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Purpose: Biomarkers for disease specific survival (DSS) in early stage melanoma are needed to 

select patients for adjuvant immunotherapy and accelerate clinical trial design. We present a 

pathology-based computational method using a deep neural network architecture for DSS 

prediction.

Experimental design: The model was trained on 108 patients from four institutions and tested 

on 104 patients from Yale School of Medicine (YSM). A receiver operating characteristic (ROC) 

curve was generated based on vote aggregation of individual image sequences, an optimized cutoff 

was selected, and the computational model was tested on a third independent population of 51 

patients from Geisinger Health Systems (GHS).

Results: Area under the curve (AUC) in the YSM patients was 0.905 (p<0.0001). AUC in the 

GHS patients was 0.880 (p<0.0001). Using the cutoff selected in the YSM cohort, the 

computational model predicted DSS in the GHS cohort based on Kaplan-Meier (KM) analysis 

(p<0.0001).

Conclusions: The novel method presented is applicable to digital images, obviating the need for 

sample shipment and manipulation and representing a practical advance over current genetic and 

IHC-based methods.
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Introduction

There is an urgent need to define prognostic biomarkers in early stage melanoma. This is 

because, while effective adjuvant therapies to prevent recurrence and death are available, 

they incur significant toxicity and are very costly.1 Toxicity is tolerable in the advanced 

disease setting, but it is much less acceptable for otherwise healthy patients who have high 

probability of living a normal lifespan with good functional status if left untreated. 

Moreover, treatment lasts one year and costs run over $20,000 per patient per month.2 Given 

that death rates from melanoma at ten years range from 2%−8% for stage I disease, 12%

−25% for stage II disease, and 12%−40% for stage III disease, treating all early stage 

melanoma patients would result in significant over-treatment and resource expenditure.3,4

The current clinical criterion for evaluating risk of recurrence is the American Joint 

Committee on Cancer (AJCC) staging system.3,4 The AJCC staging system includes 

multiple parameters including depth of the primary tumor, ulceration, mitotic rate, and local 

or nodal metastasis. This system is highly useful but has several limitations. First, it does not 

account for the relative risk conferred by tumor depth and lymph node spread in that a 

deeper primary is deadlier than a small nodal metastasis, such that a stage IIIA patient has a 

better survival rate than does a stage IIC patient. Second, depth can be difficult to estimate 

accurately in some patients depending on technique, for example if a shave biopsy is 

performed or the original lesion is incompletely excised.4 Third, complete staging requires 

examination of lymph nodes, a procedure that is invasive and confers no survival benefit.5 In 
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order to avoid surgery, patients are therefore in some situations incompletely staged. More 

precise and broadly applicable staging systems are needed to supplement AJCC staging.4

Traditionally, characterization of genomic and proteomic features of primary melanoma 

tumors has been challenging because the very small size of these tumors necessitates that the 

entire specimen be formalin fixed and paraffin embedded (FFPE) in almost all circumstances 

to allow for review by an expert pathologist. Fortunately, newer technologies including the 

NanoString assay and specialized RNA sequencing methods coupled with quantitative 

multiplexed immune-fluorescence (QIF) assays have allowed for quantification of RNA 

transcripts and phenotyping of immune cells within the tumor micro-environment. In 

melanoma, our group and others have developed and validated genomic signatures, and, 

most recently, a QIF-based biomarker consisting of the ratio of CD8+ T cells to CD68+ 

macrophages in tumor stroma.6–10 While these methods show promise, application can be 

challenging due to complex analysis methods not typically in use in clinical laboratories.

Meanwhile, the application of artificial intelligence (AI) to health care promises to 

substantially alter how medical care is delivered in the coming decades. While initial 

applications were primarily outside of medicine, for example in the well-known automated 

identification of images of cats, machine learning has been successfully applied in multiple 

health care contexts including interpretation of imaging data for segmentation of anatomical 

features from MRI data and diagnosis of skin lesions.11 Most recently, machine learning has 

been applied to pathology imaging, notably to the identification of lymph node metastasis in 

breast cancer.12 Developing prognostic biomarkers represents a unique challenge because 

pathologists generally diagnose rather than prognosticate, as prognostication generally 

includes multiple clinical parameters and is most frequently performed as a collaborative 

effort between pathologists and clinicians who have interactions with patients in an office 

setting.

