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Abstract

Despite molecular and clinical heterogeneity, small cell lung cancer (SCLC) is treated as a single 

entity with predictably poor results. Using tumor expression data and non-negative matrix 

factorization, we identify four SCLC subtypes defined largely by differential expression of 

transcription factors ASCL1, NEUROD1, and POU2F3 or low expression of all three transcription 

factor signatures accompanied by an Inflamed gene signature (SCLC-A, N, P and I, respectively). 

SCLC-I experiences the greatest benefit from the addition of immunotherapy to chemotherapy, 

while the other subtypes each have distinct vulnerabilities, including to inhibitors of PARP, Aurora 

kinases, or BCL-2. Cisplatin treatment of SCLC-A patient-derived xenografts induces intratumoral 

shifts toward SCLC-I, supporting subtype switching as a mechanism of acquired platinum 

resistance. We propose that matching baseline tumor subtype to therapy, as well as manipulating 

subtype switching on therapy, may enhance depth and duration of response for SCLC patients.

Graphical Abstract
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eTOC Blurb

Gay et al. provide a classification for four subtypes of small cell lung cancer, each with unique 

molecular features and therapeutic vulnerabilities. An inflamed, mesenchymal subtype predicts 

benefit with the addition of immunotherapy to chemotherapy. Intratumoral switching between 

chemosensitive and chemoresistant subtypes accompanies therapeutic resistance.
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Introduction

Small cell lung cancer (SCLC) is an aggressive neuroendocrine malignancy with dismal 

survival rates (Byers and Rudin, 2015). Despite the addition of immunotherapy to platinum-

based frontline chemotherapy, the absolute improvements in progression-free survival (PFS) 

and overall survival (OS) are modest (Antonia et al., 2016; Chung et al., 2020; Horn et al., 

2018; Paz-Ares et al., 2019). In contrast to non-small cell lung cancer (NSCLC), where 

biomarker selection for targeted- and immuno- therapies has dramatically altered treatment 

approaches (Zimmermann et al., 2018), clinical trials for SCLC patients have largely 

focused on unselected populations and have yielded predictably disappointing results. A 

clearer definition of the features of SCLC that govern response to targeted- and immuno-

therapies represents a fundamental unmet need.
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SCLC was once characterized as molecularly homogeneous due to near-universal loss of 

TP53 and RB1 and neuroendocrine/epithelial differentiation. The identification of subsets of 

MYC-driven SCLC that possess unique therapeutic vulnerabilities (Cardnell et al., 2017; 

Chalishazar et al., 2019; Mollaoglu et al., 2017) or chemoresistant, mesenchymal SCLC 

variants (Allison Stewart et al., 2017; Bottger et al., 2019) suggested the need to refine this 

characterization to accommodate inter-tumoral heterogeneity. The consensus definition of 

SCLC subtypes has evolved from classic/variant to neuroendocrine (NE)/non-
neuroendocrine (non-NE) to transcription factor defined subsets (Carney et al., 1985; Gazdar 

et al., 1985; Rudin et al., 2019; Zhang et al., 2018). Historically, these subsets centered on 

the expression of NE transcription factors ASCL1 and/or NEUROD1 (Borromeo et al., 

2016). A third transcription factor, POU2F3, was recently identified as defining a previously 

unappreciated non-NE, tuft-cell variant of SCLC (Huang et al., 2018). Despite the addition 

of this third subtype, many SCLC tumors fall outside of these three groups. A putative fourth 

subtype driven by the transcription factor YAP1 (Rudin et al., 2019) proposed a partial 

solution to these unclassified tumors, although subsequent immunohistochemical (IHC) 

analyses failed to confirm a unique YAP1 subtype (Baine et al., 2020). It is unknown 

whether these classifications predict responses to most chemo-, targeted-, or immune-based 

therapies.

In addition to inter-tumoral heterogeneity, several reports have demonstrated the impact that 

intra-tumoral heterogeneity (ITH) may exert on the natural history of SCLC. In SCLC 

genetically engineered mouse models (GEMMs), intra-tumoral variation in Notch pathway 

activation governs juxtaposition of chemosensitive, NE (Notch-low) cells and 

chemoresistant, non-NE (Notch-high) cells (Lim et al., 2017). Additional time-series single-

cell RNA sequencing (scRNAseq) analyses of GEMMs suggest that MYC is capable of 

activating Notch to promote the dedifferentiation of ASCL1-positive, NE cells into, 

eventually, YAP1-positive, non-NE cells (Ireland et al., 2020). Consistent with these 

observations, we and others have shown that multiple transcriptional subtypes may exist 

within a single tumor (Gay CM, 2019; Ireland et al., 2020; Simpson et al., 2020). Our own 

scRNAseq analyses of SCLC circulating tumor cells (CTC)-derived xenograft (CDX) 

models demonstrate higher transcriptional ITH following platinum-resistance (Stewart et al., 

2020b). These studies provide evidence of SCLC’s transcriptional plasticity and suggest that 

subtype plasticity could underlie evolving tumor response/resistance.

Here, we investigate whether transcriptional subtyping of SCLC inter-tumoral heterogeneity 

can identify molecular and immune subtypes with discrete therapeutic vulnerabilities. 

Furthermore, we consider whether subtype-specific ITH in response to treatment may 

underlie acquired therapeutic resistance.

Results

Defining the transcriptional subtypes of SCLC

In an unbiased attempt to identify SCLC subtypes, we applied non-negative matrix 

factorization (NMF) (Skoulidis et al., 2015) to previously published RNAseq data from 81 

surgically resected, mostly limited-stage SCLC (LS-SCLC) tumors (George et al., 2015). 

Maximization of cophenetic correlation values was used to guide the optimal number of 
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distinct clusters, with both three- and four-cluster options possessing virtually equivalent 

values approaching 1.0 (Figure 1A; Supplementary Figure 1A). The three- and four-cluster 

options included nearly identical groups with high ASCL1 (SCLC-A) or high NEUROD1 
(SCLC-N) (Figure 1B-C, Supplementary Figure 1B-C). However, the four-cluster option 

separated the remaining tumors into a POU2F3 (SCLC-P) subgroup and a distinct group of 

SCLC tumors with lower expression of all three transcription factor signatures (Figure 1B-C, 

Supplementary Figure 1B-C). Differential expression of ASCL1, NEUROD1, and POU2F3 
(Figure 1C) along with subsequent analyses support SCLC-P and this fourth subtype as 

biologically distinct and, thus, the four cluster approach was preferred.

Among the NMF-defined gene list (Supplementary Table 1), we observed differential 

expression of each transcription factor (Supplementary Figure 1D-F) and their targets 

(Supplementary Figure 1G) (Borromeo et al., 2016; Huang et al., 2018). In the fourth 

subtype, no prevailing transcriptional signature emerged, but the uniquely expressed genes 

included numerous immune checkpoints and human leukocyte antigens (HLAs). Thus, this 

subtype was designated SCLC-inflamed, or SCLC-I. SCLC tumors were not equally 

distributed across the four subtypes, demonstrating proportions as follows in the George et 

al. set: SCLC-A – 36%, SCLC-N – 31%, SCLC-I – 17%, and SCLC-P – 16%. Previously, in 

addition to the three transcription factor-defined subtypes (SCLC-A, -N, and –P), a fourth 

subtype defined by the transcription factor YAP1 was proposed (Rudin et al., 2019). We 

observed the expression of YAP1 (Supplementary Figure 1H) and its transcriptional targets 

(Supplementary Figure 1G) was higher in both SCLC-P and SCLC-I compared to the other 

two subtypes, but did not exclusively define a subtype – consistent with recent IHC 

characterization of SCLC tumors (Baine et al., 2020). Using monoclonal antibodies for 

ASCL1, NEUROD1, and POU2F3, we performed IHC on SCLC tumors and scored each for 

the fraction of tumor nuclei positive for each protein, as well as intensity (as measured by 

percentage of tumor nuclei multiplied by intensity on 0–3 scale, or H-score) (Supplementary 

Table 2). We identified representative examples of each of the four subtypes (Figure 1D-E), 

including a tumor with low expression of all three transcription factors, typical of SCLC-I.

