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Abstract

Medical insurance claims are becoming increasingly common data sources to answer a variety of 

questions in biomedical research. Although comprehensive in terms of longitudinal 

characterization of disease development and progression for a potentially large number of patients, 

population-based inference using these datasets require thoughtful modifications to sample 

selection and analytic strategies relative to other types of studies. Along with complex selection 

bias and missing data issues, claims-based studies are purely observational, which limits effective 

understanding and characterization of the treatment differences between groups being compared. 

All these issues contribute to a crisis in reproducibility and replication of comparative findings 

using medical claims. This paper offers practical guidance to the analytical process, demonstrates 

methods for estimating causal treatment effects with propensity score methods for several types of 

outcomes common to such studies, such as binary, count, time to event and longitudinally-varying 

measures, and also aims to increase transparency and reproducibility of reporting of results from 

these investigations. We provide an online version of the paper with readily implementable code 

for the entire analysis pipeline to serve as a guided tutorial for practitioners. The online version 

can be accessed at https://rydaro.github.io/. The analytic pipeline is illustrated using a sub-cohort 

of patients with advanced prostate cancer from the large Clinformatics TM Data Mart Database 

(OptumInsight, Eden Prairie, Minnesota), consisting of 73 million distinct private payer insurees 

from 2001-2016.
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Introduction and Background

Health service billing data can be used to answer many clinical and epidemiological 

questions using a large number of patients and has the potential to capture patterns in health 

care practice that take place in the real world (Sherman et al. 2016; Izurieta et al. 2019; Noe 

et al. 2019; Nidey et al. 2020; O’Neal et al. 2018). Such large datasets allow investigators to 

conduct scientific queries which may be difficult, if not practically impossible, to answer via 

a randomized clinical trial. For example, comparing multiple medications that are produced 

by different drug companies and with varying guidelines for their use for a disease may only 

be feasible in a real healthcare database (Desai et al. 2019; Jackevicius et al. 2016). 

Although these large data sources offer a wealth of information, there are many challenges 

and drawbacks, such as measured and unmeasured confounding, selection bias, 

heterogeneity, missing values, duplicate records and misclassification of disease and 

exposures. As regulatory agencies and pharmaceutical companies increasingly consider 

studying the real world evidence present in such databases, the importance of proper 

methodology, reporting, and reproducibility of the analysis for a broad audience of 

researchers is of necessity (FDA 2011; Motheral et al. 2003; Birnbaum et al. 1999; Johnson 

et al. 2009; Berger et al. 2017; Dickstein and Gehring, 2014; FDA 2018). We emulate newly 

introduced principles from the predictability, computability, and stability (PCS) framework 

for veridical data science (Yu et al. 2020) to examine comparative effectiveness research 

questions that administrative claims data can be used to address. We provide documentation 

and code in R Markdown file available online at https://rydaro.github.io/.

Healthcare claims data have been extensively criticized for its use in epidemiological 

research (Grimes 2010; Tyree et al. 2006). These types of data are wrinkled with issues such 

as outcome and covariate misclassification, missing data, and selection bias. For example, 

International Classification of Disease (ICD) codes are entered into administrative records 

by the care provider, often only for the purpose of billing, and thus certain diagnoses may be 

missed or overrepresented or may differ across providers (Tyree et al. 2006). There is no 

agreed upon algorithm for identifying widely used outcomes like Emergency Room visits, 

and thus many definitions across analysts and institutions are used (Venkatesh et al. 2017). 

While not as accurate as gold standard clinical trial data, these datasets are still valuable and 

sometimes the only source of real-world data for a wide variety of questions regarding drug 

utilization, effectiveness, and monitoring of adverse events (Hoover et al. 2011; Wilson and 

Bock 2012). Claims data have the benefit of reflecting how medications are actually being 

prescribed, and thus may provide a more accurate depiction of treatment benefit in practice 

or real-life evidence. Further, these datasets capture a more comprehensive picture of a 

patient’s encounters with the healthcare system than standard electronic medical record 

(EHR) data alone (Schneeweiss et al. 2005), going beyond just visits by adding procedures, 

tests, and pharmacy fills. With proper study design and methodological considerations, many 
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of the common issues and concerns with claims data can be addressed (FDA 2011; Motheral 

et al. 2003; Birnbaum et al. 1999; Johnson et al. 2009; Berger et al. 2017; Dickstein and 

Gehring, 2014; FDA 2018),and these large databases of longitudinal information can 

provide insight into many research questions and be used to complement/supplement/

emulate a clinical trial (Hernan and Robins, 2018). While there are several approaches to 

handling confounding bias are available, propensity score-based methods are versatile in that 

they can be used for a variety of research questions and can be used for many different kinds 

of study designs and databases. Propensity score approaches also prevent p-hacking of a 

desired result in the outcome model (Braitman and Rosenbaum 2002). Thus, these methods 

have gained increasing popularity, especially for questions of comparative effectiveness in 

pharmacoepidemiologic and pharmacoeconomic research. With counterfactual thinking and 

causal inference gaining popularity in the statistical and epidemiological literature, 

principled use of propensity score based methods in observational databases have become 

more common.

A downside to this rise in popularity is that the assumptions and critical steps for the 

propensity score-based methods are often ignored or unreported. This lack of reporting 

hinders other researchers’ ability to replicate the findings. Many have noted common misuse 

or lack of reporting for propensity methods (Ali et al. 2015; Yao et al. 2017; Weitzen et al. 

2004; Austin 2008; D’Ascenzo et al. 2012; Deb et al. 2016). Analysis questions arise, such 

as how the propensity score was calculated (logistic regression or otherwise), and even for 

many researchers who did describe such methods, sensitively analysis to the violation of 

assumptions or choice of the propensity score model were often not reported. Propensity 

score methods do not account for unmeasured confounding, and sensitivity analyses can 

provide the reader with crucial information on the robustness of the findings.