Deep learning, a subset of machine learning, allows the computer to select ways of 

identifying patterns correlating with a defined outcome. Convolutional neural networks 

(CNN) are a specific type of deep learning well suited to image analysis tasks that require 

prediction based on smaller image patches.13,14 Deep learning techniques and CNN in 

particular have been applied to more complex problems in pathology such as identification 

of tumor infiltrating lymphocytes (TILs) and, more broadly, characterization of the tumor 

immune microenvironment.15–18 Further, deep learning promises to offer rapid and efficient 

methods to identify tumor subsets, correctly “grade” tumors based on cellular atypia, and 

“predict” gene mutations.19–22

We propose a deep learning method to predict visceral recurrence and DSS in patients with 

primary melanoma. This method was developed on an image base from 108 patients and 

applied to two independent validation sets of 104 and 51 patients respectively, yielding AUC 

values of 0.905 and 0.880. A cutoff selected based on the first validation set was tested in the 

second validation set and predicted DSS based on Kaplan Meier analysis (p<0.0001). This 

method is novel and rapidly applicable to standard clinical workflows and could be tested in 

the prospective setting for application to patient care.
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Materials and Methods

Patients, clinical information, and imaging.

This study was approved by Columbia University Irving Medical Center’s (CUIMC) 

Institutional Review Board (IRB). This study was determined by CUIMC’s IRB to not 

require written consent from subjects, as it is retrospective and involves minimal risk. This 

study was conducted in accordance with the ethical guidelines outlined by the Declaration of 

Helsinki. The training cohort was selected based on availability of H&E slides and clinical 

information. Patients from databases previously generated for the development and 

validation of melanoma immune profile (MIP) with at least one available H&E slide and 24 

months of clinical follow up for patients who did not die of melanoma during follow up 

were included. Full patient demographics of the training cohort are provided in Table 1.8,9 

Two validation cohorts were tested, the first consisting of 104 patients from Yale School of 

Medicine (YSM) described in Table 2, and the second including 51 patients from Geisinger 

Health Systems (GHS) described in Table 3. All slides were reviewed by a pathologist to 

confirm melanoma content. Slides were scanned using a Leica SCN 400 system with high 

throughput 384 slide autoloader (SL801) and tiff format files were generated. A separate 

image was generated for separate pieces of tissue on each slide as is frequently the case for 

primary melanomas due to tissue sectioning methods. Images were reviewed for quality and 

excluded due to excessive melanin obscuring cellular features or poor tissue quality 

(supplementary table S1).

Binary classifier selection.

To generate a binary classifier for training, patients in the training set were characterized 

based on whether they developed distant metastatic recurrence (DMR). The DMR endpoint 

was selected because death rates from melanoma have decreased over the past decade due to 

fundamental advances in immunotherapy such that, fortunately, patients diagnosed today are 

more likely to survive.23 Thus, over time DMR is a more consistent reflection of biology 

than is survival. Effective adjuvant therapy, however was not introduced into general practice 

until 2017 with the FDA approval of nivolumab for resected stage III melanoma.24 

Therefore, the time to DMR has remained consistent until very recently. DMR is defined as 

recurrence beyond the local lymph node basin. Local recurrence, in contrast, comprises 

growth of residual disease at the resection margin and/or local metastatic recurrence within 

the anatomic region drained by the local lymph node basin or within the local lymph nodes.
25 Patients with isolated local recurrence are at significantly lower risk of dying of 

melanoma and remain in the stage III category26–28 Patients who only developed local 

recurrence over the course of follow up were characterized into the favorable group provided 

they had 24 months of recurrence-free clinical follow up after the local recurrence. Thus, the 

label of DMR was designed to distinguish patients with aggressive melanoma from those at 

low risk of death from disease.

