rather than having
values of weekdays. Because of the different starting and ending
dates of vacations for each school (elementary, middle, high and
university), there were gradual falling and rising trends of PC in
weekdays. However, there was considerable increase of PC in
weekdays on March 2nd because all schools began the semester on
the same day.

When examining the weekends’ tendency in 2020, the PC was
located almost in the same areawith 2019, which is consistent with
the result of previously conducted statistical analysis. The PC values
of weekdays showed a similar tendency to 2019 until mid-February,
which was before the COVID-19 emerged but began to show dif-
ference with 2019 after the emergence of patients. In particular, the
first wave began late February, which led to the closing of schools, a
sharp differencewith 2019 occurred, and the PC values of weekdays
came close to the weekend area. As the increase in the number of
the COVID-19 patients showed a stable trend, it showed a tendency
to gradually recover to the PC area before the first wave, and which
located the same PC area during the summer vacation as before the
COVID-19 pandemic. The difference emerged again as the second
wave started after late August.

The right y-axis of Fig. 9 shows changes in the trend of the
number of new daily COVID-19 confirmed cases. When the number
of new confirmed cases rapidly increased, the PC difference was
increased between 2020 and 2019. After that, PC tended to return to
the ordinary PC level in 2019 as the number of new confirmed cases
decreased slowly. This phenomenonwas repeatedly observed in all
the two waves.

To analyze the causes of changes in the daily DHW demand
pattern, deriving variables related to COVID-19, which can reflect
changes in the life patterns of people is necessary. The first y-axis
on the left side of Fig. 10 shows changes in the population mobility
in transportation, workplaces, and residential areas during the
COVID-19 pandemic period compared to the period before the
pandemic, which was revealed by Google Community Mobility
Reports [29]. The population mobility is attributed to counting the
number of people staying in the corresponding places and
comparing it with the previous result. More people stayed in the
places than in the period before the COVID-19 pandemic if this
value is more than 0 and less people stayed in the places if it is less
than 0. The second y-axis on the left side of Fig. 10 shows the
changes in the PC of the DHW demand pattern before and after the
COVID-19 pandemic. After the COVID-19 pandemic, the utilization
of public transportation and the ratio of time spent for staying at
workplaces were largely decreased, whereas time spent for staying
at homes was increased. As previously mentioned, the DHW de-
mand was increased because residents were able to stay at homes



Fig. 9. The principal component of 2020 and changes in the trend of new confirmed cases.

Fig. 10. Changes in the trends of PC, population mobility, and active cases of COVID-19.
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longer because of causes such as working from home and delay in
school opening. Furthermore, there was a large change in PC of
DHW demand pattern after the COVID-19 pandemic. The y-axis on
the right side of Fig. 10 shows the daily changes in the active cases
of COVID-19 on a log scale. Generally, the active case is defined as
the number of accumulated COVID-19 confirmed cases subtracted
by the number of recovered patients and casualties [30]. Currently,
this refers to the number of patients who are infected with the
COVID-19, and the active cases were indicated separately for the
entire country and the Seoul metropolitan area (where our study
site is located). An interesting part is that the changes in both
populationmobility and the PC of the DHWdemand pattern show a
similar tendency to the trend of active cases. In both February and
September, when the number of active cases rapidly increased,
changes in population mobility in public transit transfer, work-
places, residential areas, and DHW demand pattern PC showed
their peak, thus showing a similar tendency to that of active cases.
Furthermore, when the number of active cases slowly reduced, the
changes in population mobility and DHW demand pattern PC were
recovered to the level of the previous year. In other words, the
number of active cases of COVID-19 can effectively reflect changes
in the life patterns of people because of the pandemic. Population
mobility data are a good indicator to use in the prediction model;
however, Google and Apple are temporarily allowing to share these
data because of the pandemic; these data can be limited at any
time. However, the number of active cases is the open-source in-
formation that anyone can collect. Thus, active cases can be useful
7

in comparing the life pattern changes with energy demand pattern
in the future case of any other epidemic outbreak.