Some have offered valuable tutorials on propensity score estimation (Garrido et al. 2014; 

Austin 2011; Stuart et al. 2013; Brookhart et al. 2013). While these papers offer an elegant 

and lucid exposition of the underlying principles, and are extremely important contribution 

to the literature, these overviews do not provide the reader a complete practical guidance for 

every analysis step, or a detailed sensitivity analysis framework to understand the strength of 

evidence supporting the results when model assumptions change. Therefore, there is need 

for a usable, simple and comprehensive tutorial for all stages of analysis when characterizing 

a binary treatment effect on various outcome types using claims data, with accompanying 

annotated R software code for each step. This paper outlines the use of three primary 

propensity score-based methods: Spline Adjustment, Propensity Matching, and Inverse 

Probability of Treatment Weighting (IPTW) for comparing treatment effects with the goal of 

reducing bias due to confounding. The paper also details how to use each method to estimate 

average treatment effect for four common outcome types: 1) Binary, 2) Count, 3) Time to 

event, and 4) Longitudinally varying repeated measures. Finally, we conduct sensitivity 

analysis for two of the outcome types. To improve transparency for reproducibility and 

usage of the methods discussed, detailed R code is provided in an online version at https://

rydaro.github.io/. The analytic pipeline is illustrated using a sub-cohort of patients with 

advanced prostate cancer from the large Clinformatics TM Data Mart Database 

(OptumInsight, Eden Prairie, Minnesota), consisting of 73 million distinct private payer 

insurees from 2001-2016.
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Guideline for the Comparative Effectiveness Data Analysis Pipeline

Cohort Definition and Average Treatment Effect

The first stage of analysis, as shown in Figure 1, is cohort definition. The STROBE checklist 

for cohort studies provides guidelines for defining a cohort and research question for 

analysis (von Elm et al. 2007). Once a cohort is defined, comparative effectiveness research 

for that cohort relies on the potential-outcomes framework, which as described by Rubin 

(1975 and 2005), involves comparison of potential outcomes on the same (say ith) individual 

for each treatment. Define Yi(0) as the potential outcome under the control treatment, and 

Yi(1) as the potential outcome under the active treatment of interest. We wish to know the 

treatment effect for each individual, typically defined as Yi(1) − Yi(0), which cannot be 

estimated directly from the observed data because for each individual we observe either 

Yi(1) or Yi(0), but never both. If subject i actually received the active treatment, denoted by 

Ti = 1, then Yi(1) is observed and Yi = Yi(1); otherwise, Ti = 0, and we observe Yi = Yi(0), 

under the stable unit treatment value and consistency assumptions. We can define the 

average treatment effect (ATE) as E[Yi(1) − Yi(0)], which is the average treatment effect 

across the entire population (Imbens 2004). In a randomized trial, we can estimate ATE as 

E[Yi(1) − Yi(0)] = E[Yi|Ti = 1] − E[Yi|Ti = 0] as randomization ensures that the treatment 

groups are balanced and hence E[Yi(a)] = E[Yi(a)|Ti = a] = E[Yi|Ti = a] for a = 0,1 (Austin 

2011b; Lunceford and Davidian 2017) . ATE can be defined on different scales, such as a 

ratio 
E Yi Ti = 1
E Yi Ti = 0  or odds ratio for binary outcomes 

E Yi Ti = 1 / 1 − E Yi Ti = 1
E Yi Ti = 0 / 1 − E Yi Ti = 0 . We can also 

define the average treatment effect on the treated (ATT) as E[Yi(1) − Yi(0)|Ti = 1] and the 

average treatment effect on the comparison group (ATC) as [Yi(1) − Yi(0)|Ti = 0] when a 

particular sub-population is of interest.

The standard method of estimating treatment effect for data from a randomized trial, or from 

observational data that is sufficiently balanced, is a general linear model with the treatment 

variable as the sole predictor:

g μi = β0 + β1Ti

where μi = E[Yi|Ti] and β1 is the parameter of interest for treatment comparison. In the 

simple linear regression case where g(x) is the identity function, β1 = E[Yi|Ti = 1] − E[Yi|Ti 

= 0]. When using claims data, the mechanism behind treatment assignment is not random, 

and thus the treatment populations may differ greatly. Therefore E[Y(1)|T = 1] ≠ E[Y(1)] 

and E[Y(0)|T = 0] ≠ E[Y(0)] in general (Austin 2011b). As a result, the estimate for β1 will 

not equal the ATE because of confounding.

When confounders are present, a natural inclination would be to extend our outcome model 

to account for such confounders:

g μi = β0 + β1Ti + β2X2i + β3X3i + … + βkXki

Ross et al. Page 4

Health Serv Outcomes Res Methodol. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, β1 in the multivariate adjustment model generally does not estimate ATE even if 

we have the correct confounders and the model is correctly specified, particularly when g() 

is not a collapsible link function. One approach to estimate ATE is G-computation, which 

predicts the pair of potential outcomes for each individual (Robins 1986; Snowden et al. 

2011). The accompanying standard error can be computed using sandwich estimation 

(Andersen 2019; Susanti et al. 2014). While a valid analytical approach, it may be difficult 

for the researcher to specify the outcome model, as there may be limited understanding of 

the relationship between the outcome and each covariate. The notion of the propensity score, 

a unidimensional construct, offers an alternative analytical approach that may be more 

suitable. The researcher may have more subject matter knowledge to construct a proper 

propensity score model, may want to avoid unconscious bias of demonstrating a desired 

causal effect in the outcome models by choosing confounders to adjust for, or use the 

propensity score simply as a dimension reduction technique.

