Skip to main content
. 2021 May 24;208:106193. doi: 10.1016/j.cmpb.2021.106193

Algorithm 1.

Progressive Back-Projection Network for COVID-CT super-resolution.

Require: Learning ratel, batch sizem, and iteration epochE
Input: The training set{ILRi,IHRi}i=1N
Output: super-resolution reconstruction imageISR
Ensure: Parameterθ
Initialization: θis initialized randomly
fore=1,…,Edo
n=1
whilenN − mdo
{Linitiali}i=nn+m=Cinitial*{ILRi}i=nn+m
The first stage
{Lbpi}i=nn+m=fbp({Linitiali}i=nn+m)
{Ldeepi}i=nn+m=fdeep({Lbpi}i=nn+m)
{Lupi}i=nn+m=fup({Linitiali}i=nn+m+Cmiddle*{Ldeepi}i=nn+m)
The second stage
{Lbpi}i=nn+m=fbp({Lupi}i=nn+m)
{Ldeepi}i=nn+m=fdeep({Lbpi}i=nn+m)
{Lupi}i=nn+m=fup({Lupi}i=nn+m+Cmiddle*{Ldeepi}i=nn+m)
{ISRi}i=nn+m=Cres*{Lupi}i=nn+m
L(θ)=1mi=nn+mISRiIHRi1
θ = optimizer(L(θ),l), update parameter with Adam optimizer
n = n + m
end while
end for