Identification of Regions of Interest.

In order to isolate tumor and immune regions for RNN sequence generation, we used 

QuPath digital pathology software22 to build modules for nuclear segmentation and cell 

classification. Nuclear segmentation was performed using Watershed cell detection based on 
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segmentation parameters derived from images randomly selected from 9 subjects. Using the 

cell segmentation, we trained a random forest classifier to differentiate the nuclei into three 

classes (immune cells, tumor cells, and other, which included non-lymphocyte stromal 

tissue, areas obscured by melanin, or non-cell objects) based on 33 morphological features 

(supplementary table S2). The slide was divided into tiles, and thresholds were applied to 

each tile to determine the presence of relevant cell types. Tile size was empirically fixed to 

the width of 5 patches. Tiles with more than 65% of raw image pixels as white space 

background (pixel intensity value above 217) or 80% of segmented objects within the tile 

area classified as “other” were immediately discarded. Then, points on the slide were 

randomly sampled from a 2D symmetric Gaussian distribution centered on the tile with a 

standard deviation equal to 3 times the patch width. A 500×500 patch centered on the 

randomly sampled point was analyzed, applying thresholds for maximum portion of white 

space background, minimum number of segmented tumor or immune cell nuclei, and 

maximum portion of segmented objects classified as “other.” If the patch area passed the 

empirically determined thresholds, the downsampled area was added to the image sequence. 

Otherwise, the patch was discarded and a new point was randomly sampled. A maximum of 

six sequences (of length 20 each) were generated from each tile and if a sequence could not 

be generated after sampling 10,000 points, then the tile was discarded.

Feature design.

Morphology features measure the ratio of nuclear size in tumor and immune cells within the 

tile area, and the clustering features measure the ratio of cell density and cluster size based 

on Delaunay triangulation. The optimal parameters for the feature generation were selected 

using grid search of Delaunay pixel radius and minimum cluster size (Supplementary figure 

S1). The optimal features were then computed locally for every sequence based on 

information computed from all valid tiles immediately adjacent to the tile of the sequence 

being generated.

Analysis pipeline.

We designed a deep neural network (DNN) architecture consisting of a convolutional neural 

network (CNN) and a recurrent neural network (RNN). To avoid overfitting, we used the 

dropout procedure, which randomly sets a specified percentage of input units in every layer 

to zero and has been shown to outperform other regularization methods.29 In all our 

experiments, we empirically set the dropout rate to 0.7 and learning rate of 0.005. The CNN 

input consisted of a 500×500×3 pixel patch from the raw H&E image at 40x magnification, 

downsampled to 100×100×3 pixels. The CNN output for each patch served as the RNN cell 

input. We fixed the sequence length to 20 image patches, and every sequence was 

normalized before input by subtracting the mean pixel intensity values and dividing by the 

standard deviation. The output of the RNN was appended with the features and processed 

through a fully connected layer to generate the final result.

Vote aggregation.

We aggregated the classification output from individual sequences across all images for a 

patient. Every sequence equally contributed to the final decision. The final decision for each 
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patient’s recurrence was made by computing the class (favorable vs. unfavorable) to which 

the majority of the sequences voted such that the cutoff was 0.5.

Statistics.

Statistical analysis was completed using XLSTAT Version 2019.1.3 on Excel Version 

15.0.5127 and GraphPad Prism Version 8.0.1. Statistical significance was defined as P≤0.05. 

Receiver Operating Characteristic (ROC) curve analyses and standard univariable and 

multivariable Cox proportional hazards models were generated using the “Survival 

Analysis” feature on XLSTAT. Kaplan Meier (KM) curves were generated on GraphPad 

Prism and P values were calculated using Log-rank (Mantel-Cox) test.

Results

Training Population.