Confounder Selection and Propensity Score Estimation

Proposed by Rosenbaum and Rubin (1983), the propensity score is defined as ei = Pr(Ti = 1|

Xi). The score can be interpreted as the probability a subject receives treatment, predicted 

from the confounding variables denoted as Xi. Rosenbaum and Rubin (1983) showed that 

conditional on the propensity score, an unbiased estimate of ATE can be obtained if the 

treatment is strongly ignorable. A treatment is strongly ignorable if two conditions are met: 

1) The probability of treatment given the covariates is not exactly 0 or 1, and 2) each 

potential outcome is independent of treatment, conditional on the covariates. More formally, 

these two conditions are: 0 < P(Ti = 1|Xi) < 1 , 2) (Yi(0), Yi(1) ⊥ Ti|Xi (Rosenbaum and 

Rubin 1983). The second of these assumptions is the “no unmeasured confounders” 

assumption. Thus, a critical assumption for use of the propensity score is that all variables 

that affect the outcome and treatment assignment are measured. If all confounding variables 

are identified and included, and the model is correctly specified, this score achieves 

covariate balance between treatment and control groups. More formally, the correct ei 

satisfies that Ti ⊥ Xi|ei, removing the effect of the confounders from the treatment effect 

when we condition on ei alone. While logistic regression is commonly used to estimate this 

propensity score, researchers have expanded their attention beyond parametric models. 

Many have used machine learning methods such as boosted logistic regression, random 

forests, and neural networks (Lee et al. 2010; Setoguchi et al. 2008; Westreich 2010). 

Another method we highlight in this paper is the covariate balancing propensity score 

(CBPS) proposed by Imai and Ratkovic (2014).

Covariate Balancing Propensity Score (CBPS) is a generalized method of moments estimate 

that captures two characteristics of the propensity score, namely, as a covariate balancing 

score and as the conditional probability of treatment assignment (Imai and Ratkovic 2014). 

This method is a more automated form of propensity score construction, in that it calculates 

the propensity score with the exact balancing goal in mind. Thus, CBPS provides a 

balancing score for each subject that ensures all covariates included in the CBPS 

construction are balanced. Therefore, CBPS is an efficient alternative to propensity score 

estimation by a parametric model. We do note that if using another estimation technique, the 
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ultimate goal of the propensity model is not to predict treatment assignment, but to reduce 

bias by balancing covariates (Wyss et al. 2014).

Still, the treatment effect estimation methods are sensitive to misspecification of the 

propensity score model, and thus the variables and their functional forms used in this model 

can affect the estimation of average treatment effect. Many suggest including all variables at 

all associated with the outcome, while excluding those only associated with the treatment of 

interest, based on subject-matter knowledge (Brookhart et al. 2006; Rubin and Thomas 

1996; Perkins et al. 2000; Wyss et al. 2013). Vanderweele (2019) provides a comprehensive 

general guide to confounder selection in observational studies. The sensitivity analysis can 

show how estimates can change under many plausible propensity score models.

Application of the Constructed Propensity Score

Once the propensity score is constructed, there are four basic ways to use the score in 

treatment effect estimation: 1) Stratification based on the propensity score, 2) Direct 

covariate adjustment using propensity score as a covariate in the outcome model, 3) 

Matching treatments and controls based on the propensity score (PM), and 4) Inverse 

probability treatment weighting on the propensity score (IPTW). Stratification ranks subjects 

by the estimated propensity score and splits them into mutually exclusive groups to obtain 

an overall treatment effect (Rosenbaum and Rubin 1984). We will not discuss stratification 

at length in the main paper as it is used less commonly (Austin et al. 2007; Austin 2009b), 

but the online materials provide further information. The rest of this paper will focus on the 

three routinely used methods: Spline Adjustment, Propensity Matching, and IPTW.

Spline Adjustment—The propensity score is the coarsest balancing score while the full 

list of confounders is the finest (Shi et al. 2020). This approach is similar to the G-

computation approach above, except the confounders in the outcome model are replaced 

with a single covariate of the predicted propensity score. The ATE is calculated from the 

predicted potential outcomes for each individual, and estimate the standard error using 

sandwich estimation (Robins 1986; Snowden et al. 2011; Stefanski and Boos, 2002, 

Andersen 2019; Susanti et al. 2014). Typically, the propensity score is fit with a smoothing 

function, such as a polynomial spline function (Shi et al. 2020), allowing for a more flexible 

model that is also computationally fast and reliable.

Propensity Matching—Matching observations based on the propensity score to estimate 

ATT and is based on a measure of distance (Stuart et al. 2010; Rosenbaum and Rubin 

1985a). Stuart et al. (2010) provide a comprehensive overview of the various matching 

methods available. In practice, it is common to do 1: k matching, where k is the specified 

number of controls. With a defined distance, called a caliper, all potential matches within the 

distance up to k will be matched. This allows for maximal efficiency of data while still 

reducing bias since all close matches are kept. There is little guidance on what caliper a 

researcher should specify; however, Austin (2011a) suggests a caliper of 0.2 standard 

deviations of the logit of the propensity score as a default choice that works well across 

scenarios. Matching typically estimates the ATT, though some packages and techniques can 

estimate ATE (Stuart et al. 2010).
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Inverse Probability of Treatment Weighting (IPTW)—The next method we consider 

is the inverse probability of treatment weighting (IPTW) proposed by Rosenbaum (1987). 

We can calculate the weights vi as

vi =
Ti
ei

+
1 − Ti
1 − ei

where e i is the estimated propensity score. These weights can be very unstable for extreme 

values of e i, so trimming (sometimes called truncating) these values away from the extreme 

is often practiced (Rosenbaum 1987; Lee et al. 2011). The construction of weights used here 

estimates ATE, and different constructions can be used for ATT and other effect estimates of 

interest (Lee et al. 2011).

Balance Assessment

It is good practice to check if the chosen propensity method achieved its goal of balancing 

the covariates. Although there are several balance diagnostics, a common balance diagnostic 

originally proposed by Rosenbaum and Rubin (1985b) is the standardized difference (or 

standardized bias) for 1:1 matching, defined as

xt − xc
sp

This is the difference in mean value of the covariate in the treatment group xt vs. the control 

group xc, adjusting for variability sp, where here we defined sp as the pooled standard 

deviation of the two treatment groups, defined as sp =
st2 + sc2

2  (Austin 2009a;Normand et al. 