While transcriptional SCLC tumor data sets are rare, we validated these subtypes in 

independent cohorts, including RNA microarray data from 23 SCLC tumor samples (Sato et 

al., 2013) (Supplementary Figure 1I). However, like the George et al. dataset, these tumors 

were mostly LS-SCLC. To ensure that no subtype was a feature restricted to early stage 

patients, we validated the subtypes using RNAseq from treatment-naïve patients enrolled on 

the Phase 3 IMpower133 trial (n=276). This registration study enrolled treatment-naïve 

patients with confirmed extensive stage SCLC (ES-SCLC) and randomized 1:1 to 

carboplatin/etoposide (EP) with or without the anti-PD-L1 antibody atezolizumab and led to 

the approval of carboplatin/etoposide/atezolizumab (EP+atezo) as a standard of care for ES-

SCLC (Horn et al., 2018). Using the same NMF-derived gene signature applied to the 

George et al. discovery set, we observe four subtypes defined by the aforementioned 

transcription factors, as well as other molecular features such as NE differentiation, 

inflammatory genes, and EMT (Figure 1F). The distribution of subtypes in IMpower133 

(SCLC-A - 51%, SCLC-N - 23%, SCLC-I – 18%, SCLC-P – 7%) varies somewhat from 

George et al. Finally, using RNAseq from 62 SCLC cell lines (Stewart et al., 2020a) we 
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identified representative cell line models of all four subtypes (Supplementary Figure 1J) 

confirming that subtype can be defined in the absence of tumor microenvironment.

Defining features of transcriptional subtypes

Using NE and non-NE gene lists (Zhang et al., 2018), we observed a clear distinction 

between NE subtypes (SCLC-A and –N) and non-NE subtypes (SCLC-P and –I) (Figure 

2A). For example, SCLC-A and –N have significantly higher expression of two common NE 

markers, Chromogranin A (CHGA) and Synaptophysin (SYP) (Figure 2B-C), while RE1 
Silencing Transcription Factor (REST), a repressor of NE genes (Lim et al., 2017), is higher 

in both SCLC-P and –I (Figure 2D).

While SCLC is considered an epithelial malignancy, EMT has been proposed as a potential 

mechanism of resistance (Allison Stewart et al., 2017; Bottger et al., 2019). Using a 

previously validated EMT score wherein more positive values indicate mesenchymal 

differentiation (Byers et al., 2013), SCLC-I is the most mesenchymal (highest mean score) 

and SCLC-A is the most epithelial (lowest mean score) (Figure 2E). Reverse-phase protein 

array (RPPA) data, which quantifies the expression of over 200 total and phospho-proteins 

for all 62 SCLC cell lines, supports this conclusion, as SCLC-I expresses very low levels of 

the epithelial marker E-cadherin (CDH1) and high levels of mesenchymal markers Vimentin 

(VIM) and AXL (Supplementary Figure 2A-C). Using representative tumors for each 

subtype identified by IHC (Supplementary Figure 2D), we compared IHC H-score for the 

mesenchymal markers VIM and AXL and found these most highly expressed in the SCLC-I 

tumor (Figure 2F). Such mesenchymal markers may serve as positive, confirmatory tumor 

assays to define SCLC-I.

Thyroid-transcription factor 1 (TTF1) expression is variable across SCLC tumors and its 

presence or absence has been proposed to define distinct SCLC subsets (Cardnell et al., 

2017). Proteomic analysis of the SCLC cell lines demonstrates that the majority of TTF1-

positive SCLC models fall within the SCLC-A subtype (Supplementary Figure 2E), 

consistent with NKX2–1 (the gene that encodes TTF1) as a known transcriptional target of 

ASCL1 (Borromeo et al., 2016).

Whole genome sequencing efforts revealed a high mutation rate in SCLC and near universal 

deleterious mutations in TP53 and RB1 (George et al., 2015). While RPPA assessment of 

p53 found no difference in expression between cell lines of the four subtypes 

(Supplementary Figure 2F), there was a modest increase in protein expression of RB1 in 

SCLC-I cell lines (Supplementary Figure 2G), although small sample sizes preclude strong 

conclusions. However, comparison between subtypes using tumor gene expression of the 

four most commonly deleted genes reported by George et al. in SCLC identified no stark 

differences (Supplementary Figure 2H). These investigators also reported several commonly 

amplified genes (George et al., 2015). While this copy number information is unavailable, 

we used gene expression values for these genes as a proxy for copy number variation (CNV) 

(Supplementary Figure 2I). The majority of these genes show no variation in expression 

across subtypes, with the exception that MYC expression is significantly higher in the 

SCLC-P subtype (Supplementary Figure 2J), suggesting that MYC-amplifications may 

preferentially associate with SCLC-P.
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We tested whether these four distinct subtypes are associated with specific genomic 

alterations. Using the criteria established by George et al. for functional significance, we 

examined the mutational landscape across the four subtypes (Supplementary Figure 2K-N) 

and observed no significant differences in frequency between subtypes, including in TP53 
and RB1 (George et al., 2015).

Thus, a phenotypic portrait of each subtype emerged from the coalescence of genomic, 

transcriptomic, and proteomic data across multiple cohorts. SCLC-A is an NE, epithelial 

subtype characteristic of TTF1-positive SCLC. While still highly NE, SCLC-N largely lacks 

TTF1 expression. Meanwhile, non-NE SCLC consists of SCLC-P and SCLC-I, which can 

be further subdivided based on EMT.

SCLC-I is a novel, inflamed SCLC subtype

In SCLC, responses to immune checkpoint blockade (ICB) are rare, likely due, in part, to 

low infiltration by immune cells and, specifically, cytotoxic T-cells (Hamilton and Rath, 

2019). The expression of both CD8A and CD8B, is significantly higher in SCLC-I, 

suggesting greater cytotoxic T-cell infiltration (Figure 3A-B). For a comprehensive 

assessment of immune cell infiltration, we used CIBERSORTx deconvolution (Newman et 

al., 2019) to quantify various immune populations using gene expression. As expected, 

SCLC-I tumors have the highest total immune infiltrate (Figure 3C) and cytolytic activity 

(CYT) score (Supplementary Figure 3A). While similar immune cell types were present in 

each subtype (Supplementary Figure 3B), the absolute number of several immune cell 

populations were markedly increased in SCLC-I, including T-cells, NK cells, and 

macrophages (Figure 3D).

Other proposed mechanisms of ICB resistance in SCLC include low expression of HLAs, 

interferon signatures, and immune checkpoints (Hamilton and Rath, 2019). Genes encoding 

HLAs and other antigen presenting machinery are expressed at significantly higher levels in 

SCLC-I tumors from George et al. (Figure 3E). Expression of an 18-gene interferon-γ-

related T-cell gene expression profile (GEP) (Ayers et al., 2017), which predicts response to 

ICB in solid tumors independent of tumor mutational burden (TMB) (Ott et al., 2019), was 

consistently higher in SCLC-I tumors (Figure 3F). While complete whole genome/exome 

DNA sequencing data was unavailable for these tumors to calculate precise TMBs, we 

utilized the proportion of mutated genes among the total genes as a proxy and observed no 

difference in mutation frequency across subtypes (Supplementary Figure 3C). SCLC-I 

tumors have higher expression of countless immune checkpoint molecules, including 

CD274, which encodes Programmed Death Ligand 1 (PD-L1), as well as PDCD1, which 

encodes its receptor Programmed Cell Death Protein 1 (PD-1) (Supplementary Figure 3D-

E). The same is true for CD80 and CD86, which encode the ligands for Cytotoxic T-

lymphocyte-associated protein 4 (CTLA4), and CTLA4 itself (Supplementary Figure 3F-H). 

