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Abstract
Background  Height and other anthropometric 
measures are consistently found to associate with 
differential cancer risk. However, both genetic and 
mechanistic insights into these epidemiological 
associations are notably lacking. Conversely, inherited 
genetic variants in tumour suppressors and oncogenes 
increase cancer risk, but little is known about their 
influence on anthropometric traits.
Methods  By integrating inherited and somatic cancer 
genetic data from the Genome-Wide Association Study 
Catalog, expression Quantitative Trait Loci databases 
and the Cancer Gene Census, we identify SNPs that 
associate with different cancer types and differential 
gene expression in at least one tissue type, and explore 
the potential pleiotropic associations of these SNPs with 
anthropometric traits through SNP-wise association in a 
cohort of 500,000 individuals.
Results  We identify three regulatory SNPs for 
three important cancer genes, FANCA, MAP3K1 and 
TP53 that associate with both anthropometric traits 
and cancer risk. Of particular interest, we identify a 
previously unrecognised strong association between 
the rs78378222[C] SNP in the 3’ untranslated region 
(3’-UTR) of TP53 and both increased risk for developing 
non-melanomatous skin cancer (OR=1.36 (95% 1.31 
to 1.41), adjusted p=7.62E−63), brain malignancy 
(OR=3.12 (2.22 to 4.37), adjusted p=1.43E−12) and 
increased standing height (adjusted p=2.18E−24, 
beta=0.073±0.007), lean body mass (adjusted 
p=8.34E−37, beta=0.073±0.005) and basal metabolic 
rate (adjusted p=1.13E−31, beta=0.076±0.006), 
thus offering a novel genetic link between these 
anthropometric traits and cancer risk.
Conclusion  Our results clearly demonstrate that 
heritable variants in key cancer genes can associate with 
both differential cancer risk and anthropometric traits 
in the general population, thereby lending support for a 
genetic basis for linking these human phenotypes.

Introduction
Height and other anthropometric measures have 
been consistently found to associate with differ-
ential cancer risk.1–3 However, mechanistic and 
genetic insights into these associations are notably 
lacking.2 4 Increased height has been associated 
with a number of malignancies including skin, 
breast, colon, rectum, endometrium, ovary and 

kidney cancers, as well as Hodgkin’s lymphoma 
and leukaemia.2 5 Current theories linking increased 
height with increased cancer risk centre on the role 
of growth hormone, insulin-like growth factor 
and/or insulin as pro-tumourigenic by regulating 
the Ras-MAPK and PI3K pathways, and hence 
leading to increased cellular proliferation.6 It has 
also been proposed that increased height corre-
sponds to an increased number of cells, resulting 
in an increased probability of malignancy simply 
by chance7; however, such allometric scaling of 
body mass explains only part of the observed effect 
and it is not observed among mammal species of 
different size (Peto’s paradox).8 Increased body 
mass index (BMI), a surrogate measure of obesity 
based on the weight-to-height ratio, has also been 
associated with an increased risk of various cancers, 
including postmenopausal breast cancer, colorectal 
cancer and renal cancer.9 Increased BMI is partially 
attributed to increasing accumulation of fat mass. 
It is hypothesised that adiposity causes a state of 
systemic inflammation, a shift of metabolite and 
adipokine release and an increase of circulating 
insulin, secondary to insulin resistance.10 This 
combination may increase cancer risk. However, 
the mechanism(s) behind this association are not 
well understood. Thus, links between anthropo-
metric measures and cancer remain an area of 
intense research.

Anthropometric traits are largely determined by 
genes that control cellular proliferation, metabo-
lism and apoptosis, processes that are also required 
for immortalisation of cancer cells and devel-
opment of tumours.11 It is well established that 
germline mutations within tumour suppressor 
genes and oncogenes affect cancer risk.12 Studies 
on mouse models and rare diseases indicate that 
mutations in some of these genes may influ-
ence body mass composition.13–15 For example, 
the tumour suppressor gene ARH1 inhibits cell 
growth. A deletion in ARH1 is commonly asso-
ciated with breast and ovarian carcinoma, while 
mice that are engineered to overexpress ARH1 are 
significantly smaller than wild-type counterparts.16 
Mice possessing knockouts of genes within the 
tumourigenic hypoxia-inducible pathway vary in 
size and respond to high-fat diets differently from 
those without the mutations.17 18 TP53 is the most 
frequently mutated gene in human cancers and is 
a key regulator of a number of cellular activities 
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that prevent tumourigenesis, including maintaining genomic 
stability, controlling cell growth and metabolism.13 19 Mouse 
models of TP53 mutations have demonstrated that reduction of 
p53 activity can increase cancer risk, and also alter metabolism 
and occurrence of obesity in a complex and signal dependent 
manner.14 15