Patients from previously generated databases used for prior work in developing Melanoma 

Immune Profile (MIP) were included in the training set.8–10 In addition, patients with stage I 

disease for whom clinical data was available were included to broaden applicability. Images 

from archival slides with available clinical information for 119 patients were screened. 10 

patients were excluded because of excessive melanin obscuring cellular features and 1 

patient was excluded because the tissue sample was torn. Demographics for the training 

population are shown in Table 1. All living patients had at least 24 months of follow up. As 

shown, patients were 22.2% stage III, 57.4% stage II and 20.4% stage I. 80 patients were 

from Columbia University Irving Medical Center (CUIMC), 14 patients from New York 

University Medical Center (NYUMC), 6 patients from Geisinger Health Systems (GHS), 

and 8 patients from the Icahn School of Medicine at Mount Sinai (ISMMS). Patients were 

67.6% male and 31.5% female, with one patient of unknown sex. Median age was 67 years. 

Median follow up was 58 months. Univariable cox analysis shows that depth, ulceration, and 

stage correlated significantly with DSS showing that the training set was generally 

representative of melanoma populations in the United States (supplementary table S3).

Method development and training.

Following selection of the labeled dataset for binary classification, we developed an 

automated data processing pipeline (Figure 1) that takes H&E stained images from a 

melanoma sample and outputs a DMR status prediction. The pipeline is designed to handle 

one or more images of varying sizes per patient, which can result from multiple tumor 

locations, multiple cuts of the same tumor, or multiple 2-D slices. The first issue to resolve is 

that histopathology images have varying and large sizes (1–15 Gigabytes), and are therefore 

not suitable for directly processing through a neural network. While standard methods for 

processing histopathological images with neural networks21,30 involve dividing the image 

into smaller (ie 512 × 512) patches, this is not a viable strategy for our problem because 

recurrence risk is mediated by interactions between tumor cells and adjacent host tissues, 

which in some cases are not present in many quadrants of each slide or in every image patch. 

Thus, recurrence risk prediction requires incorporation of regional information from the 

image. Additionally, melanoma histopathology images often contain areas of connective 

tissue without tumor nuclear information. Tumor information is necessary for an accurate 

Kulkarni et al. Page 6

Clin Cancer Res. Author manuscript; available in PMC 2021 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recurrence prediction, and thus image regions lacking cell information must be omitted to 

reduce noise in the final output.

To address the problem of tissue heterogeneity with respect to relevant tumor content, we 

developed a sampling strategy that is sensitive to cell types. Starting with a raw H&E image, 

we identified cell objects within the image (Fig. 1B), divided the image into a regular grid, 

selected grid tiles with minimum tumor and/or lymphocyte density (Fig. 1C), and then 

randomly sampled spatially localized, fixed-length sequences of patches from each grid tile 

(Fig 1D). In addition, we augmented regional image information with cell density features 

that were designed both to characterize the atypia of tumor cells and to summarize a larger 

immune infiltration context around each tile (Fig. 1E). Sequences consisting of raw image 

data were then processed by our deep neural network (DNN) (Fig. 1F), first by the CNN, 

which extracted high-dimensional features from the individual patches, and then by the 

RNN, which processed the CNN output to identify discriminative spatial patterns. Finally, 

two fully connected layers combined the output of RNN with the pre-computed regional 

features (Fig. 1G), resulting in a softmax recurrence probability vote for every sequence 

(Fig. 1H). To generate the DMR probability for each patient in the test set, votes were 

aggregated across all available subject images (Fig. 1I), and the percentage of positively 

classified sequences were counted to generate the final prediction score.

First Test Population.

The first test population consisted of 118 samples from Yale School of Medicine. On pre-

review, 7 were excluded because of heavy melanin and 7 were excluded because slides were 

cracked, images were blurred, or tissue was folded. Demographics are shown in Table 2 and 

Cox survival analysis using standard predictors is shown in Supplementary Table S3. 