2001). This value is calculated for each covariate, with values closer to zero indicating better 

mean balance and potentially less bias. The measure can be calculated for both continuous 

and categorical indicator variables (Yao et al. 2017; Normand et al. 2001). A lack of balance 

indicates that the propensity model may be incorrect, or that a different method should be 

used. There is no generally accepted threshold, although some suggest that the standardized 

difference should not be greater than 0.1 (Austin 2008b; Austin 2009a; Normand et al. 

2001). In practice, researchers may also report variable descriptive statistics before and after 

matching. We can modify this difference calculation for a different ration of matching, say 1: 

k, using weights (Joffe et all. 2004; Morgan and Todd 2008; Austin 2008b). The weighted 

mean is defined as xw =
Σ wixi
Σ wi

 and the weighted standard deviation is

sw =

Σ wi xi − xi
2

Σ wi
Σ wi

2 − Σ wi2

where wi is the weight for subject i. For 1:1 matching, all observations have equal weight. If 

1: k matching is used, observations in the control treatment group have 1/k weights and 
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treated observations have weights 1. For IPTW, the calculated weights can be used, so vi = 

wi for each observation (Morgan and Todd 2008; Austin 2008b). If sufficient balance is not 

achieved, the process of propensity score construction and balance assessment is repeated, 

by changing the functional form of the propensity model. The researcher can repeat this 

process until balance is achieved to a desired level. Experimenting with the model 

specification at this stage is preferable to post-hoc modification of the outcome model with 

ATE as a desired target, especially in terms of reproducibility of results.

Treatment Effect Estimation and Sensitivity Analysis

Once sufficient balance has been achieved, one can estimate the average treatment effect 

using a general outcome model

g μi = β0 + β1Ti

This model can be used directly on the matched dataset if 1:1 matching is used. If 1: k 
matching or IPTW is used, the constructed weights need to be used as well. Weights can be 

incorporated in the same fashion as weights from a survey design, using robust standard 

error estimation to account for error in weight estimation (Lee et al. 2001; Morgan and Todd 

2008). For the spline adjustment model, ATE is estimated by G-computation with direct 

variance calculation via M-estimation (Stefanski and Boos, 2002). Once an estimate is 

obtained, it is often useful to run a sensitivity analysis to see how the estimate may change 

under different model specifications and understand how sensitive the result is to some 

unmeasured confounder.

For the sensitivity analysis, we adapt a visualization tool of capturing vibration of effects 

from Patel et al. (2015) to a universe of potential propensity score models. This visualization 

tool allows the researcher to see the results of many possible models at once, providing an 

overall understanding of the treatment effect estimate’s robustness to changing model 

specifications with the observed set of measured confounders. To summarize sensitivity to 

an unobserved/unmeasured confounder, we calculate the estimate’s E-value (Van Der Weele 

and Ding 2017). The E-value captures the minimum value of the association parameter that 

an unobserved confounder must have with both the treatment and the outcome of interest to 

nullify the result regarding the treatment effect on the outcome. Put more simply, the E-value 

tells us how strong an unmeasured confounder must be to explain away a significant 

treatment effect.

Example: Comparing Oral Hormone Therapy vs. Immunotherapy for 

Advanced Prostate Cancer

Cohort Definition and Average Treatment Effect

The cohort was defined as men who received treatment for advanced prostate cancer at any 

time during January 2010 through June 2016, based on receiving one of four primary 

medications (abiraterone, enzalutamide, sipuleucel-T, docetaxel) known to have a survival 

benefit in men with advanced prostate cancer. Data were from the Clinformatics TM Data 

Mart Insurance Claims Database. The initial cohort included any patient over the age of 18 
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with a diagnosis of malignant neoplasm of the prostate, coded as “185” in ICD-9 and “C61” 

in ICD-10, and were continuously enrolled in the plan for at least 180 days before the first 

medication claim.

Treatments: We are interested in comparing first-line therapies. First-line treatment was 

defined as the first medication given of the four focus medications. We then categorized oral 

therapies as abiraterone or enzalutamide. Thus, there are three final first-line treatment 

groups: 1) Immunotherapy, 2) Oral Therapy, and 3) Chemotherapy. We compared 

immunotherapy to oral therapy and compared immunotherapy to chemotherapy in two 

separate analyses. We chose immunotherapy as the reference group for both analyses. The 

remainder of this example will only discuss the oral therapy comparison, as all methods are 

directly translatable, and we report all results for both analyses in the tables.

Binary and Count Outcomes: We defined the binary outcome to be whether the patient 

had any emergency room (ER) visit within 60 days of the first pharmacy claim of the focus 

medications. ER visits were identified using the provider definition, Current Procedural 

Technology (CPT) codes 99281-99285, and the facility definition, which is revenue center 

codes 0450-0459, 098 (Vankatesh et al. 2017; CMS 2020a, CMS 2020b). ATE is defined on 

the odds ratio scale. Using the previously defined ER visits, we counted the number of ER 

visits each patient had within 180 days from the first pharmacy claim as a count outcome. 

ATE is defined on the rate ratio scale.

Time to Event Outcome: Time on treatment, the time to event outcome, was defined as 

the time from start of first medication to the last claim of any of the four focus medications, 

thus the event is stopping all focus treatment permanently. ATE is defined in terms of 

Restricted Mean Survival Time (RMST) (Royston et al. 2013; Andersen 2010) within a five 

year follow-up window. We can calculate RMST, denoted μτ, as the area under the curve of 

the survival function:

μτ = ∫0
τ

S t dt

where S(t) is the survival function, and τ is the parameter for restricted the follow-up time 

(five years). We can then define our ATE estimate as μτ1 − μτ0, or the difference in RMST 

between the treatment groups being compared.