4. Predictive analysis of the impact of COVID-19 in DHW
demand

4.1. ANN model development

From Chapter 3, the DHW demand and changes in its pattern
after COVID-19 were investigated with acquired demand data
before and after the pandemic. To specifically identify and analyze
the effects of COVID-19 on DHW demand, having an analysis model
that reflects the correlation between COVID-19 and DHW demand
is necessary. For this purpose, an ANN model that is developed and
established based on the actual DHW demand to understand the
effects of COVID-19. The ANN is one of themachine learningmodels
inspired by simulating physical signals and the neuron system of
the human brain. The ANN model allows to solve physical phe-
nomena or engineering problems without a clear equation [31e37].
Fig. 11 shows the flowchart for the development of ANN model
algorithm. The model used in this study was designed to predict
hourly DHW demand through inputs such as climate, time, and
COVID-19 information. Fig. 12 and Table 3 show the schematic and
structure of this analysis model, respectively.

This model is composed of an input layer, a hidden layer, and an
output layer. The input layer plays a role of processing factors that
affect DHW demand such as climate, time, and the COVID-19 in-
formation to suit a machine learning model, and the number of
neurons is same as the input values. The hidden layer plays a role of
representing the relationship between input and output values by
reflecting the degree of influence between adjacent neurons. Lastly,
the output layer plays a role of outputting the calculation result
(hourly DHW demand) of the hidden layer by processing it
properly.

To accurately predict the DHW demand, designing the type and
form of input values that affect DHW demand is important. This
model uses climate, time, and COVID-19 as input parameters, which
are the main factors affecting DHW demand. The climatic infor-
mation was composed of the outdoor and city water temperature.
For time information, factors such as month, date, time, days, the
presence of weekends, and the number of consecutive holidays
were used as input values. This is because DHW demand shows
different consumption characteristics by weekdays/weekends and
each hour. As shown in Table 3, the days were each indicated as a
number between 1 and 7, and the presence of holidays was indi-
cated as a number between 0 and 2. The consecutive holidays in



Fig. 11. Flowchart of ANN model algorithm.

Fig. 12. Structure of the ANN predicting DHW demand.
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input refers to the total number of holidays or weekends within five
days, which includes two days before and after the corresponding
date (0e5). As shown in Figs. 9 and 10, COVID-19-related infor-
mation used two input values: active cases in the nationwide and in
the Seoul metropolitan area, which clearly reflect the life patterns
of people.

This model can be expressed as a mathematical equation, as
shown in Eq. (3). The certain neuron value is calculated by multi-
plying the weight factor value to the previous neuron value and
adding bias to the sum of these and applying an activation function.
Rectified linear unit (ReLU) function was used as the activation
8

function, as well as to increase learning accuracy, Z-score stan-
dardization was applied to input and output. The weight factor and
bias between neurons in this model were calculated by the back-
propagation algorithm with 70% of the randomly extracted data,
and the remaining 30% of the datawas used to confirm the accuracy
of the model. The accuracy of this model is indicated in Table 4, and
Eq. (4) e (11) were used for each accuracy. Fig. 13 shows a com-
parison between the measured values of the actual daily DHW
demand and the predicted values of this model. The results showed
that 96.97% of the entire data had the error range of ±10% and
99.62% had the error range of ±15%.



Table 3
Summary of the ANN model.

Neural network information

Input Outdoor temperature [oC] Hourly average value
City water temperature [oC] Measured value
Month 1e12
Day 1e31
Hour 0e23
Day of the week 1(Sunday) e 7(Saturday)
Holiday 0(non-holiday), 1(public holyday), 2(new-year's day, Thanksgiving Day)
Consecutive holiday The number of weekends or holidays out of the five days, including the day and two days before and

after
Active case in nationwide log10(active case in nationwide area), 0 at no active case
Active case in Seoul
metropolitan

log10(active case in Seoul metropolitan area), 0 at no active case

Output DHW demand [MWh] Measured value
Number of hidden layers 3
Number of neurons in a hidden

layer
100

Activation function ReLU y ¼ max (0, x)
Train-test data ratio 7:3
Standardization Z-score standardization x' ¼ (x � m)/s

Table 4
Accuracy of the ANN model: Hourly DHW demand
prediction.