Other targetable immune checkpoints more highly expressed in SCLC-I include CD38, 

IDO1, TIGIT, C10orf54 (VISTA), ICOS, and LAG3 (Supplementary Figure 3I-N). 

Additionally, Stimulator of Interferon Genes (STING)-induced T-cell attractant chemokines 

CCL5 and CXCL10 are more highly expressed in SCLC-I, again supporting an inflamed 
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microenvironment primed for ICB response (Supplementary Figure 3O-P) (Della Corte et 

al., 2020; Kitajima et al., 2019; Pantelidou et al., 2019; Parkes et al., 2017; Sen et al., 2019).

SCLC-I tumors derive greater benefit from immune checkpoint blockade

IMpower133 was the first randomized trial to demonstrate PFS or OS improvements with 

ICB in SCLC (Horn et al., 2018). In this cohort, we again observed robust expression of the 

18-gene T-cell GEP restricted to the SCLC-I group (Figure 3G). While the IMpower133 trial 

was not statistically powered for subtype-specific subgroup analyses, we investigated 

whether survival trends supported the hypothesis that SCLC-I tumors may preferentially 

benefit from ICB. When divided into assigned subtypes (Figure 1F), OS hazard ratios (HRs) 

support a trend toward benefit of EP+atezo across all four subtypes (Figure 3H), including a 

modest trend toward improved overall survival in SCLC-I (Figure 3I) relative to each of the 

other three subtypes that is not observed in the EP+placebo arm (Figure 3J). A subtype-by-

subtype analysis comparing survival between EP+atezo and EP+placebo arms (Figure 3H; 

Supplementary Figure 4A-D) again highlights the trend toward survival benefit across 

subtypes, although the median overall survival and the magnitude of benefit with the 

addition of atezolizumab is numerically greater in SCLC-I. We found a median OS in 

SCLC-I of more than 18 months in the EP+atezo arm, compared to just over 10 months in 

the EP+placebo arm, the latter of which is comparable to that seen for SCLC-A and SCLC-

N in the EP+placebo arm, suggesting that SCLC-I is not a prognostic marker. The addition 

of atezolizumab produces more modest gains in median OS in SCLC-A and –N than in 

SCLC-I. The SCLC-P sample size was small, but in this limited set, SCLC-P seemed to do 

especially poorly relative to the other three subtypes in each arm, despite the trend toward 

improvement with EP+atezo. These data suggest that SCLC-P subtype identity may be a 

poor prognostic marker. As expected, we observed a significant OS benefit for SCLC-I 

relative to all other tumors (HR=0.566, 95% CI:0.321 – 0.998) in the EP+atezo arm but not 

the EP+placebo arm (Supplementary Figure 4E-F), suggesting SCLC-I subtype assignment 

may be predictive of ICB benefit.

Unique therapeutic vulnerabilities across subtypes

To investigate other subtype-specific vulnerabilities, we utilized SCLC cell line in vitro drug 

response data for over 500 drugs from our own and publicly available data (Gay CM, 2019; 

Polley et al., 2016). While SCLC-P and SCLC-I cell line models represent small sample 

sizes, several consistent findings emerged. For cisplatin, the backbone of the standard of care 

for SCLC, we observed a trend toward SCLC-P models as the most sensitive (p=0.06), while 

SCLC-N and, especially, SCLC-I models were resistant to cisplatin and SCLC-A models 

demonstrated a range of sensitivities (Supplementary Figure 5A).

SCLC-P models were significantly more sensitive to all five PARP inhibitors (PARPi) tested 

in these data sets (Figure 4A; Supplementary Figure 5B). Additionally, the SCLC-P subtype 

was consistently most sensitive to anti-metabolites including anti-folates and nucleoside 

analogues (Figure 4A). Previous reports have identified the expression of SLFN11 as a key 

predictor of PARPi and platinum sensitivity in SCLC (Allison Stewart et al., 2017; Lok et 

al., 2017; Murai et al., 2016; Pietanza et al., 2018). It is notable that PARPi sensitivity 

observed for the SCLC-P subgroup was accompanied by modest and inconsistent expression 
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of SLFN11, despite consistent response to PARPi. Most of the highest SLFN11-expressing 

models are SCLC-A (Supplementary Figure 5C). Within SCLC-A, there is bimodal 

expression of SLFN11 and, if separated by high and low expression of SLFN11, there are 

stark differences in sensitivity to cisplatin (Figure 4B) and the PARPi olaparib (Figure 4C). 

Thus, additional second-order biomarker analysis beyond binary consideration of ASCL1 

may be required to identify further candidates in this subtype.

SCLC-N models were highly sensitive to multiple Aurora kinase (AURK) inhibitors 

(AURKi) (Figure 4A, Supplementary Figure 5D). cMYC protein expression is a predictive 

biomarker for AURKi sensitivity (Cardnell et al., 2017; Gay et al., 2019; Mollaoglu et al., 

2017; Owonikoko et al., 2020). Accordingly, SCLC-N cell lines have robust expression of 

cMYC (Supplementary Figure 5E), although this is in contrast to data showing that SCLC-P 

tumors have the highest MYC gene expression (Figure 2G). While this discrepancy is not 

easily explained given current models, we also observe SCLC-P cell lines are similarly 

sensitive to AURKi (Figure 4A, Supplementary Figure 5D).

SCLC-A models are sensitive to multiple B-cell lymphoma 2 (BCL2) inhibitors (BCL2i) 

(Figure 4A). Expression of BCL2 protein is a known correlate of BCL2i sensitivity in SCLC 

(Cardnell et al., 2017; Gay et al., 2019; Lochmann et al., 2018), and many of the cell lines 

with the highest BCL2 protein expression are among the SCLC-A subtype (Supplementary 

Figure 5F). Further, in our IHC analyses, we consistently observed higher expression of 

BCL2 in SCLC-A tumors (Figure 4D).

Although, we predict that ICBs will be most effective in SCLC-I, this cannot be assessed in 
vitro, or even easily in vivo given the lack of GEMMs representing SCLC-I. Interestingly, 

another target commonly associated with immune cells, Bruton’s tyrosine kinase (BTK), is 

highly expressed among SCLC-I tumors (Supplementary Figure 5G). Accordingly, this 

subtype was the most sensitive to the BTK inhibitor (BTKi) ibrutinib (Supplementary Figure 

5H). BTKi are approved for several hematologic malignancies but have not been previously 

explored as a target in SCLC. Another potentially targetable feature of SCLC-I tumors, 

albeit one that has largely eluded therapeutics in the past, is EMT. We have shown that 

SCLC-I is the most mesenchymal of the subtypes and reasoned that epigenetic modification 

may alter its EMT status and make it more amenable to treatment. We found that the 

investigational histone deacetylase inhibitor (HDACi) mocetinostat was capable of reducing 

Vimentin expression and increasing E-cadherin expression in an SCLC-I (H841) cell line, 

consistent with EMT reversal (Figure 4E). We generated an SCLC-I xenograft model via 

injection of this human cell line (H841) into murine flanks and treated tumors with either 

mocetinostat 100 mg/kg/day or vehicle only and found improved tumor control in the 

HDACi treated animals (Figure 4F).