Further evidence for a relationship between body size, 
genetics and cancer comes from human genetic diseases, such 
as Turner syndrome. Turner syndrome is defined by complete 
or partial chromosome X monosomy and is associated with 
a distinct clinical phenotype, including gonadal dysgenesis, 
cubitus valgus and short stature.20 Short stature in this condition 
has been attributed to haplo-insufficiency of the SHOX tumour 
suppressor gene.21 Deletions and mutations in SHOX have also 
been proposed to explain short stature within the general popu-
lation.22 Another example comes from patients with Simson-
Golabi-Behmel syndrome (SGB), caused by mutations in the 
GPC3 tumour suppressor gene. Patients with SGB tend to have 
prenatal and postnatal overgrowth and thus ultimately taller 
stature together with an increased risk of embryonic tumours. 
GPC3-null mice also display overgrowth.23 These effects, in 
both humans and mice, are thought to be due to unshackling 
of the hedgehog pathways, and increasing cellular prolifera-
tion.24 25

Pleiotropy is the phenomenon whereby a single SNP or 
genetic mutation can influence multiple traits. These rare 
diseases provide evidence that major differences in the expres-
sion of cancer genes can influence both anthropometric traits 
and cancer risk in specific cohorts of patients. However, it is 
less clear that such associations occur in the broader population. 
The availability of large phenotypic and genetically linked data-
sets has allowed us to deploy genome-wide association studies 
(GWAS) of common SNPs to understand the link between 
genetics and anthropometric traits. However, until now, it has 
been difficult to look for pleiotropy between functional SNPs in 
genes associated with cancer risk and anthropometric traits, as 
very few cohorts possess both comprehensive genetic data and 
detailed anthropometric data in the same population. The UK 
Biobank provides a unique opportunity to investigate such pleio-
tropic associations in a large prospective cohort of over 500 000 
participants.

Methods
The UK Biobank
The UK Biobank is a cohort of ~500 000 UK residents who 
volunteered to have their clinical, lifestyle, anthropometric and 
genetic data collected for research. Data were collected in a 
number of ways, including by face-to-face interview, touchscreen 
assessment and from centralised clinical registers (eg, the Cancer 
register and Death register). Participants were aged between 40 
and 69 years at recruitment. All baseline data used in this study 
were collected in 22 UK centres, between 2006 and 2010.

Anthropometric data
During the baseline assessment, participants had various anthro-
pometric traits measured directly or by bioelectrical impedance. 
Bioimpedance data were measured using a Tanita BC418MA 
body composition analyser. Participants stood barefoot on the 
analyser and held the metal handles. This device produced 
measurements of fat mass, fat-free mass and basal metabolic rate. 
Further information on anthropometric data collected is found 
here.26

Cancer data
Cancer occurrences were defined by presence of a cancer Inter-
national Classification of Diseases (ICD) code in the UK Cancer 
register or the UK Death register. To maximise the number of 
individual cancers cases, we combined ICD9 and ICD10 codes 
of identical cancers. This was carried out by a clinician to ensure 
the matching was accurate: for example, malignant neoplasm of 
brain was defined as C71 (ICD10) and 191 (ICD9). To increase 
statistical power, when appropriate we merged ICD codes 
into clinically relevant groups. We ran both individual cancers 
(combined ICD9 and ICD10 codes) and clinically relevant 
groups in our analysis.

Genetic data
Blood samples were collected when participants were recruited, 
and DNA extracted.27 DNA was then genotyped on either the 
Affymetrix UK BiLEVE Axiom array or the Affymetrix UK 
Biobank Axiom array (Santa Clara, California, USA). Imputation 
was based on a merged reference panel of ~90 million biallelic 
variants, from the 1000 Genomes Phase III28 and the UK10K29 
haplotype panels. Imputation was performed using IMPUTE2 as 
described,30 producing 488 295 genotyped participants.