Prediction accuracy Value

R2 0.9749
RMSE 0.0311
CV(RMSE) 10.348%
MBE 0.374%
MAE 0.0212
MSLE 0.0005
COV 0.0515
Correlation 0.9893

Fig. 13. Comparison between the actual daily DHW demand and daily DHW demand
predicted by the model.
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Fig. 15. Changes in the rate of increase in DHW demand caused by changes in active
cases in the Seoul metropolitan area and nationwide.
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4.2. Impact of COVID-19 in DHW demand

Variations in DHW demand because of changes in input values
can be estimated through the machine learning model developed
in this study. For example, fixing all input conditions (e.g., outdoor
temperature, city water temperature, and climatic information)
while changing the number of the COVID-19 active cases will
indicate changes in DHW demand caused only changes in the
number of the COVID-19 patients under the same condition for all
external environmental condition or climatic information.

Fig. 14 shows the rate of increase in monthly DHW demand
because of the COVID-19 pandemic and trend changes in active
cases. While Fig. 6 simply compared DHW demand before and after
COVID-19 for the rate of increase in DHWdemand, Fig.14 shows the
model simulation difference between the actual DHW demand
after COVID-19 as well as a case assuming no COVID-19 patients
(active case ¼ 0) during the same period under the same climatic
condition. Because all other conditions (e.g., climatic and time in-
formation) are same, the rate of increase in DHW caused solely by
COVID-19 (excluding other factors) can be shown. After the COVID-
19 pandemic, DHW demand increased by 8.08%e16.41% each
month (excluding February when the COVID-19 started), and the
increased number of active cases led to increased DHW demand.
Therefore, it presented that the rate of increase in DHW demand
and active cases are closely related. Moreover, COVID-19 caused a
greater increase in DHW demand during weekdays than weekends
because of lifestyle changes in workplaces, schools, and outdoor
activities during weekdays. DHW demand during the weekends
increased because of factors such as reduction in the frequency of
going out and the increased importance of hygiene. Comparing
Figs. 14 and 6, COVID-19 active case changes affected 12.72%/11.22%
(weekday/weekend) increase in June and 15.20%/12.27% increase in
August; however, in reality, 2.13%/11.75% decrease in June and
58.98%/56.83% increase in August. This result can be explained
because of the greater impact of city water temperature changes at
that time. Therefore, predicting the accurate DHWdemand requires
careful consideration of climatic information and changes in
COVID-19 active cases.

Fig. 15 analyzed the changes in DHW demand as per the range
and scale of COVID-19 active cases. For this purpose, we compared
DHW demand predictions using model variables as (1) the active
cases of Seoul metropolitan area where the study site locates and
(2) the active cases of nationwide. The result shows that DHW
demand increased steadily when the active cases in Seoul metro-
politan areawere increased and those in the nationwidewere fixed.
However, when nationwide active cases increased sequentially
Fig. 14. The rate of increase in monthly DHW demand caused by the COVID-19
pandemic and changes in the trend of active cases for each month.
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while active cases in the Seoul metropolitan area were fixed, and
the increase range was lower although it showed a linear increase.
These results show that the increasing prevalence of COVID-19 in
areas where people reside is more sensitive than the nationwide
spread trend, thus affecting DHW demand. Moreover, this indicates
that rather than considering the nationwide trend of active case
growth, reflecting the situation in the region is more necessary for
predicting DHW demand.

Fig. 16 shows the prediction of the rate of increase in DHW
demand in 2021 due to COVID-19 by the ANN model. The climatic
condition of 2021 was assumed as the average level of the past (the
average level of the past three years), and the numbers of active
cases nationwide and in Seoul metropolitan area were assumed as
4000 and 2000, respectively. Through the model, annual DHW
demand will increase by ~11.19% if the number of active cases is
maintained at 4000 people, and it indicated an almost consistent
rate of increase in monthly DHW demand. Based on the charac-
teristics of changes in DHW demand because of changes in the
number of active cases, which was derived through the above
analysis, a correlation was developed to derive the rate of increase
in DHW demand using the active cases. The format of the corre-
lation is shown in Eq. (12).
Fig. 16. Prediction of DHW demand using ANN model in 2021.