Patients were 49% male and 51% female with a median age of 61 years. Median follow up 

was 68.7 months. One slide was included for each patient and image sequences were 

generated followed by a prediction score as described above. A receiver operating 

characteristic (ROC) analysis was constructed and showed that the predictor strongly 

correlates with DMR (AUC=0.905). Disease specific survival is a key endpoint for adjuvant 

clinical trials and is the standard for prognostic biomarkers. We selected a cutoff to 

maximize sensitivity for recurrence with the goal of identifying a population that could be 

excluded from clinical trials, thereby increasing efficiency of accrual of patients at risk for 

death from melanoma, maximizing significance, and minimizing exposure of patients who 

do not need treatment. When this single cutoff was applied using KM analysis, the DNN 

classifier correlated significantly with DSS (p<0.0001, Figure 2A). When a multivariable 

analysis was performed, the DNN predictor correlated with DSS when other clinical 

predictors were included as co-variables (P < 0.0001, supplementary table S4).

Second Test population.

The second test population consisted of 56 patients from GHS. On pre-review, 4 patients 

were excluded because of excessive melanin and 1 patient was excluded due to a lack of 

tumor in the image. Demographics are shown in Table 3 and univariable Cox survival 

analysis using standard predictors is shown in supplementary table S3. When the DNN 

predictor was evaluated in this patient set, the AUC value was 0.880. Using the same cutoff 
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as for the first population, the classifier significantly correlated with DSS using KM analysis 

(p<0.0001, Figure 2B). 24 patients had a favorable prediction score, of whom 5 had DMR 

and 27 patients had an unfavorable prediction of whom 24 had DMR. When a multivariable 

analysis was performed, the DNN predictor correlated with DSS when other clinical 

predictors were included as co-variables (P < 0.001, table 4). Finally, in order to assess the 

contribution of regional features to the overall accuracy of the classifier to the second test 

set, we reran the algorithm excluding each one of the features (supplementary table S5). We 

found that ratio of lymphocyte area over tumor cell area appeared most important since 

removing it decreased accuracy to AUC 0.509 (supplemental table S5). In order to exclude 

the possibility that this feature alone would be sufficient to predict death from melanoma we 

extracted this feature independently from QuPath. Again, AUC was not predictive 

(AUC=0.589, data not shown). This shows that, while immune cell content is critical to 

accuracy it is not sufficient outside of the deep learning algorithm to predict DMR or death 

from melanoma. This also shows that it is not sufficient to use the histopathological features 

globally and that our method of localizing the features by computing them within the tiles 

surrounding the patch and combining them with the DNN sequence leads to discriminatory 

performance.

Discussion

Here we present a biomarker that stratifies patients with early stage melanoma using only 

information derived from computational analysis of H&E images using a DNN. This 

biomarker is easily applicable in a clinical context as it requires no additional tissue 

processing, such as RNA extraction or immunohistochemical staining. The biomarker was 

generated based on image analysis of a training set with DMR as the label distinguishing 

favorable from unfavorable outcomes. This label was selected based on the hypothesis that a 

subset of melanoma patients who develop local recurrence but not DMR have a more 

indolent biology, perhaps related to immune surveillance, that is associated with prolonged 

survival.31 The deep learning-based biomarker was then found to correlate with DSS in two 

independent validation populations. We believe that, after prospective validation, this tool 

could be used as a screening tool with value for adjuvant studies and, potentially, included in 

AJCC staging criteria.

The method applied in this paper is based on a newly designed algorithm and includes 

adaptations to allow for exclusion of areas with less relevant information, namely both the 

labeling of irrelevant areas such as those containing high levels of pigment as “other,” and 

the requirement for a minimal number of tumor and/or lymphocytes in each patch. In 

addition, the DNN method presented here includes features such as nuclear size and 

distribution of immune cells within the tumor that have a high probability of being predictive 

based on previous pathology literature.20,32 One advantage of this method is that it is robust 

to variable H&E stains from different institutions, demonstrating broad applicability and 

robustness of the algorithm. Yet another advantage of this method is that it does not depend 

of pre-identification of tumor location or tumor type in the sample image for predicting 