Longitudinally Varying Outcome: For the longitudinally varying outcome, we used 

opioid usage over time, calculated using prescription drug pharmacy claims. Common 

opioid drug types were identified and were converted into morphine milligram equivalents 

(MME) according to the Center for Disease Control conversion factors (CDC 2020). The 

average daily MME supply prescribed was calculated in 30-day periods, starting with the 30 

days before the first-line of treatment, which was used as a baseline, and continuing at 30-

day intervals for the duration of claims data available. ATE is defined as the mean difference 

in opioids prescribed at three specified time points: treatment start, 3 months after treatment 
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start, and 6 months after treatment start. We can model the quantity of opioids prescribed in 

MME Yij at the jth 30-day period tj for each individual i as:

Yij = β0 + b0i + β1Ti + S tj + S tj Ti + ∈ij

where j = 1,.., ni, ni ∈ {1,2,3,4,5,6,7}, b0 ~ N(0, τ2) and ϵi ~ MVNni(0, σ2Ini). Here, S(tj) is 

specified as a penalized regression spline with 3 degrees of freedom, allowing more flexible 

smooths for modeling the prescribing trend over time. An important note when using IPTW 

and CBPS is that we are only weighting on the initial treatment, so at other time points the 

weights may bias the results. Any inferences using the full time period will be heavily biased 

by changing therapy or require advanced methods to handle switching treatments, such as 

marginal structure models (Cole and Hernan 2008).

Confounder Selection, Propensity Score Estimation and Balance Assessment

Confounders: Potential confounders were identified using previous research to identify 

factors associated with both treatment and outcomes (Hoffman et al. 2011; Ward et al. 2004; 

Caram et al. 2019a; Barocas and Penson 2010; Caram et al. 2019b). These include age, race, 

sociodemographic variables and comorbid conditions from Elixhauser Comorbidity Index 

and Clinical Classification Software (CMS 2020a, CMS 2020b), all shown in Table 2. From 

the table, we can see differences across treatments groups, especially age, geographic region, 

and provider type. These variables may inform treatment assignment and as such should be 

considered as potential confounders.

All potential confounders listed in Table 2 were included. For chemotherapy estimation, the 

urologist variable was excluded as a confounder due to low cell counts. Thus, the model 

treatment assignment is Ti = 0 if immunotherapy was given and Ti = 1 if oral therapy was 

given using both logistic regression and the CBPS method. Propensity score constructed 

from the CBPS approach was implemented through the R package CBPS (Imai and 

Ratkovic 2013). To create a matched dataset, we used the R package Matchit (Hoe et al. 

2007). We defined our distance with logistic regression using the “nearest neighbor” method 

select matches within a defined caliper distance of 0.2 standard deviations of the logit 

propensity score, with a variable matching ratio of 1:4 within the defined caliper, without 

replacement. Inverse weights were created, and propensity scores greater that 0.99 were 

trimmed to 0.99, and scores below 0.01 were trimmed to 0.01. Figure 2 shows a plot of the 

standardized difference of the covariates between the immunotherapy group, and oral 

therapy group for CBPS, IPTW and propensity matching methods. Here, we are assuming 

covariates have a linear relationship with the outcome, and thus checking means is sufficient. 

With covariate balance achieved to a desired level, we proceeded to treatment effect 

estimation.

Treatment Effect Estimation and Sensitivity Analysis

Now we compute our estimates of ATT and ATE and report results in Table 3. Because 

covariate balance is achieved, we can run the marginal logistic regression model directly on 

our propensity matched dataset. The spline model was implemented spline function from the 

R package splines (Bates et al. 2020). Models using the IPTW weights form the propensity 
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scores estimated from logistic regression and the CBPS used the R package survey (Lumley 

2020). Finally, the ATE from multivariate adjustment model using G-computation is 

calculated with our own defined functions (shown in website).

Binary and Count Outcomes: For the binary outcome, we obtain an odds ratio of 0.83 

(0.50,1.38) for oral therapy versus immunotherapy using the spline adjustment, and 0.56 

(0.26,1.23) when using IPTW with the same propensity score. All models we fit for the 

binary outcome can be fit in a similar fashion to this count outcome, now considering the 

different link function and scale of ATE from above, also shown in Table 3. Here, we see a 

more consistent picture, with the spline adjustment rate ratio of 0.99 (0.63,1.56) and IPTW 

rate ratio of 0.87 (0.48,1.60).

Time to Event Outcome: For time on treatment, the difference in RMST was estimated 

using the package survrm2 (Uno et al. 2014).80 RMST was modified for covariate 

adjustment (Tian et al. 2014) and with weights calculated from the propensity score (Conner 

et al. 2019). In this case, the spline adjusted estimate for the difference in days on treatment 

within 5 years is −49 (−88,−9) days, suggesting immunotherapy patients stay on treatments 

longer than oral therapy. The IPTW estimate is −27 (−45, −10) days, now yielding a smaller 

interval than the spline adjusted for this outcome.

Longitudinally Varying Outcome: For the longitudinally varying opioid usage outcome 

we use the R package mgcv (Simon et al. 2018). The spline adjusted estimate for the 

difference in mean daily opioid prescribed 90 days after treatment start is −151 (−412, 110) 

MME. This suggests that on average, of those given opioids, patients starting with 

immunotherapy may be prescribed less opioids than those starting with oral therapy 90 days 

after treatment start. The confidence interval is noticeably wide. The IPTW estimate at this 

same time point is even less certain with −342 (−738,52).