We also hypothesized that SCLC subtypes may possess unique expression patterns of cell 

surface proteins (i.e. the surfaceome). These candidates may be uncovered when querying on 

a subtype-specific basis and could prove amenable to immune-based therapies, including 

chimeric antigen receptor (CAR) and antibody-drug conjugate (ADC) strategies. The 

inhibitory Notch ligand Delta-like ligand 3 (DLL3), for instance, was previously identified 

as highly expressed in SCLC, and was the target for the ADC rovalpituzumab tesirine 
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(Rova-T), which was assessed in a Phase II clinical trial for SCLC. While the trial 

demonstrated only modest activity, DLL3 remains a target of interest with CAR T-cell and 

bispecific T-cell engager (BiTE) products in development. We observed that DLL3 protein is 

more highly expressed in SCLC-A tumors and virtually unexpressed in SCLC-P and -I 

tumors (Supplementary Figure 5I), while across three transcriptional data sets, DLL3 was 

most highly expressed in SCLC-A and lowest in SCLC-P and –I ( Supplementary Figure 5J-

L). To investigate known cell surface targets more broadly, we examined expression of genes 

that encode known targets of therapeutic monoclonal antibodies, CARs, or ADCs (George et 

al., 2015; Sato et al., 2013; Stewart et al., 2020a).

Somatostatin receptor 2 (SSTR2) is a well-established target of somatostatin analogues (e.g. 

lanreotide) and is also the target of an ADC, PEN-221, already under development for NETs 

(Whalen et al., 2019; White et al., 2019). While SSTR2 is not broadly expressed in all 

SCLCs, we observed high expression in both SCLC-N tumors and cell lines (Figure 4G-I). 

Flow cytometric analyses confirmed expression of SSTR2 protein in SCLC-N cell lines and 

supported the trend toward greater relative expression in SCLC-N (Figure 4J). For SCLC-P 

and SCLC-I, we identified MICA, the gene which encodes MHC class I polypeptide–related 

sequence A, as highly expressed (Supplementary Figure 5M-O). MICA is the target of a 

molecule (IPH43) currently in preclinical development (Bonnafous, 2013). 

Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), is the target of 

labetuzumab govitecan, an ADC in clinical investigation for patients with refractory 

metastatic colorectal cancer, as well as a CAR T-cell (Das, 2017; Dotan et al., 2017; Sharkey 

et al., 2018; Thistlethwaite et al., 2017). While this molecule is not an established target in 

SCLC, we observed significantly higher CEACAM5 expression in SCLC-A (Supplementary 

Figure 5P-R).

Clinical features of SCLC subtypes

Basic clinical data for the patients from our NMF analysis are available (George et al., 

2015). There were no significant differences in relapse-free survival (Supplementary Figure 

5S) or OS (Supplementary Figure 5T). Demographic information such as age at diagnosis 

(Supplementary Figure 5U), mean total pack-years of smoking (Supplementary Figure 5V), 

and sex (Supplementary Figure 5W) were also not significantly different among the groups. 

The majority of these tumors were from LS-SCLC patients who underwent surgical 

resection and very few are from ES-SCLC patients. Survival exceeded that typically seen for 

SCLC (Byers and Rudin, 2015) due to the bias toward very early stage disease. The few ES-

SCLC patients were among the SCLC-A and SCLC-N subtypes, but there was no significant 

difference in frequency of non-limited stage status (Supplementary Figure 5X).

Intratumoral heterogeneity of SCLC subtypes

The prior analyses focused upon subtype intertumoral heterogeneity among SCLCs. 

However, these data sets lack the resolution to discern whether subtype intratumoral 

heterogeneity exists. IHC analyses revealed instances of tumors that largely represent a 

single subtype (Figure 1D-E; Supplementary Table 2). However, even these tumors have 

small populations of cells expressing other transcription factors. Others have made similar 

observations regarding ITH (Simpson et al., 2020). In rare cases, tumors appear truly mixed, 
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with multiple subtypes present in substantial proportions within a single tumor - consider 

tumor #5, wherein ASCL1 and NEUROD1 expressing cells are found in spatially distinct 

regions (Figure 5A). Thus, subtype ITH can exist, raising the possibility that these subtypes 

may represent a spectrum or continuum and that subtype ITH with may underlie the natural 

history of SCLC. Indeed, recent studies using SCLC GEMMs suggest that individual tumor 

cells undergo temporal evolution from one transcription-factor defined subtype to another 

(Ireland et al., 2020).

We derived a series of CDX models from SCLC patients (Stewart et al., 2020b), including 

patients awaiting/receiving frontline therapy and patients whose disease has relapsed. These 

models have been extensively validated to ensure recapitulation of the original patient’s 

molecular and clinical response characteristics (Stewart et al., 2020b). Tumors from these 

models were dissociated into single-cell suspensions and subjected to 10xGenomics 

scRNAseq with subsequent filtering steps selecting 2,000 cells for each model (Stewart et 

al., 2020b). Based on single-cell expression of ASCL1, NEUROD1, and POU2F3, we find 

both SCLC-A and SCLC-N predominant models within our xenograft library 

(Supplementary Table 3). t-Distributed Stochastic Neighbor Embedding (t-SNE) feature 

plots illustrate the presence or absence of single-cell expression of ASCL1 and NEUROD1, 

along with cells that are considered triple negative (as in SCLC-I). These plots underscore 

that even in ASCL1-predominant (Figure 5B) or NEUROD1-predominant (Figure 5C) 

xenograft tumors, there is modest subtype ITH.

scRNAseq also permits exploration of co-expression of subtype-defining transcription 

factors. Each cell can be classified into one of seven categories on the basis of the binary 

presence/absence of ASCL1, NEUROD1, and POU2F3 expression (and co-expression) 

(Supplementary Table 3). While most cells express only one of the transcription factors, the 

expression is not entirely mutually exclusive. While fewer than 1% of cells in any of the 

models expressed POU2F3, these rare POU2F3-positive cells all exhibit co-expression of 

ASCL1. Furthermore, in MDA-SC39, nearly 10% of the cells express both ASCL1 and 

NEUROD1, although this fraction is much lower in other tumors. While we found in bulk 

analyses that ASCL1 and NEUROD1 may be sometimes co-expressed in the same tumor 

(examples in Figure 1C) and that this may occur in a mutually exclusive pattern (as in Figure 

5A), these data demonstrate that such co-expression can occur at the single-cell level.

We considered that epigenetic regulation might govern a continuum of expression ranging 

from ASCL1-only to NEUROD1-only, with co-expression representing a transition state. We 

classified SCLC cell lines as ASCL1-only, NEUROD1-only, or “both” on the basis of gene 

expression. Using publicly available methylation data, we observed that these three 

classifications can be discriminated by the methylation beta-values of the region upstream of 

the NEUROD1 transcriptional start site (TSS) (Figure 5D; Supplementary Figure 6A-B). 

Specifically, ASCL1-only cell lines have relatively high methylation of sites both proximal 

and more distal to the NEUROD1 TSS, while NEUROD1-only cell lines have virtually no 

methylation of proximal and little methylation of more distal sites. Cell lines classified as 

“ both” demonstrate low methylation of proximal sites but methylation of more distal sites 

nearly as high as the ASCL1-only cell lines. As predicted, manipulation of epigenetic 

machinery can modulate the expression of NEUROD1 and, to some extent, ASCL1. We 

Gay et al. Page 11

Cancer Cell. Author manuscript; available in PMC 2022 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



selected seven SCLC-A cell lines with low to undetectable expression of NEUROD1 at 

baseline, but robust expression of ASCL1. Treatment with an inhibitor of lysine-specific 

histone demethylase 1A (LSD1i) results in little change of NEUROD1 expression (Figure 

5E). However, treatment with decitabine, an inhibitor of DNA methyltransferase 1 

(DNMT1i), results in significant, consistent upregulation of NEUROD1 expression (Figure 

5E), including in two cell lines with no detectable expression of NEUROD1 at baseline (data 

not shown). Meanwhile, both LSD1i and DNTM1i treatment results in modest, comparable 

downregulation of ASCL1 (Figure 5F). Together these data suggest that epigenetic 

mechanisms may regulate the distinction between SCLC-A and SCLC-N models.