Sample quality control
In addition to the standard quality control, we used further 
quality control steps to ensure robustness of our analyses. We 
excluded individuals based on (i) a mismatched value between 
self-reported and genetic sex (data-field: 22 001 and 31); (ii) 
level of genotype missingness of >0.05 (data-field: 22005); (iii) 
genetic relatedness factor with kinship coefficient of >0.0442; 
(iv) sex chromosome aneuploidy (data-field: 22019) and (v) 
outliers for heterozygosity or missing rate (data-field: 22027). 
We selected the European population based on self-reported 
ethnicity (data-field: 21000) by excluding individuals with 
non-white ethnic backgrounds. This left a study population of 
379 358 suitable genotyped individuals.

Identification of functional cancer gene SNPs
We identified genes confirmed to be involved in carcinogen-
esis from the COSMIC Cancer Gene Census (release V.88, 19 
March 2019), the current reference record of genes containing 
cancer driver mutations. We selected all SNPs annotated to these 
genes that have been significantly associated with differential 
cancer risk in the GWAS Catalog.31 Significant associations with 
cancer risk were defined as p values of <5E-08 cut-off. Finally, we 
specified that these SNPs were also associated with differential 
expression of the cancer gene in at least one expression quanti-
tative trait locus (eQTL) database. cis-eQTL databases used were 
GTEX, NESDA/NTR and PancanQTL.32–34

SNP quality control
SNPs were excluded if Hardy-Weinberg equilibrium had p values 
<1E−10, there was a minor allele frequency <0.0001, level of 
missingness >0.05 or an imputation score <0.8 (as per http://
www.​nealelab.​is/​uk-​biobank/).

Analysis
To carry out the SNP-wise analysis on all functional-CG SNPs, 
we used SNPTEST (V.2.5.4),35 and employed the frequentist 
approach under dominant, additive and recessive inheritance 
models, using sex, age and genetic principal components (1–20 
PCs) as covariates. Genetic PCs were included as covariates 
to control for hidden population structure. We controlled for 
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Figure 1  A circos plot indicating the functional SNPs that significantly associate with anthropometric traits and cancer risk. SNPs are located on the top 
half of the plot while cancer types and anthropometric traits are on the bottom half. Significant associations (Bonferroni corrected p values <1E−5) are shown 
as solid lines. Blue lines indicate significant associations with anthropometric traits. Red lines depict significant associations with differential cancer risk.

genotype uncertainty by implementing missing data likelihood 
score test. Within SNPTEST, we used the frequentist approach 
under an additive inheritance model. P values of SNP-wise asso-
ciation were adjusted by the stringent Bonferroni correction 
based on number of tested traits (28 anthropometric traits, 50 
cancer types) multiplied by the number of eSNPs (100). Signifi-
cant associations were defined as Bonferroni correction p values 
below the threshold of 1E−5.

Linkage and lead SNPs
R2 and D' coefficients were calculated to evaluate the degree of 
linkage disequilibrium (LD) between different loci using LDlink 
V.3.7 (D'>0.8, R2 >0.4 https://​ldlink.​nci.​nih.​gov/).36 Lead SNPs 
were defined as the SNPs that were most strongly associated 
with the traits in question for each locus.37 Due to the low value 
of R2 in some of the potential LD eSNPs, we carried out a leave-
one-out analysis, as described here.

►► For each lead SNP:
–– All participants from the cohort carrying the lead SNP 

were removed.
–– The association for each of the potential LD eSNPs 

was performed (eg, lead SNP rs78378222 carriers were 

removed while rs35850753 and rs8753 were tested for 
their associations with cancer and anthropometric traits).

–– Adjusted p values from the whole cohort association anal-
ysis with those obtained in this analysis were compared.

–– If the association of the potential LD eSNPs was not sig-
nificant after the removal of lead SNP carriers (p>0.05), 
we considered the eSNP in LD.

Results
Through integration and curation of the GWAS Catalog, eQTL 
databases and the Cancer Gene Census, we identified 100 SNPs 
which have been shown to associate with a differential risk of 
developing a total of 21 different cancer types, and show differ-
ential gene expression in at least one tissue type of (i) proto-
oncogenes (8 genes), (ii) oncogenic fusion proteins (8 genes), 
(iii) tumour suppressors (16 genes) and (iv) 15 genes that span 
two or more of these groups (online supplementary tables 1 and 
2). We define these SNPs as cancer eSNPs. In our analyses of 
the UK Biobank cohort, we found 13 cancer eSNPs associated 
with differences in anthropometric traits and 31 with differen-
tial cancer risk. Interestingly, seven of these SNPs overlapped, 
thus displaying some level of pleiotropy between cancer risk and 
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Figure 2  A gene map of the chromosomal regions containing the pleiotropic functional SNPs. Lead SNPs are highlighted with red arrowhead. Tables 
summarise salient genome-wide association study (GWAS) Catalog, expression quantitative trait loci (eQTL) and Caner Gene Census information for each 
variant.