Sensitivity Analysis

Across all outcomes, patients given Immunotherapy as the first line therapy have better 

outcomes on average, though not all estimates are significant. To assess the robustness of 

those that are “noteworthy” in terms of significance, sensitivity analysis is performed. A 

sample sensitivity analysis for the binary outcome is shown for three selected methods in 

Figure 3. Age was included as a baseline predictor in all models. E-values are reported for 

the model that included the full covariate set. The figure tells us that when comparing 

patients starting on oral therapy vs. immunotherapy, none of the propensity models 

considered resulted in a significant difference. However, the difference between 

chemotherapy and immunotherapy was significant. The E-values for these models are 3.05 

for the spline adjustment and 3.17 for the IPTW, indicating a unobserved confounder that 

has this risk ratio with both this treatment assignment and ER visit outcome can explain 

away the significant result.

Discussion

We have presented propensity score methods for comparative effectiveness of a treatment on 

various types of health outcomes. We showed methods that can make the compared 
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treatment groups more balanced on a large number of characteristics, and thus provide more 

accurate estimates of possible causal relationships. There are inherent limitations to these 

data, as the Clinformatics TM Data Mart Database is generated from information collected 

for billing purposes and not for research. Thus, the data is subject to misclassification of 

diagnosis codes and is missing socioeconomic values for many individuals. Although we 

could not identify if an individual was correctly classified as having prostate cancer, we only 

included those that also had a pharmacy claim of one of the focus medications which are 

primarily used for advanced prostate cancer. Those individuals with missing 

sociodemographic information were still included in the analysis and treated as a separate 

category. This method comes with assumptions about the missing data mechanism that, if 

violated, could bias ATE. There are more advanced methods for missing data analysis for a 

propensity score analysis that others discuss more extensively (D’Agostino et al. 2001; 

D’Agostino and Rubin, 2000).

There are also challenges and drawbacks to the methods used here. Propensity methods rely 

on correct specification of the propensity model. Here, we used a theoretical framework, 

pre-emptively specifying which variables are most associated with assignment of treatment, 

such as age, economic status, and pre-existing comorbid conditions. Yet, we assessed many 

plausible propensity score models in our sensitivity analysis to assess the robustness of our 

findings. We were unable to account for all known confounders from this data, and thus the 

propensity model may not have addressed all imbalance between groups. Our reporting of 

the E-value summarizes the sensitivity of our results to unobserved confounding. Another 

potential limitation to is that we used a logistic regression model to calculate the propensity 

scores. While this model allows for natural interpretation of the variables included (which 

may still be of interest), it may be poor at predicting propensity in comparison to machine 

learning models (Lee et al. 2010; Setoguchi et al. 2008; Westreich 2010). Furthermore, the 

uncertainty around the propensity estimates is not accounted for in many outcome models, 

especially when using propensity score matching, and thus lead to incorrect inference and 

confidence with the estimates (Stuart et al. 2013). Additionally, we effectively have three 

treatments of interest, yet we stratified the data to have two separate, independent analyses, 

of two treatment groups. This provided easier calculation and matching from propensity; 

however, segmenting may mis-specify the treatment allocation mechanisms, as in practice 

all options are available. Generalized propensity scores can be calculated for multiple 

categories, with the cost of considerably greater complexity (Hirano and Imbens 2005; 

Austin 2018). Nonetheless, the methods are very useful for two clear treatment groups to be 

compared, and when there are many confounding variables. There are also computational 

challenges when using R for these complex analyses on a large dataset, but the flexibility of 

custom code and available packages far outweigh this cost. Finally, our estimates for ATE 

varied across the methods demonstrated, and it is impossible to know which method 

performed best for each outcome when the true ATE and true propensity model are 

unknown. Our goal was to showcase the available options while recognizing each method 

comes with its own limitations. We recommend reporting the sensitivity analysis for 

transparency with researcher decision error surrounding ATE estimation.
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Conclusion

In summary, the methods shown here outline a standard process for conducting comparative 

effectiveness research in claims databases. It is important to note that these tools cannot 

perfectly answer comparative effectiveness questions, even with the most extensive data. 

Careful consideration is required by the researchers as to what variables are confounding 

treatment and outcome, and what method and assumptions best fit the study. Adding 

sensitivity analysis to a study can add understanding to the robustness and generalizations of 

the results. We hope the extensive detail, documentation, and accompanying code aide 

researchers in their own studies and improve replication among these studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Comparative Effectiveness Data Analysis Pipeline Flow Diagram.

Gold pathway indicates steps done in iteration until acceptable balance is achieved.
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Figure 2: 
Balance Diagnostics Plot

Standardized differences shown for each confounder variable. Vertical dotted lines indicate 

the desired balance level. Differences shown for the observed data, after matching, and 

weighting with both calculated propensity scores (logistic regression and CBPS)
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Figure 3: 
Visualized Sensitivity Analysis

Four sensitivity analyses for four ATE estimates are shown. Contours over scatterplot show 

the entire distribution of ATE and associated p-values for the set of plausible propensity 

score models. Dashed lines show denoted percentiles cutoffs for this distribution. K denotes 

number of covariates in shown model, and the dotted line plot shows median ATE and p-

value for each set of K covariates from K=1 to K=12. Thick solid line indicates significance 

threshold of alpha=0.05. E-values for the full model (K=12) are listed in caption.
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Table 1.