D. Kim, T. Yim and J.Y. Lee Energy 231 (2021) 120915
Qinc ¼
�
k1ACnw

2 þ k2ACnw þ k3
�
ACsma

þ
�
k4ACnw

2 þ k5ACnw þ k6
�

(12)

where k1 ¼0:013; k2 ¼ �0:2943; k3 ¼ 3:9136; k4 ¼ 0:055; k5
¼ 0:1023; k6 ¼ �0:0863

Fig. 17 shows the prediction of changes in hourly DHW demand
during weekdays and weekends because of the number of active
cases. In the case of weekdays, DHW demand tended to decrease as
the number of active cases increased from 06:00 to 09:00, which is
time for going to work and school. However, DHW demand tended
to increase as the number of active cases increased from 10:00 to
15:00. Although DHW demand increased from 16:00 to 18:00, it
showed a small rate of increase based on changes in the number of
active cases. From 19:00 to 22:00, DHW demand tended to increase
Fig. 17. ANNmodel prediction for changes in hourly DHW demand during a) weekdays
and b) weekends caused by changes in active cases.
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as the number of active cases increased. Although the peak time
range for DHW demand before the COVID-19 pandemic was be-
tween 07:00 and 08:00, the peak gradually decreased as the
number of active cases increased. When the number of nationwide
active cases was more than 4000 people, the DHW demand be-
tween 20:00 and 21:00 became the maximum DHW demand peak
as it surpassed the peak DHW demand between 07:00 and 08:00.

For weekends, DHW demand largely increased between 09:00
and 21:00 as the number of active cases increased, but other
timeslots showed no large changes. As with weekdays, weekends
showed the maximum peak of DHW demand at 20:00; not in
morning if the number of nationwide active cases surpassed 4000.
Moreover, because of the economic downturn caused by COVID-19,
“A Prolonged Sunday” (where energy consumption patterns during
weekdays and weekends are assimilated) phenomenon was indi-
cated in DHW demand in a similar form. This phenomenon was
more clearly indicated as the number of active cases increased [10].
5. Conclusion

This study aimed to investigate the relationship between
COVID-19 and DHW demand. For this purpose, the analysis was
conducted with various factors and the influences of COVID-19 on
DHW demand and developed a machine learning model with ANN
to predict DHW demand after the COVID-19 pandemic. Utilizing
data gathered for the past three years (November 2017eOctober
2020) from an apartment complex of 918 households in the Seoul
metropolitan area of Republic of Korea through a smart DHW
submeters, DHW demand and peak mobility caused by changes in
daily life pattern based on the occurrence of the COVID-19 patients
were analyzed. Based on this study, DHW demand is influenced
dominantly by climate, time, and the severity of COVID-19.
Furthermore, through non-dimensional analysis, KPCA and Goo-
gle mobility result analyses, it was identified that the COVID-19
active cases can most properly explain changes in DHW demand
and its pattern.

Based on these results, a prediction model was developed and
established, which can predict hourly DHW demand through the
machine learningmethodwith ANN. It used factors such as climate,
time, and the COVID-19 information, and its accuracy was
R2 ¼ 0.9749. In addition, a correlation was developed to predict the
rate of increase in DHWdemand based on changes in the number of
active cases. The analysis result of the model indicated that DHW
demand increased by 8.08%e16.41% every month after the COVID-
19 pandemic, and it rapidly increased as the number of active cases
increased. Moreover, DHWdemand and changes in its patternwere
influenced by active cases in the area belonged more dominantly
compared to nationwide active cases. Furthermore, it was found
that the hourly DHW demand pattern during weekdays and
weekends largely shifted based on an increase in active cases, as
well as a larger change in its pattern occurred during weekdays
than weekends. The peak in morning gradually decreased as the
number of active cases increased; it was found that if the number of
nationwide active cases surpasses 4000 during both weekdays and
weekends, the maximum peak of DHW demand occurs in after-
noon, and not in the morning.
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