Emergence of SCLC-I populations accompanies platinum resistance

In our scRNAseq data, we noted increased triple negative (i.e. SCLC-I) cells in platinum-

relapsed models (Supplementary Table 3; Figure 5G). As SCLC-I represents a highly 

platinum-resistant subtype, we reasoned that intratumoral shifts toward increasing SCLC-I 

may underlie platinum resistance. We selected two platinum-sensitive, ASCL1-predominant 

CDX models developed from treatment-naïve patients (MDA-SC53 and MDA-SC68). These 

models were treated with cisplatin to maximal response and then throughout relapse (“cis-

relapsed”) and collected for scRNAseq along with a matched vehicle treated tumor of same 

size (“treatment-naïve”) ( Supplementary Figure 7A and (Stewart et al., 2020b)). Using t-

SNE feature plots, we compared the presence or absence of expression of ASCL1 between 

the parental treatment-naïve model and the cis-relapsed model and, in both cases, observed a 

reduction in ASCL1-positive proportion of cells (Figure 6A-B) and the emergence of a 

distinct “island” cluster (highlighted by rectangle, Figure 6A-B). In both cases, this cluster 

contains a majority of the ASCL1-negative cells that emerge post-relapse. A closer view of 

this cluster (Figure 6C-D), highlights that the ASCL1-negative cells do not gain expression 

of NEUROD1, POU2F3, or even YAP1 (Supplementary Figure 7B-C). Instead, we find that 

this cluster contains cells that are largely triple negative (SCLC-I) (Supplementary Figure 

7D-E) and feature more mesenchymal EMT scores (Figure 6E-F) - again typical of SCLC-I 

cells. Furthermore, while cells from treatment-naïve models are almost universally negative 

for expression of HLAs, as expected for SCLC-A cells, those from the cis-relapsed model 

consistently gain expression of MHC class II genes, including HLA-DRB1 and HLA-DQA1 
(Figure 6C-D, Supplementary Figure 7F-I), but only in cells within the SCLC-I island 

cluster.

Prior studies have proposed that Notch activation is capable of mediating a switch between 

NE and non-NE SCLC cell fates (Ireland et al., 2020; Lim et al., 2017), similar to that 

observed in SCLC-A to SCLC-I. We compared expression of the Notch pathway 

transcriptional target HES1 between treatment-naïve and cis-relapsed pairs. In MDA-SC53, 

we see a modest increase in HES1 expression following relapse, indicating Notch activation, 

restricted to regions populated by SCLC-I cells (Supplementary Figure 7D; 8A). While in 

MDA-SC68, HES1 expression is modestly reduced following relapse, although the SCLC-I 

cluster maintains significant HES1 expression (Supplementary Figure 7E; 8B). The Notch 

inhibitory ligand, and putative SCLC target, DLL3 demonstrates precisely the inverse, as 

expected for a molecule that reduces Notch activation. In both MDA-SC53 and MDA-SC68, 

DLL3 expression is essentially absent in SCLC-I clusters (Supplementary Figure 8C-D), 
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although overall DLL3 is modestly increased post-relapse in MDA-SC53 and markedly 

decreased in MDA-SC68. These fluctuations in Notch targets and inhibitors are consistent 

with prior data highlighting the role of Notch signaling in SCLC phenotypic switching. 

While one recent study identified MYC activation as a critical initiator of this process, our 

models demonstrated minimal MYC, MYCL, or MYCN expression in regions populated by 

SCLC-I (Supplementary Figure 8E-F; data not shown).

It is not clear whether the small populations of SCLC-I cells that emerge following cisplatin-

relapse are sufficient to drive the observed platinum resistance. Two hypotheses account for 

ways that the observed subtype switching could drive global resistance. The first hypothesis 

suggests the limitations of the binary assessment of single-cell subtype used here 

underestimates the level of subtype evolution. In both MDA-SC68 and MDA-SC53, we see a 

global reduction in the level of ASCL1 expression following platinum resistance (Figure 6G; 

Supplementary Figure 8G). This reduction is not solely due to those cells which are now 

ASCL1 null, as illustrated by similar analyses using only those cells that retain some ASCL1 
expression (Figure 6H; Supplementary Figure 8H). In both cases, the EMT score also 

significantly increases following cisplatin-relapse even when restricted to ASCL1-positive 

cells (Supplementary Figure 8I-J). Together, these data suggest that even outside of the 

SCLC-I cluster containing now fully triple-negative cells, there is ongoing evolution toward 

lower ASCL1 expression and increasing features of SCLC-I (e.g. EMT) that may account 

for decreasing platinum-sensitivity.

A second, complementary hypothesis is that the SCLC-I cells that emerge following 

platinum-resistance may serve as a highly resistant, highly plastic (i.e. stem-like) population 

with potential to replenish the tumor even as still platinum-sensitive cells undergo cell death. 

To address this question, we explored quantitative measures of single cell plasticity using 

RNA velocity. First, we applied tSNE and a clustering algorithm to pooled cells from both 

cisplatin-naïve and cisplatin-relapsed tumors (Figure 7A-B; Supplementary Figure 9A-B). In 

each case, we again identified non-NE islands, similar to Figure 6, here almost exclusively 

composed of relapsed cells and showing an absence of ASCL1 and presence of SCLC-I 

features (e.g. ZEB2, a transcriptional mediator of EMT) (Figure 7C-D; Supplementary 

Figure 9C-D). Outside of the island clusters in MDA-SC68, sensitive and resistant cells 

often cluster together (Clusters 3, 6, and 7), but a significant portion of cells from the 

resistant model shifts to occupy an adjacent region of phenotypic space (Clusters 4, 5 and 8). 

RNA velocity shows that both cisplatin-naïve and cisplatin-relapsed samples exhibit positive 

velocity trending toward Cluster 4, making it a sink in the phenotypic landscape (Figure 7E-

H). The populations in Clusters 9–10 are enriched in resistant cells and SCLC-I markers. 

While the velocity vector lengths for cells in the SCLC-I cluster are significant, the direction 

of movement of these cells is less clear. Therefore, we used Partition-Based Graphical 

Abstraction (PAGA) to further investigate this movement. PAGA is a computational tool that 

reconciles clustering with continuous cell transitions inferred from RNA velocity. As shown 

in the PAGA maps (Figure 7F, H), the SCLC-I cluster in the resistant sample is able to 

transition to Cluster 5 in the main population. This suggests that, under dynamic 

equilibrium, SCLC-I cells act as a source that transitions toward the resistant sink Cluster 4, 

via Cluster 5, both of which are enriched with relapsed cells. Similar dynamics are observed 

in MDA-SC53, this time from Clusters 7, 9, and 10, which represent the island group of 
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largely relapsed cells with SCLC-I features. As in MDA-SC68, velocity streams and PAGA 

maps suggest that these cells may act to replenish those cells in Clusters 1, 4, and 6, which 

are enriched for resistant cells (Supplementary Figure 9E-H).

These observations suggest that the SCLC-I clusters in each model are highly plastic and 

may give rise to a more proliferative SCLC population. To test this possibility, we used RNA 

velocity to derive a metric for characterizing the plasticity of individual cells. Pulling from 

the theoretical notion of landscape potential, we call this metric Cell Transport Potential 

(CTrP). Briefly, CTrP is the average distance each cell is likely to travel through phenotypic 

space, calculated for each cell as the sum of distances to every other cell, weighted by the 

Markov-chain-model-derived probability of being found in each cell state (See Methods). 

Because the CTrP metric is a distance, it can be compared across samples, allowing us to 

compare the plasticity of SCLC-I cells to the rest of the resistant and the sensitive cells. The 

island clusters composed of relapsed, SCLC-I cells have markedly higher CTrP and, thus, 

plasticity (Figure 7I-J, Supplementary Figure 9I-J). Furthermore, resistant tumors show a 

near-universal increase in plasticity compared to sensitive tumors, and therefore SCLC-I 

cells are the most plastic phenotype regardless of treatment (Figure 7K; Supplementary 

Figure 19K). This suggests plasticity may be a defining characteristic of the resistant SCLC-

I cells.