DMR and can therefore directly work with image samples of varying tumor types and sizes.
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One key aspect of our biomarker is that the DNN incorporates raw imaging features from the 

RBG matrix as well as pathology features known or hypothesized to impact melanoma 

prognosis based on the pathology literature, such as density and distributions of lymphocytes 

as well as morphology of tumor nuclei. These features were calculated based on a matrix 

surrounding each patch as the patches themselves are too small to allow for accurate 

calculation of these features. Note that these features are centered on tiles containing a 

minimal density of cells of interest (either tumor or lymphocyte) and therefore differ from a 

global estimate of TILs performed visually by the pathologist. Nonetheless, loss of accuracy 

with removal of the feature describing lymphocyte are over total area in QuPath does 

diminish accuracy, showing that the classifier includes immune infiltration as an important 

component of the algorithm. This is consistent with prior work in the field demonstrating 

that density of lymphocyte infiltration confers prognostic information. 33,34 The fact that the 

QuPath feature on its own is not an accurate predictor demonstrates that the classifier relies 

on a combination of multiple parameters for survival prediction.

There are several limitations of this study. First, the two validation sets are retrospective and 

total under 200 patients. The use of retrospective cohorts is limiting because non-random 

variables may influence practice patterns and hence the availability of clinical follow up 

such that prospective validation would be very important to verify clinical applicability of 

the biomarker. Second, the method requires slides to have tissue quality sufficient to allow 

for identification of regions of interest containing tumor cells and lymphocytes. Most freshly 

biopsied samples handled per pathology standards should meet these criteria. In addition, we 

could not apply this method to samples with high melanin content as cellular features could 

not be identified. Refinement will need to be made for the small percentage of patients with 

highly elevated melanin content. One means whereby to achieve this would be to bleach 

slides from cases with high melanin content, test whether the biomarker accuracy is 

impacted by bleaching, and make any necessary modifications in QuPath to account for 

differences created by bleaching. This could be achieved using a large cohort of high 

melanin content cases. Finally, a high-quality scanner needs to be available to generate 

images and this may not be available at some centers.

The method proposed in this paper is highly promising with AUC values of 0.905 and 0.880 

in two independent validation sets and should be prospectively evaluated in larger studies to 

develop an accurate AI-based biomarker with clinical application to facilitate stratification 

for clinical trials and improve the care of patients with early stage melanoma. Such a 

biomarker would accelerate screening for adjuvant clinical studies for early stage melanoma 

patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Translational Relevance

While effective adjuvant therapies to prevent recurrence and death in early stage 

melanoma are now available, these therapies often incur significant toxicity and are very 

costly. As such, avoiding the over-treatment of patients with early stage melanoma is 

crucial. Precise and more broadly applicable biomarkers would therefore allow clinicians 

to identify and treat the patients most at risk of death from melanoma, while sparing 

patients with the lowest risk the cost and toxicities of treatment. Here, we propose a deep 

learning-based prognostic biomarker to predict visceral recurrence and DSS in patients 

with primary melanoma. Because our method only requires digital images of 

hematoxylin and eosin (H&E) slides, this biomarker bypasses the need for sample 

shipment and is rapidly applicable to standard clinical workflows. Further evaluation of 

this biomarker in a larger, prospective setting would potentially allow for its application 

to patient care.
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Figure 1: A detailed view of our approach.
(A) A raw H&E scan is first segmented using Watershed Cell Detection. (B) Segmented 

objects are classified into one of three classes, Tumor, immune, and non-cell object. (C) The 

total image is split into tiles. Tiles with excess whitespace or non-cell objects are discarded. 

