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ABSTRACT This study reports the genome sequence of an isolated African swine
fever (ASF) virus (VNUA-ASFV-05L1/HaNam) obtained at the fourth passage on pul-
monary alveolar macrophages. The virus was isolated during a typical acute ASF out-
break in pigs in a northern province of Vietnam in 2020.

Spreading to nearly all major swine-producing countries, African swine fever (ASF) is
currently considered one of the most important transboundary diseases of pigs (1).

The etiological agent, ASF virus (ASFV), belongs to the Asfarviridae family, Asfivirus genus,
and possesses an “open” pangenome (2, 3). Of the 24 ASFV genotypes (I to XXIV) known
to date (4), only genotypes I and II have been detected outside Africa (5). The genomic
complexity of ASFV is reflected by (i) a very large DNA genome (averaging 186,817bp),
(ii) a variable length from 170,101bp to 193,886bp, and (iii) the presence of hundreds of
open reading frames, which are classified as core genes or accessory genes (2, 3). As a
result, continuous genomic characterization of ASFV genomes is essential for diagnostic,
epidemiological, and vaccine development purposes.

In this study, we isolated a virulent strain (VNUA-ASFV-05L1/HaNam) from the
spleen of a fattening pig that had succumbed to an acute infection. The sample was
taken from a small-scale farm of a farrow-to-finish production system located in a
northern province of Vietnam (Ly Nhan District, Ha Nam Province). The spleen homog-
enate was filtered through a 0.45-mmmembrane and inoculated in pulmonary alveolar
macrophages (PAMs). The infected PAM culture showed specific cytopathic effect at 48
h postinoculation, as characterized by hemadsorption dose (HAD). At the fourth pas-
sage, the virus titer was 7.14 log10 50% HAD (HAD50)/ml at 72 h postinfection. The virus
was then semipurified and concentrated using an Amicon Ultra-15 centrifugal filter
unit (UFC901024; Millipore). Total DNA was extracted with the QIAamp DNA minikit
(51304; Qiagen). The extracted DNA was checked for integrity by gel electrophoresis
and measured as at least 50 ng/ml.

The next-generation sequencing was conducted by Apical Scientific Sdn Bhd (Selangor,
Malaysia). The library was constructed with the NEBNext Ultra DNA library preparation kit,
and the sequencing platform was an Illumina NovaSeq 150PE system. Primer sequences
were removed from raw Illumina reads using BBDuk of the BBTools package (https://jgi.doe
.gov/data-and-tools/bbtools). Quality control reads were assembled de novo using SPAdes
(6) and polished using Pilon v1.23 (7), implemented in Unicycler (8). All contigs were sub-
jected to BLASTN searches against the NCBI nucleotide database. Open reading frames were
predicted using Prodigal (9) and annotated using Prokka v1.14.6 (10). The single contig
(VNUA-ASFV-05L1/HaNam) with a BLASTN similarity to an ASFV was aligned with a number
of reference genomes using MAFFT v7.450 (11). The pairwise comparison of average nucleo-
tide identity (ANI) between ASFV genomes was performed by ANI Calculator (12) (https://
www.ezbiocloud.net/tools/ani). Other tools for genomic visualization and classification of

Citation Truong QL, Nguyen TL, Nguyen TH,
Shi J, Vu HLX, Lai TLH, Nguyen VG. 2021.
Genome sequence of a virulent African swine
fever virus isolated in 2020 from a domestic pig
in northern Vietnam. Microbiol Resour
Announc 10:e00193-21. https://doi.org/10
.1128/MRA.00193-21.

Editor Simon Roux, DOE Joint Genome
Institute

Copyright © 2021 Truong et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Thi Lan Nguyen,
nguyenlan@vnua.edu.vn, or Van Giap Nguyen,
nvgiap@vnua.edu.vn.

Received 15 March 2021
Accepted 17 April 2021
Published 13 May 2021

Volume 10 Issue 19 e00193-21 mra.asm.org 1

GENOME SEQUENCES

https://orcid.org/0000-0001-5250-1825
https://jgi.doe.gov/data-and-tools/bbtools
https://jgi.doe.gov/data-and-tools/bbtools
https://www.ezbiocloud.net/tools/ani
https://www.ezbiocloud.net/tools/ani
https://doi.org/10.1128/MRA.00193-21
https://doi.org/10.1128/MRA.00193-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mra.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.00193-21&domain=pdf&date_stamp=2021-5-13


multigene family (MGF) proteins in ASFV were geneCo (13) and MGFC (14), respectively. All
bioinformatic tools were run with default parameter settings.

The total output of the sequencer was 10,353,104 reads, and the total number of
reads that mapped to the reference genome (GenBank accession number FR682468)
was 461,934. The reads were able to yield a longest single linear contig of 186,237 nucleo-
tides, which was confirmed to be ASFV based on the BLAST result (query coverage, 100%;
percent identity, 99.89% to 99.99%). The 186,237-nucleotide genome of VNUA-ASFV-05L1/
HaNam had a mean GC content of 38.47% and was predicted to contain 158 protein-coding
genes. Compared to several recently reported p72 genotype II strains, the genome-wide
sequence identity of VNUA-ASFV-05L1/HaNam was 99.95% with respect to Georgia 2007/1
(FR682468) and 99.98% with respect to InnerMongolia-AES01 (MK940252). As a molecular
marker distinguishing between closely related ASFVs, the tandem repeat sequence
(TATATAGGAA) between the I73R and I329L genes of VNUA-ASFV-05L1/HaNam was classi-
fied as variant II (15). In terms of genomic organization, VNUA-ASFV-05L1/HaNam had all
86 core genes reported previously (3). VNUA-ASFV-05L1/HaNam contained all five MGFs
(MGF-100, MGF-110, MGF-300, MGF-360, and MGF-505). The VNUA-ASFV-05L1/HaNam
MGFs were characterized by a typical organization of (i) location at both the 59 and 39
ends and (ii) distribution along the plus and minus strands of the ASFV genome (14).
Additionally, among 31 MGF proteins (14), MGF-110E, MGF-110H, and MGF-110I were not
detected in the genome of VNUA-ASFV-05L1/HaNam.

Data availability. This genome sequence has been deposited in GenBank under
the accession number MW465755. The raw reads are available in the SRA under the
accession number SRX10287451.
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