We also considered whether higher proliferation or lower death rates could explain SCLC-I 

as a source of progenitor, treatment-refractory cells. SCLC-I cells are not significantly 

upregulated in cell cycle (S or G2M) genes, nor do they significantly downregulate cell 

death markers (Supplementary Figure 9L-O). In fact, assigning a phase to each cell suggests 

most SCLC-I cells are quiescent, with increased G1 genes, and may upregulate death 

markers slightly. Thus, SCLC-I cells appear to be neither more proliferative nor less death-

susceptible than the rest of the population.

Together, these single-cell analyses suggest that cisplatin resistance coincides with the 

emergence of a cluster of cells that typify the SCLC-I subtype, apparently derived from cells 

originally SCLC-A that have undergone subtype switching associated with fluctuations in 

Notch pathway activation. These SCLC-I cells, in turn, have stem-like features (e.g. 

plasticity) that may underlie the ability of a small population to drive a resistant tumor 

phenotype.

Discussion

SCLC has proven a challenge for the era of personalized therapy due, at least in part, to 

underappreciated inter- and intra-tumoral heterogeneity. Owing to their increased frequency, 

highly NE SCLC tumors driven by ASCL1 and NEUROD1, along with related factors such 

as cMYC and TTF1 expression, dominated previous efforts to delineate SCLC intertumoral 

heterogeneity (Cardnell et al., 2017; Carney et al., 1985; Gazdar et al., 1985; Zhang et al., 

2018). The recent discovery of a non-NE, tuft cell variant of SCLC driven by POU2F3 

(Huang et al., 2018) prompted a reevaluation of SCLC classification (Rudin et al., 2019). 

While non-NE SCLC has mostly been described as a single subtype (Zhang et al., 2018), we 

observed two unique non-NE molecular subtypes SCLC (SCLC-I and SCLC-P). SCLC-I 
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exhibits EMT and an inflamed phenotype, with high expression of genes related to HLAs, 

interferon-γ activation, and immune checkpoints, consistent with the association between 

EMT and immune-related gene expression (Mak et al., 2016). Notably, SCLC-I is not 

specifically defined by YAP1 expression, distinguishing this classification from those 

proposed elsewhere (Rudin et al., 2019), and consistent with subsequent IHC analysis that 

failed to identify a distinct SCLC-Y population (Baine et al., 2020). While SCLC-I is 

defined partly by its inflammatory features, it is also identified in systems devoid of tumor 

immune microenvironment, suggesting both tumor-intrinsic and –extrinsic signaling may 

underlie the biology and distinct therapeutic vulnerabilities of this subtype.

The clinical implications of this subtype classification are significant, as each subtype 

demonstrates unique vulnerability to investigational therapies. Take, for instance, PARP 

inhibitors, for which high SLFN11 expression is the prevailing predictive biomarker at this 

time (Allison Stewart et al., 2017; Pietanza et al., 2018). It appears that POU2F3-expressing 

tumors may capture a unique, mostly SLFN11-independent cohort that is also sensitive to 

PARPi. Indeed, a recent study in which patient-derived xenografts (PDXs) were treated with 

the PARPi olaparib (plus temozolomide) in a murine co-clinical trial found the lone SCLC-P 

model had the longest time to progression (Farago et al., 2019). However, clinical 

validations are needed for many of the in vitro observations. Consider the disappointing 

efficacy of BCL-2 inhibitors in unselected SCLC patient populations (Paik et al., 2011; 

Rudin et al., 2012) in which, based on the prevalence of SCLC-A, we might predict greater 

benefit. In these trials, BCL2 inhibitors were assessed in relapsed patients only and this may 

highlight the potential for subtype evolution post-platinum impacting biomarker expression.

While ICB is now a standard-of-care for SCLC, predictive biomarkers for this therapeutic 

class have remained elusive, with evidence supporting (and opposing) TMB and PD-L1 

expression (Chung et al., 2020; Hellmann et al., 2018). SCLC-I captures several features that 

are predictive of ICB response in other tumors. In the George et al. and IMpower133 data 

sets, SCLC-I constitutes ~17% and 18.5%, respectively, of all tumors, a comparable fraction 

to the response rates observed for ipilimumab/nivolumab (19–23%) and single-agent 

pembrolizumab (19%) in relapsed SCLC in CheckMate 032 (Antonia et al., 2016) and 

KEYNOTE-158 (Chung et al., 2020), respectively. Our subtype-specific analyses of the 

IMpower133 data supports the hypothesis that ICBs are especially effective in SCLC-I, 

while still supporting the use of the IMpower133 regimen irrespective of subtype. These 

analyses were, admittedly, unplanned and retrospective and, therefore, should be interpreted 

with these caveats in mind.

Single-cell analyses revealed that subtype-specific ITH may be a dynamic process, as 

populations of more chemoresistant triple negative (SCLC-I) cells increase with platinum 

treatment. In favor of subtype switching as the underlying mechanism, one of the two 

models analyzed (MDA-SC68), has essentially no pre-existing SCLC-I cells, as the few that 

are triple negative lack other features of SCLC-I, and may instead reflect gene dropout with 

scRNAseq. On the other hand, those triple-negative cells that emerge following relapse show 

consistent, robust features of SCLC-I, and we observe evidence of transcriptional shifts 

away from SCLC-A and toward SCLC-I even among cells that remain ASCL1 positive. 

Further, recent evidence from scRNAseq analysis of GEMMs show subtype and phenotypic 
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evolution over developmental time (Ireland et al., 2020; Lim et al., 2017). Others 

demonstrated the spontaneous appearance of a mesenchymal, inflamed descendent in culture 

of an SCLC-A cell line (Canadas et al., 2018; Krohn et al., 2014). Our data, however, links 

this switching phenomena to treatment and, specifically, platinum resistance – consistent 

with the fact that SCLC-I cells are markedly platinum resistant in vitro. The presence of 

small populations of cells with features of multiple subtypes could highlight cells in 

transition between subtypes or cells with plasticity to adopt multiple subtypes. Downstream 

scRNAseq analyses also highlight the potential impact of even of a small population of 

highly plastic, SCLC-I cells. Thus, strategies aimed at targeting, or limiting, this treatment-

induced population of SCLC-I cells are critical, in light of our analyses suggesting the stem-

like features of this population.

Most SCLC tumors and models analyzed were easily classified into one of the four 

subtypes, permitting a realistic scenario in which prospective subtyping is performed in a 

single umbrella trial, wherein patients are assigned to a treatment arm (e.g. SCLC-I to 

combination ICB, SCLC-P to PARP inhibitors) on the basis of their SCLC subtype. Subtype 

could be determined, and then monitored dynamically, by transcriptional, proteomic, or even 

epigenetic classification. If any one of these predictions demonstrated significant benefit, it 

would represent the first standard-of-care molecular biomarker selection for SCLC and a 

foundational step toward personalized therapy for this devastating disease.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Lauren A. Byers 

(lbyers@mdanderson.org).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The code generated during this study is available at 

GitHub (https://github.com/MD-Anderson-Bioinformatics/SCLC-Cancer-Cell-Manuscript). 

Previously unpublished datasets used and/or generated during this study are available as 

follows: SCLC cell line RNAseq via GEO Database (GSE151904), SCLC CDX single-cell 

RNAseq via GEO Database (GSE138474), and transcriptomic data from n=1302 genes for 

IMpower133 patients (EGAS00001004888).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All murine experiments were performed using 6 week old athymic nude mice from Envigo. 

All animals were maintained in accordance with the Institutional Animal Care and Use 

Committee of the M.D. Anderson Cancer Center and the NIH Guide for the Care and Use of 

Laboratory Animals.

No human experiments were performed within this context of this study. However, clinical 

outcome data that had previously been reported, including demographic information, (Horn 

et al., 2018) was subjected to subgroup analysis. The subgroup analysis included 271 
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patients with transcriptional and clinical outcome data available and within this subgroup 

ages ranged from 26 to 84 years (median = 64 years) and gender breakdown was 36.9% 

female and 63.1% male.

METHOD DETAILS

Gene and protein expression—Gene expression data included publically available data 

for SCLC tumors and cell lines (George et al., 2015; Polley et al., 2016; Sato et al., 2013). 

Protein expression was assessed for ~200 total and phosphor-proteins in SCLC cell lines by 

RPPA as previously described (Byers et al., 2012). In both cases, numeric values for gene or 

protein expression represent relative, or normalized, expression values and are log2 

transformed, as previously described (Byers et al., 2012). Lung-specific EMT score was 

calculated using gene expression values as previously described (Byers et al., 2013). Tumor 

gene expression data is available via the European Genome-phenome Archive under the 

accession code EGAS00001000925 (George et al., 2015) and via NCBI Gene Expression 

Omnibus (GEO) Database under the accession code: GSE99312 (Sato et al., 2013). Cell line 

gene expression data is available via GEO Database under the accession code: GSE73162 

(Polley et al., 2016). Additional cell line RNAseq data will be available via GEO Database 

under the accession code: GSE138474 at the time of publication, while RNAseq data from 

IMpower133 samples will be made public under planned publication embargo at the time of 

publication.

CIBERSORT deconvolution—Immune cell deconvolution of the RNAseq data was 

performed with CIBERSORTx (Newman et al., 2015; Newman et al., 2019), run in absolute 

mode using the LM22 signature over 1000 permutations. Cytolytic activity (CYT) score was 

calculated as previously described (Rooney et al., 2015) as the geometric mean of granzyme 

(GZMA) and perforin (PRF1) expression.

Drug response data—With the exception of cisplatin (Allison Stewart et al., 2017; Gay 

et al., 2019), drug response data included publically available data from (Polley et al., 2016) 

from http://www.sclccelllines.cancer.gov.

DNA methylation—For the methylation analysis, data was retrieved from and the NCI 

Small Cell Lung Cancer Screening Project (Polley et al., 2016) and available from GEO 

Database via accession code GSE145156 or from the following link: http://

sclccelllines.cancer.gov/sclc/downloads/xhtml. For the methylation analysis, methylation 

beta values and gene expression data were retrieved from the NCI Small Cell Lung Cancer 

Screening Project (Polley et al., 2016) and can be accessed under the following link: https://

sclccelllines.cancer.gov/sclc/downloads.xhtml. Methylation data from 66 cell lines was 

generated using the Infinium MethylationEPIC assay and averaged methylation beta-values 

of individual probes within each gene region was directly downloaded from the project 

homepage. Gene expression data was generated using the Human Exon 1.0 ST Array and 

processed data was directly retrieved from the project homepage. Data was analyzed using R 

v3.6.3 (R Foundation for Statistical Computing, Vienna, Austria) and figures were prepared 

using the ComplexHeatmap package and ggplot2 (H. Wickham. ggplot2: Elegant Graphics 
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for Data Analysis. Springer-Verlag New York, 2016). Differential methylation was 

calculated using a two-sided unpaired t-test.

Histology and immunohistochemistry—Patients were consented to tissue collection 

protocol LAB90–020 (“Molecular Approaches to Novel Therapies for Cancer: Research 

Repository of Normal and Neoplastic Tissues”) (Figure 1D-E, Figure 5A, Supplementary 

Table 1) or to a therapeutic protocol that mandated tissue collection (Figure 2F, 

Supplementary Figure 2D, Figure 4D). Tissue, once collected, was reviewed by staff 

thoracic pathologist to confirm SCLC.

Consecutive four- micrometer-thick tissue sections were cut from formalin-fixed paraffin 

embedded (FFPE) tissue for immunohistochemistry. IHC staining was performed with a 

Bond Max automated staining system (Leica Microsystems Inc., Vista, CA) using standard 

automated protocols. Leica Bond Retrieval Solution #2 (Leica Biosystems, equivalent to 

EDTA, pH 9.0) for 20 minutes was used for epitope retrieval. The primary antibody 

(ASCL1: 1:100, Clone 24B72D11.1, 556604, BDBiosciences, San Jose, CA; NEUROD1: 

1:100 Clone EPR20766, ab213725, Abcam, Cambridge, UK; and POU2F3: 1:200, 

polyclonal, NBP1–83966, Novus Biologicals, Centennial, CO, USA; Vimentin: 1:100, 

Clone D21H3, 5741, Cell Signaling Technology, Danvers, MA; AXL: 1:200, polyclonal, 

AF154, R&D Systems, Minneapolis, MN; BCL2: 1:200, Clone E17, ab32124, Abcam, 

Cambridge, UK) was incubated for 15 minutes at room temperature and detected using the 

Bond Polymer Refine Detection kit (Leica Biosystems) with DAB as chromogen. FFPE cell 

lines pellets with known protein expression of ASCL1, NEUROD1 and POU2F3 were used 

to establish the above optimal IHC conditions and assess sensitivity and specificity for each 

antibody. Positive tumor cells and H-scores were calculated as described previously 

(Pietanza et al., 2018).

Western blot—H841 human SCLC-I cells were treated with mocetinostat (1.0 μM; 

MGCD0103; Selleckchem), 10 ng/ml recombinant human TGFβ1 (GF111, Millipore 

Sigma) or DMSO for 72h. Cell lysates were harvested for western blot analysis. Antibodies 

used for western analysis include E-cadherin (3195, Cell Signaling Technology), Vimentin 

(3932, Cell Signaling Technology), and actin (sc-1616, Santa Cruz Biotechnology) as a 

loading control.

Murine drug treatment—Drug response studies were performed using 6 week old female 

athymic nude mice from Envigo. All animals were maintained in accordance with the 

Institutional Animal Care and Use Committee of the M.D. Anderson Cancer Center and the 

NIH Guide for the Care and Use of Laboratory Animals. One million H841 human SCLC-I 

cells were injected subcutaneously into each mouse left flank and mice were observed daily 

for appearance of tumors. Two weeks following cell injection, treatment of the mice began 

when the tumors reached 120–150 mm3. Vehicle was administered by oral gavage on week 

days and mocetinostat (100 mg/kg; Selleckchem) was administered by oral gavage on week 

days. Tumor volume and body weights were measured on all mice two times per week and 

calculated (width2 x length x 0.4).
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Real-time quantitative reverse transcriptase PCR—H1930, DMS79, H865, H69, 

H146, H1105, H1836, and H345 human SCLC-A cells were treated with demethylase, 5-

aza-2’-deoxycytidine (1.0 μM; Millipore Sigma), GSK-LSD1 inhibitor (1.0 μM; Millipore 

Sigma) or DMSO for 48h. Cell pellets were harvested for RNA extraction. RNA was 

extracted using the Zymo Direct-Zol RNA kit (Zymo Research, Irvine, CA-USA). 100 – 500 

ng RNA were reverse transcribed using the Bio-Rad iScript Reverse Transcription Supermix 

(Bio-Rad, Hercules, CA-USA). Gene expression was assessed using qRT-PCR on a Bio-Rad 

CFX96 thermo cycler. Bio-Rad PrimePCR assays for ASCL1 (qHsaCED0007040) and 

NEUROD1 (qHsaCID0006095) were used and normalized against the median expression of 

two house-keeping genes GAPDH (PrimePCR assay no. qHsaCED0038674) and RPL13A 

(PrimePCR assay no. qHsaCED0020417) (delta cT). Change of gene expression was 

calculated by subtracting the normalized expression level of ASCL1 and NEUROD1 in the 

group treated with decitabine or the LSD1 inhibitor from the DMSO treated control group 

(delta-delta-cT).

Flow cytometry—Approximately one million cells for each of the following SCLC cell 

lines were plated for flow cytometry analysis: H446, H1048, H847, H211, H196, H526, 

H841, H82, DMS79, H1930, H341, H146, H250, H510A, DMS273, H69, H524 and H889. 