(D) Of the remaining tiles, points are randomly sampled from a 2D Gaussian distribution 

centered on the tile. A patch is drawn with the sampled point as the centroid, and the patch 

area is thresholded for the presence of white space and tumor or immune objects. Patches 

with high cell density are added to a DNN sequence. (E) All segmented objects within one 

cell width of another object in the same class (40px at 40x magnification) are clustered. Cell 

counts, cluster proportions, and nuclear area are calculated within the tile and all adjacent 

tiles remaining after the initial thresholding. (F) Each patch is processed through a 5-layer 

CNN followed by RNN with sequence length N (N=20). (G) The features for the tile 

corresponding to the generated sequence are concatenated with the RNN output and run 

through a final fully connected layer. (H) The MRP outputs a binary vote for the sequence of 

“Recurrent” or “Nonrecurrent.” (I) Votes are aggregated equally across all available images 
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for a given subject, and generates the subject’s recurrence prediction based on a majority 

vote or predefined threshold.
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Figure 2: ROC and KM curves for the validation cohort.
(A) ROC curve analysis for YSM cohort (n=104, AUC=0.905, P < 0.0001) and KM curve 

for recurrence (P < 0.0001) created using AUC cutoff from ROC curve shown at top. (B) 
ROC curve analysis for GHS cohort (n=51, AUC=0.880, P < 0.0001) and KM curve for 

recurrence (P < 0.0001) created as in (A).
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Table 1:

Patient characteristics of the Training cohort.

(n = 108)

Clinical characteristics

Sex, n (%)

 Male 73 (67.6)

 Female 34 (31.5)

 Unknown 1 (0.9)

Age

 Known, n (%) 103 (95.4)

  Median, n (range) 67 (22–96)

 Unknown, n (%) 5 (4.6)

Location of tumor, n (%)

 Trunk 58 (53.7)

 Extremity 48 (44.4)

 Unknown 2 (1.9)

T-stage, n (%)

 T1a or T1b 18 (16.7)

 T2a 11 (10.2)

 T2b or T3a 41 (38.0)

 T3b or T4a 22 (20.4)

 T4b 12 (11.1)

 Unknown 4 (3.7)

Stage, n (%)

 I 22 (20.4)

 II 62 (57.4)

 III 24 (22.2)

Pathologic characteristics

Depth (mm)

 Median, n (range) 2.30 (0.30–30)

Ulceration, n (%)

 Absent 57 (52.8)

 Present 47 (43.5)

 Unknown 4 (3.7)

Microsatellite lesions, n (%)

 Absent 101 (93.5)

 Present 6 (5.6)

 Unknown 1 (0.9)

TILs

 Absent 9 (8.3)

 Non-brisk 67 (62.0)

 Brisk 23 (21.3)
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(n = 108)

 Unknown 9 (8.3)

SLNB status, n (%)

 Completed 66 (61.1)

  Positive, n (% of completed) 20 (18.5)

  Negative, n (% of completed) 46 (42.6)

 Not completed 15 (13.9)

 SLNB status unknown 27 (25)

Outcome characteristics

Patient follow-up (months)

 Median, n (range) 58 (7–173)

DMR, n (%)

 Distant recurrence 34 (31.5)

 No recurrence or local recurrence only 74 (68.5)

OS, n (%)

 Alive (at least 2 years) 69 (63.9)

 Dead 39 (36.1)

DSS, n (%)

 Alive or NED at death 78 (72.2)

  Median follow-up (months) 65

 Dead with melanoma 30 (27.8)

  Median follow-up (months) 34.5

 Unknown 0 (0)

Abbreviations: DMR, distant metastatic recurrence; DSS, disease-specific survival; NED, no evidence of disease; OS, overall survival
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Table 2:

Patients characteristics of the YSM cohort.

(n = 104)

Clinical characteristics

Sex, n (%)

 Male 51 (49.0)

 Female 53 (51.0)

Age

 Median, n (range) 61 (25–86)

Location of tumor, n (%)

 Trunk N/A

 Extremity N/A

T-stage, n (%)

 T1a or T1b 23 (22.1)

 T2a 13 (12.5)

 T2b or T3a 30 (28.9)

 T3b or T4a 22 (21.2)

 T4b 14 (13.5)

 Unknown 2 (1.9)

Stage, n(%)

 I N/A

 II N/A

 III N/A

Pathologic characteristics

Depth (mm)