Outcome Characteristics

Immunotherapy (N = 504) Chemotherapy (N = 2,214) Oral Therapy (N = 2,747)

Binary Outcome Count (%) Count (%) Count (%)

 ER Visit in 60 Days 22 (4.4) 182 (8.2) 100 (3.6)

Count Outcome Mean (SD) Mean (SD) Mean (SD)

 ER Visits in 180 Days 0.13 (0.44) 0.23 (0.79) 0.12 (0.50)

Time to Event Outcome (days) Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3)

 Time on Treatment
1

227 (29,638) 110 (43,338) 224 (83,462)

Longitudinally Varying Outcome Count (%) Count (%) Count (%)

 Enrolled at 90 days 438 (87.0) 1707 (77.1) 2235 (81.4)

 Enrolled at 180 days 381 (75.6) 1353 (61.1) 1788 (65.1)

 Any Opioids Prescribed at Any Time 166 (32.9) 936 (42.3) 1281 (46.6)

 Opioids at Baseline
2

73 (14.5) 653 (29.5) 825 (30.0)

 Opioids at 90 Days 87 (19.9) 427 (25.0) 578 (25.9)

 Opioids at 180 Days 65 (17.1) 359 (26.5) 515 (28.8)

Patients Prescribed (morphine milligram 
equivalents, 30-day supply) Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3)

 Opioids at Treatment Start 112 (39,435) 241 (75,1052) 184 (72,674)

 Opioids 90 Days from Treatment Start 87 (73,871) 427 (87,1182) 578 (83,887)

 Opioids 180 Days from Treatment Start 391 (97,895) 406 (89,1448) 191 (60,667)

Table 1 shows outcome characteristics across the three treatment groups: immunotherapy (sipuleucel-T), chemotherapy (docetaxel), and oral 
therapy (enzalutamide or abiraterone). ER is an abbreviation for emergency room. Q1 denotes first quartile of distribution, and Q3 denotes third 
quartile.

1
Total time on treatment was defined as when the last of any focus treatment was recorded.

2
Opioids were identified from a list of generic brand names and converted into 30 day milligram morphine equivalents (MME) using the CDC 

compilation and conversion factors.
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Table 2.

Confounder Characteristics

Immunotherapy (N = 504) Chemotherapy (N = 2,214) Oral Therapy (N = 2,747)

Variable Count (%) Count (%) Count (%)

Age

 <55 14 (2.8) 93 (4.2) 62 (2.3)

 55-64 87 (17.3) 329 (14.9) 341 (12.4)

 65-74 194 (38.5) 915 (41.3) 769 (30.0)

 ≥75 209 (41.7) 876 (39.6) 1574 (57.3)

Race

 White 369 (73.2) 1,582 (71.5) 1,863 (67.8)

 Asian 7 (1.4) 33 (1.5) 68 (2.5)

 Black 62 (12.3) 284 (12.8) 376 (13.7)

 Hispanic 22 (4.4) 127 (5.7) 252 (9.2)

 Unknown 24 (8.8) 188 (8.5) 188 (6.8)

Education level

 No College 122 (24.2) 689 (31.1) 814 (29.6)

 Some College or More 348 (69.0) 1400 (63.2) 1827 (66.5)

 Unknown 34 (6.7) 124 (5.6) 105 (3.8)

Household income range

 <50k 148 (29.4) 798 (36.0) 997 (36.3)

 50k-99k 164 (32.4) 656 (29.6) 862 (31.4)

 >99k 119 (23.6) 431 (19.5) 527 (19.2)

 Unknown 73 (14.5) 329 (14.6) 361 (13.1)

Geographic Region
1

 New England 24 (4.8) 109 (5.0) 151 (5.5)

 Middle Atlantic 37 (7.3) 134 (6.1) 257 (9.4)

 South Atlantic 129 (25.6) 554 (25.0) 582 (21.2)

 East North Central 76 (15.1) 305 (13.8) 403 (14.7)

 East South Central 20 (4.0) 86 (3.9) 89 (3.2)

 West North Central 63 (12.5) 386 (17.4) 137 (5.0)

 West South Central 50 (9.9) 231 (10.4) 250 (9.1)

 Mountain 75 (14.9) 221 (10.0) 302 (11.0)

 Pacific 30 (6.0) 179 (8.1) 557 (20.3)

 Unknown 0 (0.0) 9 (0.4) 19 (0.7)

Product

 HMO 128 (25.4) 797 (36.0) 991 (36.1)

 PPO 36 (7.1) 181 (8.2) 208 (7.6)

 Other 340 (67.5) 1,236 (55.9) 1,548 (56.4)
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Immunotherapy (N = 504) Chemotherapy (N = 2,214) Oral Therapy (N = 2,747)

Variable Count (%) Count (%) Count (%)

Metastatic

 Yes 474 (94.0) 2010 (90.8) 2,301 (83.8)

 No 30 (6.0) 204 (9.2) 446 (16.2)

ASO

 Yes 96 (19.0) 344 (15.7) 434 (15.8)

 No 408 (81.0) 1,866 (84.3) 2,313 (84.2)

Provider

 Urologist 167 (33.1) 4 (0.2) 318 (11.6)

 Other/ Unknown 337 (66.9) 2209 (99.8) 2428 (88.4)

Comorbid Conditions

 Diabetes 154 (30.6) 593 (26.8) 802 (29.2)

 Hypertension 362 (71.8) 1,479 (66.8) 1,920 (69.9)

 Arrhythmia 86 (17.1) 398 (18.0) 640 (23.3)

 CHF 42 (8.3) 180 (8.1) 359 (13.1)

 Osteoporosis 55 (11.0) 114 (5J) 204 (74)

Characteristics of patients by first of focus treatment given: immunotherapy (sipuleucel-T), chemotherapy (docetaxel), and oral therapy 
(enzalutamide or abiraterone)

HMO, health maintenance organization; PPO, preferred provider organization; ASO, administrative services only (self-funded health plan); CHF, 
Congestive Heart Failure

1
Geographic region:

• New England (NE): Connecticut (CT), Maine (ME), Massachusetts (MA), New Hampshire (NH), Rhode Island (RI), Vermont (VT)

• Middle Atlantic (MA): New Jersey (NJ), New York (NY), Pennsylvania (PA)

• East North Central (ENC): Illinois (IL), Indiana (IN), Michigan (MI), Ohio (OH), Wisconsin (WI)

• West North Central (WNC): Iowa (IA), Kansas (KS), Minnesota (MN), Missouri (MO), Nebraska (NE), North Dakota (ND), South Dakota (SD)

• South Atlantic (SA): Delaware (DE), Washington D.C. (DC), Florida (FL), Georgia (GA), Maryland (MD), North Carolina (NC), South Carolina 
(SC), Virginia (VA), West Virginia (WV)

