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ABSTRACT The genome sequences of 5 bacterial strains isolated from apple flower
stigmas are reported. The strains represent species of Curtobacterium, Pantoea, and
Erwinia and two species of Pseudomonas. These data will provide information for
future taxonomic studies and information for investigating the metabolic and func-
tional characteristics of apple flower-colonizing bacteria.

The five bacterial strains, Curtobacterium sp. 24E2, Erwinia sp. 18B1, Pantoea sp. 1B4,
Pseudomonas sp. 15A4, and Pseudomonas sp. 1079, were isolated from apple flower

stigma samples collected on the apple cultivar ‘Early Macoun’ (Malus x domestica
NY75414-1) planted at Lockwood Farm in Hamden, CT (41.406°N, 72.906°W) (1). Our
previous data showed that Enterobacteriaceae and Pseudomonadaceae are the two pre-
dominant families of bacteria on apple stigma (2, 3). Within the Enterobacteriaceae, the
genera Pantoea and Erwinia were predominant, and within the Pseudomonadaceae,
Pseudomonas was the principal genus (3). The genus Curtobacterium, belonging to the
phylum Actinobacteria, was much less abundant in the microbiome and was investi-
gated as a representative of the apple stigma “rare biosphere” (3). These four strains
were identified in our previous study by 16S rRNA gene comparisons (1). Acquisition of
the full-genome sequence information of these strains will advance future investiga-
tions concerning the metabolic and functional requirements of the flower microbiome.

The stigma portion of an apple flower was dissected and immersed into 200ml of
0.5� phosphate-buffered saline (PBS) in a sterile 1.5-ml microcentrifuge tube. The
stigma sample was then sonicated for 5 min, followed by vortexing for 30 s. Then, 5 ml
of PBS was spread onto a lysogeny broth (LB) agar plate to collect stigma resident bac-
teria (1). A single colony of each strain was inoculated into LB broth and incubated at
28°C overnight with shaking. Genomic DNA was extracted using the E.Z.N.A. (Omega,
GA, USA) bacterial DNA kit according to the manufacturer’s instructions. The quality
and quantity of isolated DNA were determined using the high-sensitivity D5000
ScreenTape system (Agilent Technologies, Santa Clara, CA) and the QuBit double-
stranded DNA (dsDNA) broad-range assay (Thermo Fisher Scientific, Waltham, MA),
respectively. For Nanopore sequencing, the ligation sequencing kit (SQK-LSK109;
Oxford Nanopore Technologies) was used with ;500 ng of input DNA for library con-
struction. The library for Pseudomonas sp. 1079 was sequenced with a Flongle adaptor,
and the other four strains were loaded together into an R9.4 flow cell with specific
barcodes on the Oxford Nanopore MinION device. All base calling was performed with
the “high-accuracy” model as integrated in MInKNOW v3.1.13 software.

Quality control of raw reads was performed on the raw sequencing data using
LongQC (4). Genome assembly was performed using Flye, which is a long-read de novo
genome assembly pipeline (5). Polishing was performed using the Burrows-Wheeler
Aligner (BWA) v0.7.17 (6) and Racon v1.4.19 (7) with parameters specific for Nanopore
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read alignment and mapping. The polished output was further processed with Medaka
v1.0.3 (https://github.com/nanoporetech/medaka). Quality assessment was deter-
mined with QUAST (8). The annotation was performed with the NCBI Prokaryotic
Genome Annotation Pipeline v4.12 (PGAP) (9), with completeness and contamination
checked using CheckM (10). The genome information of these five strains is listed in
Table 1. The closest phylogenetic neighbors of these strains were identified by whole-
genome average nucleotide identity (ANI) using FastANI v1.32 and 16S rRNA gene
homology using blastn with the NCBI database. Default parameters were used for all
software unless otherwise specified.

Data availability. The data of the raw reads and complete genome sequences of
these five strains have been deposited in the SRA and GenBank (Table 1), respectively,
under the BioProject accession number PRJNA693803.
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