 Median, n (range) 2.35 (0.15–8.30)

Ulceration, n (%)

 Absent 63 (60.6)

 Present 39 (37.5)

 Unknown 2 (1.9)

Microsatellite lesions, n (%)

 Absent 76 (73.1)

 Present 26 (25.0)

 Unknown 2 (1.9)

TILs

 Absent 6 (5.8)

 Non-brisk 77 (74.0)

 Brisk 19 (18.3)

 Unknown 2 (1.9)

SLNB status, n (%)

 Completed N/A

  Positive, n (% of completed) N/A
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(n = 104)

  Negative, n (% of completed) N/A

 Not completed N/A

Outcome characteristics

Patient follow-up (months)

 Median, n (range) 68.7 (1.4–456.2)

DMR, n (%)

 Distant recurrence 46 (44.2)

 No distant recurrence or local recurrence only 58 (55.8)

OS, n (%)

 Alive (at least 2 years) 26 (25.0)

 Dead 78 (75.0)

DSS, n (%)

 Alive or NED at death 58 (55.8)

  Median follow-up (months) 114.4

 Dead with melanoma 46 (44.2)

  Median follow-up (months) 36.7

 Unknown 0 (0)

Abbreviations: DMR, distant metastatic recurrence; DSS, disease-specific survival; NED, no evidence of disease; OS, overall survival
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Table 3:

Patient characteristics of the GHS cohort.

(n = 51)

Clinical characteristics

Sex, n (%)

 Male 27 (52.9)

 Female 24 (47.1)

Age

 Median, n (range) 67 (20–90)

Location of tumor, n (%)

 Trunk 31 (60.8)

 Extremity 20 (39.2)

T-stage, n (%)

 T1a or T1b 1 (2.0)

 T2a 0 (0)

 T2b or T3a 19 (37.3)

 T3b or T4a 20 (39.2)

 T4b 11 (21.6)

 Unknown 0 (0)

Stage, n (%)

 I 0 (0)

 II 25 (49.0)

 III 26 (51.0)

Pathologic characteristics

Depth (mm)

 Median, n (range) 3.45 (0.65–13)

Ulceration, n (%)

 Absent 23 (45.1)

 Present 28 (54.9)

 Unknown 0 (0)

Microsatellite lesions, n (%)

 Absent 43 (84.3)

 Present 7 (13.7)

 Unknown 1 (2.0)

TILs

 Absent 13 (25.5)

 Non-brisk 32 (62.7)

 Brisk 5 (9.8)

 Unknown 1 (2.0)

SLNB status, n (%)

 Completed 47 (92.2)

  Positive, n (% of completed) 19 (40.4)
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(n = 51)

  Negative, n (% of completed) 28 (59.6)

 Not completed 4 (7.8)

Outcome characteristics

Patient follow-up (months)

 Median, n (range) 56 (9–142)

DMR, n (%)

 Distant recurrence 29 (56.9)

 No recurrence or local recurrence only 22 (43.1)

OS, n (%)

 Alive (at least 2 years) 21 (41.2)

 Dead 30 (58.8)

DSS, n (%)

 Alive or NED at death 25 (49.0)

  Median follow-up (months) 93

 Dead with melanoma 19 (37.3)

  Median follow-up (months) 28

 Unknown 7 (13.7)

Abbreviations: DMR, distant metastatic recurrence; DSS, disease-specific survival; NED, no evidence of disease; OS, overall survival
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Table 4:
Cox regression analysis of GHS cohort.

Multivariable Cox regression analysis of disease-specific survival.

Hazard ratio 95% CI P

Score** 58.7 4.83 to 713 0.001

Stage 1.04 0.337 to 3.23 0.942

Gender 2.01 0.541 to 7.45 0.297

Age 1.04 0.994 to 1.08 0.096

TILs 1.03 0.337 to 3.12 0.965

Location 0.607 0.178 to 2.07 0.425

Depth 0.966 0.729 to 1.28 0.812

Ulceration 1.49 0.469 to 4.73 0.499
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