• East South Central (ESC): Alabama (AL), Kentucky (KY), Mississippi (MS), Tennessee (TN)

• West South Central (WSC): Arkansas (AR), Louisiana (LA), Oklahoma (OK), and Texas (TX)

• Mountain (M): Arizona (AZ), Colorado (CO), Idaho (ID), Montana (MT), Nevada (NV), New Mexico (NM), Utah (UT), Wyoming (WY)

Pacific (PAC): Alaska (AK), California (CA), Hawaii (HI), Oregon (OR), Washington (WA)
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Table 3:

Estimates of Causal Treatment Effects Across Methods of Oral Therapies or Chemotherapy Compared to 

Reference Immunotherapy

Non-Causal ATT ATE

Unadjusted 
Association Matched

Spline of 
Propensity 
Score

IPTW using 
Propensity Score 
from Logistic 
Regression

IPTW using 
Propensity 
Score from 
CBPS

Multivariate 
Adjustment

Binary Outcome: Emergency Room visit in 60 days - Odds Ratio Scale

Oral Therapy 0.75
(0.46,1.23)

0.89
(0.53,1.50)

0.83
(0.50, 1.38)

0.56
(0.26,1.23)

0.59
(0.28,1.22)

0.80
(0.47, 1.37)

Chemotherapy 1.86
(1.16, 2.97)

1.74
(1.08, 2.80)

1.75
(1.09,2.82)

1.79
(1.09,2.93)

1.81
(1.11,2.95)

1.70
(1.03, 2.81)

Count Outcome: Number of Emergency Room visits in 180 Days - Rate Ratio Scale

Oral Therapy 0.92
(0.56,1.52)

1.00
(0.59,1.71)

0.99
(0.63,1.56)

0.87
(0.48,1.60)

0.88
(0.46,1.70)

0.96
(0.60, 1.53)

Chemotherapy 1.87
(1.36,2.58)

1.86
(1.15 3.00)

1.72
(1.13,2.61)

1.74
(1.29, 2.57)

2.75
(1.73, 4.38)

1.73
(1.15, 2.58)

Time to Event Outcome: Total Time on Treatment - Difference in Mean Days on Treatment from Immunotherapy (restricted to 5 years 
of follow-up)

Oral Therapy −68
(−106, −30)

−52
(−92, −12)

−49
(−88, −9)

−27
(−45, −10)

−31
(−48, −13)

−57
*

(−95, −19)

Chemotherapy −135
(−174, −96)

−164
(−213, −117)

−167
(−214, −120)

−164
(−184, −144)

−139
(−160, −119)

−135
*

(−174, −95)

Longitudinally Varying Outcome: Mean Daily Opioids Prescribed in Morphine Milligram Equivalents per 30-day period (mg/30 days) 
for Patients Prescribed

Difference in Mean mg/30 days, Oral Therapy from Immunotherapy

Treatment Start −83
(−391,224)

−144
(−464, 177)

−104
(−420, 212)

−211
(−846, 423)

−44
(−311,221)

−106
(−419,208)

90 Days −130
(−380, 121)

−169
(−431, 94)

−151
(−412, 110)

−342
(−738,52)

14
(−220, 249)

−130
(−388, 128)

180 Days −178
(−497, 141)

−263
(−599, 73)

−199
(−526, 128)

−469
(−1114,177)

−63
(−343,216)

−181
(−506, 144)

Difference in Mean mg/30 days Chemotherapy from Immunotherapy

Treatment Start 187
(−155,530)

291
(−133, 716)

203
(−173, 578)

301
(−100, 702)

258
(−46, 563)

177
(191, 547)

90 Days 34
(−248,316)

97
(−252,447)

50
(−272, 373)

−64
(−415, 287)

44
(−229, 317)

25
(−290, 341)

180 Days 226
(−133, 586)

234
(−220,687)

242
(−150, 635)

112
(−298,521)

284
(−50, 619)

235
(−152, 622)

Table or estimates and confidence intervals for the treatment effect on each outcome. Immunotherapy is the reference group for each treatment 
comparison. Estimates reported are unadjusted association (before any adjustments are used, so estimate is non-causal observed association), using 
a propensity matched dataset, adjusting for propensity score in the outcome model, inverse propensity score weighting (IPTW) and covariate 
balance propensity score (CBPS), and estimate from predicted outcomes use full covariate adjustment. For binary and count outcomes, multivariate 
adjustment estimates come from G-computation. For time to event outcome, multivariate estimates are difference in mean time, restricted to 5 years 
of follow-up time. For time-varying, estimates are difference in mean opioid morphine milligram equivalents at the designated time points.

*
Adjustment covariates limited to age and race due to computational issues with full covariate set.

Health Serv Outcomes Res Methodol. Author manuscript; available in PMC 2021 June 01.


	Abstract
	Introduction and Background
	Guideline for the Comparative Effectiveness Data Analysis Pipeline
	Cohort Definition and Average Treatment Effect
	Confounder Selection and Propensity Score Estimation
	Application of the Constructed Propensity Score
	Spline Adjustment
	Propensity Matching
	Inverse Probability of Treatment Weighting (IPTW)

	Balance Assessment
	Treatment Effect Estimation and Sensitivity Analysis

	Example: Comparing Oral Hormone Therapy vs. Immunotherapy for Advanced Prostate Cancer
	Cohort Definition and Average Treatment Effect
	Treatments:
	Binary and Count Outcomes:
	Time to Event Outcome:
	Longitudinally Varying Outcome:

	Confounder Selection, Propensity Score Estimation and Balance Assessment
	Confounders:

	Treatment Effect Estimation and Sensitivity Analysis
	Binary and Count Outcomes:
	Time to Event Outcome:
	Longitudinally Varying Outcome:

	Sensitivity Analysis

	Discussion
	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1.
	Table 2.
	Table 3:

