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ABSTRACT Here, we describe genome sequences of 17 Pseudomonas aeruginosa
phages, including therapeutic candidates. They belong to the families Myoviridae,
Podoviridae, and Siphoviridae and six different genera. The genomes ranged in size
from 42,788 to 88,805 bp, with G+C contents of 52.5% to 64.3% and numbers of
coding sequences from 58 to 179.

hages are attracting increasing attention as alternative antibacterial agents due to

the wide spread of multidrug-resistant (MDR) infections. Phages have been suc-
cessfully used against Pseudomonas aeruginosa infections in humans as expanded-
access treatment and even in controlled clinical trials but are preferable to use as
phage cocktails to cover multiple clinical isolates (1). To develop broad host range
therapeutic cocktails against MDR P. aeruginosa, we have recently isolated 10 lytic
phages and reported their whole genomes (2). Here, we describe the complete ge-
nome sequences of 17 additional diverse P. aeruginosa phages (Table 1), of which
many also have potential for use in durable fixed therapeutic cocktails.

The main source of these novel phages was raw sewage collected in Washington, DC,
except for EPa38 and EPa39 (from lake water in Frederick County, MD), EPa40 (from soil in
Montgomery County, MD), and EPa41 (from chicken feces collected in Montgomery County).
Several diverse P. aeruginosa strains were used for enrichment (Table 1). Each phage was puri-
fied by three rounds of growth from individual plaques, propagated on the enrichment strain
in broth, and concentrated by high-speed centrifugation (3). After the removal of host RNA
and DNA from lysates using RNase A and DNase, phage DNA was purified by proteinase K
and SDS treatment, phenol-chloroform extraction, and precipitation with salt and ethanol (3).
Sequencing libraries were prepared using a Nextera XT DNA library preparation kit (lllumina,
San Diego, CA). Validation and quantification of sequencing libraries were done with a
TapeStation D5000 kit (Agilent Technologies, Inc,, Santa Clara, CA) and an Invitrogen Qubit
double-stranded DNA (dsDNA) broad-range (BR) assay kit (Thermo Fisher Scientific, Waltham,
MA). The libraries were purified using AMPure XP beads (Beckman Coulter Diagnostics,
Brea, CA) and sequenced with a 600-cycle MiSeq reagent kit v3 on an lllumina MiSeq instru-
ment that produced 300-bp paired-end reads. FastQC 0.11.5 (https://www.biocinformatics
babraham.ac.uk/projects/fastqc/) was used for read quality control. Raw reads (Table 1) were
trimmed using Geneious Prime 2019.2.3 with default parameters, with the exception of
EPa18 reads which were trimmed with fastp using default parameters (4), and phage
genomes were de novo assembled using PATRIC genome assembly service (5), also with
default parameters. Phage genomes were annotated on the RAST server (6), and nucleic acid
sequence similarity searches were carried out using default parameters in BLASTn (7).

Phage genomes varied in length from 42,788 (EPa40) to 88,805 nucleotides (EPa26), with
G+C contents ranging between 52.5% (EPa4) and 64.3% (EPa38). The genomes contained
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58 to 179 coding sequences (Table 1). The phages were classified into the families
Mpyoviridae (genera Pbunavirus and Nankokuvirus), Podoviridae (genera Bruynoghevirus and
Hollowayvirus), and Siphoviridae (genera Septimatrevirus, and Yuavirus) based on DNA
sequence identity to characterize phages using a threshold of >50% for placement in the
same genus (8). Pbunavirus phages comprised the most numerous group, including nine
representatives, namely, EPa7, EPa10, EPa12, EPa13, EPa14, EPa20, EPa21, EPa25, and EPa39.
BLASTn and BLASTp analyses showed no significant similarity to genes and proteins related
to the lysogenic life style or gene transfer, including integrases, recombinases, transposases,
excisionases, and repressors of the lytic cycle, or any bacterial genes or proteins. A similar
pattern was found for Nankokuvirus phages EPa16, EPa18, and EPa26. Such a strictly lytic na-
ture is typical of myophages from the genera Pbunavirus (2, 9) and Nankokuvirus (2, 10) that
makes them safe and potent therapeutic phages.

Only two phages were the members of the family Podoviridae, namely, EPa4 and
EPa33. BLASTn sequence comparisons showed that phage EPa4, like EPa1 and EPa2 iso-
lated in our laboratory earlier (2), belongs to the genus Bruynoghevirus and shows 96.5%
identity to lytic phage LUZ24 (GenBank accession number AM910650) (11). Genomic
analysis showed that EPa4, similar to EPa1, EPa2, and LUZ24, lacks genes typical for tem-
perate phages, suggesting that they are strictly virulent and potential therapeutic candi-
dates. As opposed to EPa4, podophage EPa33 belonged to the genus Hollowayvirus,
which includes a large number of temperate phages similar to F116, the generalized
transducing phage (12). BLASTn analysis revealed multiple extensive regions of EPa33
genome identity to P. aeruginosa chromosomal DNA (e.g., GenBank accession numbers
CP030075, CP039988, and CP015377, and many others), suggesting that EPa33 is also a
temperate phage and potential transducer and cannot be used for therapy.

Three Siphoviridae phages included the members of two different genera. EPa40 and
EPa41 (genus Septimatrevirus) showed no signs of temperate phages and thus appear to be
obligately lytic phages and suitable candidates for phage therapy, as previously shown for
this group by other authors (13). Phage EPa38 (genus Yuavirus), like EPa5 and EPa43 (genus
Abidjanvirus) isolated by our team earlier (2), encoded putative proteins designated by others
as an integrase and a repressor (ORF22 and ORF21 in the Ab18 genome, GenBank accession
number LN610577) (14). Our previous analysis identified only primase-related domains and
no integrase-associated domains in the ORF22 product in EPa5, EPa43, and other
Abidjanvirus phages (2), which also applies to EPa38 and other Yuavirus phages.

Therefore, we report the whole-genome sequences of 17 P. aeruginosa phages that
belong to 3 families and 6 genera. Fifteen of them (12 myophages, as well as
Bruynoghevirus phage EPa4 and Septimatrevirus phages EPa40 and EPa41) appear to be
strictly virulent phages and safe therapeutic candidates, while more research is needed
to clear a siphophage EPa38 for therapeutic use, and EPa33 is a temperate and poten-
tially transducing phage unsuitable as a therapeutic agent.

Data availability. The 17 complete phage genome sequences were deposited in
GenBank and the NCBI Sequence Read Archive (SRA) under the accession numbers
listed in Table 1.
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