anthropometric traits (figure 1, online supplementary tables 3 
and 4). These seven cancer eSNPs are found on three different 
chromosomes and in LD (see ‘Methods’ section) with at least one 
other identified cancer eSNP (figure 2). They have been found 
to be associated with differential expression levels of (i) Fanconi 
anaemia, complementation group A (FANCA) (rs1805007, 
rs258322), (ii) mitogen-activated protein kinase kinase kinase 1 
(MAP3K1: rs889312, rs1862626) and (iii) tumour suppressor 
p53, TP53 (rs78378222, rs35850753, rs8753). The two cancer 
eSNPs associated with FANCA expression reside in neighbouring 
genes; rs258322 is a non-coding variant within CDK10 and 
rs1805007 is a missense variant within MC1R. eSNPs associated 
with MAP3K1 expression are found in an intergenic region close 
to ZNF296 and MAP3K1 (5q11.2). In contrast, the two cancer 
eSNPs associated with differential TP53 expression are found in 
untranslated regions (UTRs) of the TP53 gene itself. rs78378222 
is found in the 3'-UTR of TP53, and rs35850753 is found in 
the 5'-UTR of the d133 isoform of TP53. The third TP53 
eSNP lies in the 3'-UTR of the neighbouring POLR2A gene. 
The cancer eSNPs showing the strongest association between 

anthropometric measures and cancer risk within their loci (lead 
cancer eSNP) were rs1805007 (FANCA, C>T, minor allele 
frequency in UK Biobank40=0.102), rs78378222 (TP53, A>C, 
MAF=0.012) and rs889312 (MAP3K1, C>A, MAF=0.284).

In the UK Biobank cohort, the minor allele of rs1805007 
(FANCA) was associated with an increased risk of melanoma 
(OR=1.63 (95% CI 1.52 to 1.75), adjusted p=2.57E−41) and 
non-melanomatous skin cancer (OR=1.36 (1.31 to 1.41), 
adjusted p=7.62E−63). The minor allele of rs78378222 
(TP53) was associated with an increased risk of brain malig-
nancy (OR=3.12 (2.22 to 4.37), adjusted p=1.43E−12) and 
non-melanomatous skin cancer (OR=1.46 (1.34 to 1.60), 
adjusted p=5.20E−18). Post hoc analysis of the histology in 
the carriers of rs78378222 revealed brain cancers tended to be 
gliomas (81%) and notably, 16% had no histology recorded. 
The minor allele of rs889312 (MAP3K1) was associated with 
an increased risk of breast cancer (OR=1.1 (1.07 to 1.13), 
adjusted p=2.82E−11). Of note, as we selected these SNPs due 
to their noted association with differential cancer suscepti-
bility in GWAS studies, our results provide an independent 
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Figure 3  Detailed association results for cancer eSNPs with anthropometric traits and cancer risk in the UK Biobank cohort. A heatmap (A) depicting the 
significance of the associations of the three lead pleiotropic SNPs with differential cancer risk. The colour scale represents the −log10 adjusted p: with the 
darkest red on the scale being 7.62E−63 and the lightest yellow being 1E−5. A radar plot (B) illustrating the level of significance of the associations of the 
three lead pleiotropic SNPs with anthropometric traits (radial axis: −log10 adjusted p). The darkest two pink categories are bioelectrical impedance measures 
(darkest being measures of fat). Traditional bedside anthropometric measures are in blush. SNPs related to FANCA (rs1805007†) and MAP3K1 (rs889312†) 
associate with standing height. The lead functional SNP related to TP53, rs78378222†, markedly associates with multiple measures of height and lean body 
mass, as well as basal metabolic rate. An error bar plot (C) of the beta coefficients (Y-axis) of the significant associations with anthropometric traits (X-axis). 
Error bars denote the 95% CI of the beta value. †Lead cancer eSNP.

validation of these associations (figure 3A, online supplemen-
tary table 5).

Considering the anthropometric measures, we identified an 
unexpectedly high level of pleiotropy, and very strong associa-
tion, between the two TP53 cancer eSNPs and three measures of 
height (standing height, sitting height and seated height), overall 
body weight, six of lean body mass (right arm fat-free mass, left 
arm fat-free mass, right leg fat-free mass, left leg fat-free mass, 
trunk fat-free mass and whole body fat-free mass), as well as 
basal metabolic rate, with p values as low as 7.54E−36 (figure 3B). 

In support of our findings, significant associations of two TP53 
cancer eSNPs (rs78378222, rs35850753) with the lean body 
mass measures (whole body fat-free mass and appendicular fat-
free mass) using similar methodologies, yet with different covari-
ates and different subpopulations of the UK Biobank cohort, 
have been presented in studies of different diseases, for instance, 
anorexia nervosa, providing further evidence for our results.38 39 
After quality control (QC) procedures, we identified 59 partici-
pants homozygous for the minor allele (increased cancer risk) of 
the lead TP53 eSNP (rs78378222), 9253 heterozygous for the 
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minor allele and 370 046 homozygous for the major allele. The 
minor allele carriers were on average taller and leaner, and had 
higher basal metabolic rate. The associations of these anthropo-
metric traits with the minor allele of the rs78378222 SNP were 
markedly more significant (almost threefold greater) and with 
greater effect sizes (up to almost fivefold greater) than for the 
other pleiotropic eSNPs (figure 3C, online supplementary table 
3).

The cancer eSNPs for TP53 showed strikingly strong asso-
ciations with 10 different anthropometric traits in the UK 
Biobank cohort. In contrast, the cancer eSNPs related to FANCA 
(rs1805007) and MAP3K1 (rs889312) were associated with 
standing height but not lean body mass measures. After QC, 
we identified 4271 participants homozygous for the minor 
allele of the lead FANCA eSNP, 68 956 heterozygous for the 
minor allele and 306 131 homozygous for the major allele. The 
minor allele for the lead MAP3K1 eSNP was found in 185 184 
participants (30 394 homozygous, 154 790 heterozygous). The 
FANCA eSNP (rs1805007) associated with standing height 
only (beta=−0.02±0.002, adjusted p=9.20E−15), while the 
MAP3K1 eSNP (rs889312) associated with broader range of 
height measures (standing height beta=−0.02±0.004, adjusted 
p=6.11E−14 and sitting height beta=−0.01±0.001, adjusted 
p=3.34E−9). In order to further validate the significance and 
magnitude of these associations, we applied a different algo-
rithm, PLINK,40 to the lead cancer eSNPs. As in the initial anal-
ysis, we included the covariates sex, age and genetic principal 
components. Importantly, the PLINK analysis confirmed the 
observed associations and yielded similar adjusted p and beta 
values for the lead cancer eSNPs (online supplementary tables 
6‒8). In addition, we sought validation for these associations 
with standing height in the independent GIANT consortium 
dataset. Here, we examined all lead and linked SNPs for each 
pleiotropic eSNP in the results of the meta-analysis conducted 
by Wood et al.41 We were able to identify eSNPs for MAP3K1 
(rs889312, rs1862626) and FANCA (rs1805007, rs258322), 
but none for TP53, presumably due to the low minor allele 
frequency. Three of these eSNPs significantly associated with 
height in the meta-analysis by Wood et al: (i) rs258322 FANCA 
eQTL (p=1.5E−09, beta=−0.029), (ii) rs889312 MAP3K1 
eQTL (p=2.3E−08, beta=−0.018) and (iii) rs1862626 MAP3K1 
eQTL (p=3.4E−08, beta=−0.018). Interestingly, both linked 
MAP3K1 eSNPs and a FANCA eSNP passed the significance 
threshold and, reassuringly, the directions of the allelic associa-
tions are consistent with our findings. The other FANCA eSNP 
fell just short of the GWAS significance threshold (rs1805007, 
4.3E−04, beta=−0.024). Together, all these data clearly link 
eSNPs for MAP3K1 and FANCA with height.

Discussion
This is the first comprehensive study providing evidence that 
functional common genetic variants in oncogenes and tumour 
suppressor genes can associate with both anthropometric traits 
and cancer risk in the general European population, and in the 
same cohort. SNPs exhibiting these pleiotropic associations in 
our study are found in three different loci: (i) FANCA (two SNPs 
in LD), (ii) MAP3K1 (two SNPs in LD) and (iii) TP53 (three 
SNPs in LD). Previous work has noted, rs10061757, a SNP in 
moderate LD (R2=0.6, D’=1) with the eSNPs for MAP3K1 
(rs889312, rs1862626) has previously been shown to associate 
with height in the UK Biobank cohort.42 Furthermore, observa-
tions from mouse models designed to alter signalling pathways 
involving FANCA and TP53, suggested that such associations 

with anthropometric traits in humans might be possible. For 
example, targeted disruption of exons of the FANCA gene in 
mice results in altered anthropometric traits, including growth 
retardation, as well as increased cancer risk.43 44 Furthermore, 
mouse models of TP53 mutations have clearly demonstrated 
that reduction of p53 activity can result in increased cancer 
risk, altered metabolism and influence obesity in a complex and 
signal-dependent manner.14 15

The strongest associations we observed with both anthropo-
metric traits and cancer risk are loci related to TP53. p53 is a key 
regulator of a number of cellular activities which prevent tumouri-
genesis, including maintaining genomic stability, controlling cell 
growth and metabolism.19 TP53 is the most frequently mutated 
gene in human cancers.13 Moreover, in all families with similar 
TP53 mutations in their heritable genomes, a dramatic increase 
in cancer risk is observed (Li-Fraumeni syndrome (LFS)).12 In 
recent studies, it has been shown that patients with LFS have an 
increased risk of developing cancer and an increased capacity 
for oxidative phosphorylation,45 providing a potential link with 
anthropometric traits and basal metabolic rate. Furthermore, the 
well-tolerated antidiabetic drug metformin, which is thought to 
inhibit mitochondrial complex 1, increases cancer-free survival 
in a mouse model of LFS and reduces proliferation in cancer cell 
lines.46 47 Metformin is now being trialled in patients with LFS 
to hopefully provide a preventative option for these high-risk 
patients (​ClinicalTrials.​gov number: NCT01981525). Based on 
the potential link with oxidative phosphorylation, this interven-
tion might also be trialled in those carrying the minor allele of 
the TP53 cancer eSNP (rs78378222).

The TP53 mutations found in LFS are rare in the general popu-
lation. However, here we show that relatively frequent SNPs 
related to p53 also affect cancer risk and anthropometric traits 
in the same cohort. Notably, the minor allele of an SNP in the 
polyadenylation signal of p53 (rs78378222[C]) which is found 
in approximately 1% of populations of European descent, has 
been shown to impair 3'-end processing of p53 mRNA, resulting 
in a reduction of p53 protein and an increased risk for glioma 
and basal cell carcinoma as well as affecting head circumference 
and intracranial volume.48 49 Here, we validate these cancer asso-
ciations in a separate cohort (non-melanomatous skin cancer, 
OR=1.46 (95% CI 1.34 to 1.60), adjusted p=5.20E−18, brain 
malignancy, OR=3.12 (2.23 to 4.37), adjusted p=1.43E−12), 
and also show that carriers of this allele tend to be taller, leaner 
and have a higher basal metabolic rate (standing height, adjusted 
p=2.18E−24, beta=0.073±0.007, whole body fat-free mass, 
adjusted p=8.34E−37, beta=0.073±0.005, basal metabolic 
rate, adjusted p=1.13E−31, beta=0.076±0.006). Of these, the 
association between rs78378222 and lean body mass confirms 
previous results that this SNP has the second-largest positive 
effect size on whole body fat-free mass and fifth largest positive 
effect size on appendicular fat-free mass in a population aged 
60–74 years.3839 Indeed in our analysis of all the cancer eSNPs, 
the rs78378222 minor allele has the largest effect size on fat-free 
mass measures and also has the largest effect size on standing, 
seated and sitting height as well as basal metabolic rate (online 
supplementary table 3). The next two highest ranking SNPs in 
fat-free mass, height measures and basal metabolic rate are the 
other two TP53 eSNPs (rs35850753, rs8753).

Prior to this study, associations between increased height 
and non-melanomatous skin cancer/brain malignancy had been 
established, but mechanistic and genetic explanations were 
lacking.2 50 Our study proves the concept that functional loci in 
well-characterised tumour suppressors and oncogenes alter both 
cancer risk and anthropometric traits. Of particular interest, we 
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identify a strong, new, association between the rs78378222[C] 
SNP in the polyadenylation site of p53 with both increased risk 
for developing non-melanomatous skin cancer/brain malignancy 
and increased height, body weight, lean body mass and basal 
metabolic rate. This offers a novel genetic link between anthro-
pometric traits and cancer risk.
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