Cells were harvested after 72 hours and surface stained against Somatostatin R2 using the 

SSTR2 Alexa Fluor 594 antibody (Novus Biologicals; IC4224T). After staining, cells were 

fixed in 2% paraformaldehyde and analyzed within 24 hours on a BD LSRFortessa Flow 

Cytometer. Data analysis was performed using FlowJo 10.7.1.

Circulating-tumor cell derived xenograft model generation—Patients diagnosed 

with SCLC at the University of Texas M.D. Anderson Cancer Center were selected on the 

basis of extensive-stage disease irrespective of age, gender or other clinical criteria. These 

patients underwent informed consent to Institutional Review Board (IRB)-approved protocol 

LAB10–0442 (“Evaluation of blood-based test for the detection of circulating tumor cells 

and circulating proteins and microRNAs and molecular analysis for polymorphisms and 

mutations”) and blood was collected. Technical details are as previously described (Stewart 

et al., 2020b). One vial of blood was collected for isolation and banking of plasma and 

peripheral blood mononuclear cells for use as a normal control. Ten milliliters of blood 

collected in EDTA vials was used for isolation of CTCs according to a previously published 

protocol (Hodgkinson et al., 2014). CTCs were isolated within 24h of sample collection. 

Briefly, whole blood was incubated with RosetteSep™ CTC Enrichment Cocktail 

Containing Anti-CD36 (Stemcell Technologies) and layered over a Ficoll gradient. The CTC 

layer was isolated, cells were spun down, mixed 1:1 with Matrigel and injected 

subcutaneously into the flank of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Mice 

were monitored for formation of a flank tumor and were euthanized when tumor burden 

reached 1000–1500 mm3. Pieces of the tumor were fixed in paraformaldehyde for 

histological analyses, snap frozen in liquid nitrogen for genetic and proteomic analyses, 

viably frozen in 10% DMSO in FBS for future use, and transplanted into the flank of 

athymic nude mice for CDX model maintenance. CDX models were maintained in vivo by 

serial transplantation of tumors and all analyses performed to date were from passages ≤4. 
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CDXs were derived from extensive-stage (ES) patients at different points of their treatment 

course.

Cisplatin-relapsed variations of two models (MDA-SC53 and MDA-SC68) were generated 

as previously described (Stewart et al., 2020b). Briefly, after transplanted tumors reached 

120–150 mm3 vehicle was administered intraperitoneally once per week or cisplatin 4–6 

mg/kg was administered intraperitoneally once per week. For treatment naïve, tumors were 

harvested after they reached 1,000 mm3 for single-cell RNAseq. For cisplatin relapse, 

treatment was briefly halted at maximal response until tumors again reached 150 mm3, at 

which point it was resumed until tumor volume reached 1,000 mm3, at which point tumors 

were harvested and processed for single-cell RNAseq.

Mice used for establishment of CDX models were 6 week old female NSG mice from 

Jackson Labs, while maintenance of CDX models and drug treatment studies were 

performed using 6 week old female athymic nude mice from Envigo. All animals were 

maintained in accordance with the Institutional Animal Care and Use Committee of the 

M.D. Anderson Cancer Center and the NIH Guide for the Care and Use of Laboratory 

animals.

Single-cell RNAseq—Tumors were harvested from mice directly into cold tissue storage 

solution (MACS) and shipped overnight. The next day, tumors were processed by enzymatic 

dissociation with Collagenase IV (600U/mL) and DNAse (2ug/mL) for a maximum of 

45min and neutralized in collection buffer (1% BSA, 10%FBS, 2mM EDTA in RPMI). 

Dissociated cells were spun down and treated with ACK lysis buffer (A1049201, GIBCO) 

for 3 min on ice and washed with collection buffer. Cells were then stained for anti-human 

HLA A647 (Biolegend 311414), Calcein AM (C3100MP) and DAPI (Lifetech D1306, 

1ug/mL) and sorted by Fluoresence-Activated Cell sorting (FACS) to select only live, human 

cells for downstream single cell transcriptomic analyses.Sorted cells were washed once with 

0.04% BSA in PBS and counted on Countess II automated cell counter (ThermoFisher). 

12,200 cells were loaded per lane on the 10x Chromium platform and processed for cDNA 

synthesis and library preparation as per manufacturer’s protocol using version 2 chemistry. 

cDNA and libraries were checked for quality on Agilent 4200 Tapestation and quantified by 

KAPA qPCR before sequencing on a single lane of a HiSeq4000 (Illumina). Raw Single-cell 

RNAseq data is available in GEO Database under the accession code: GSE138474 (Stewart 

et al., 2020b).

Downstream analyses were performed as recently published by our group (Stewart et al., 

2020b). Briefly, Cell Ranger v2.0 was used to convert Illumina base call files to FASTQ 

files. These FASTQ files were aligned to the hg19 human reference genome and 

transcriptome provided by 10X genomics. The gene vs cell count matrix from Cell Ranger 

was used for downstream analysis. The raw reads were processed using the Cell Ranger 

pipeline to obtain the UMI (unique molecular identifier). CDX samples from the same 

model were pooled together. Cells that have less than 3,000 expressed genes were filtered 

out, and genes that were expressed in less than 10% cells were also filtered out. After 

filtering, each CDX model was down-sampled to 2,000 for inter-model comparison. The 

UMI counts were transformed and normalized using the SEURAT package v2.3.1(Butler et 
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al., 2018), using the “NormalizeData()” function with default parameters. Cell cycle effects 

were adjusted by regressing out the G2M and S phase gene expression scores using 

“ScaleData()” function in SEURAT. Principle component analysis (PCA) was performed 

using the highly variable genes that were identified by SEURAT function 

“ FindVariableGenes()”. The first seven principal components were used for clustering and 

tSNE transformation, representing 63.7% ~ 66.4% of total variances. The tSNE 

transformation was performed using the RunTSNE with default perplexity value 30. Cell 

populations were identified using the SEURAT “FindClusters()” function with resolution set 

to 0.6. Marker genes for each cluster were identified using SEURAT function 

“FindMarkers()” with default parameters. The binary expression plots were generated by 

coloring the tSNE plot with the expression status of selected genes, i.e. expressed (UMI 

count >0) or not expressed (UMI count =0).

RNA Velocity and Proliferation/Death Marker Analysis—In order to calculate RNA 

velocity for each sample, data was realigned to the genome using the ‘run10x’ function from 

the Python package velocyto (La Manno et al., 2018). This results in a loom file with 

spliced, unspliced, and ambiguous read count matrices. Data for each CDX model was 

pooled and preprocessed by normalizing and log-transforming the data using Scanpy. From 

there, we downsampled each matrix to include only the filtered cells described above. Using 

the ScVelo Python package, a neighbor graph (adjacency matrices) and moments were 

calculated using scvelo.pp.neighbors and scvelo.pp.moments, respectively. We computed a 

tSNE dimensionality reduction and Leiden clusters, and then used ScVelo’s velocity method 

with groupby = ‘treatment’ and mode = ‘deterministic.’ This allowed us to comput velocity 

independently for each sample (untreated or treated), while still using the neighbors in the 

full tSNE for downstream analyses. We then computed velocity graphs, confidences, 

lengths, and tSNE embeddings for each CDX. We used ScVelo’s implementation of PAGA 

(Wolf et al., 2019) to compute PAGA maps, grouped by Leiden clusters, for each CDX.

Gene scoring for death markers and cell cycle were computed using Scanpy’s functions 

score_genes and _score_genes_cell_cycle respectively. Death markers were taken from gene 

ontology terms: GO:170739 (cell death), GO:170836 (necrosis), and GO:165105 

(apoptosis).

Cell Transport Potential (CTrP) Calculation—CTrp is a measure of the average 

distance a cell may travel according to its RNA velocity. For each independent sample 

(untreated or treated), we ran the following pipeline:

1. Using RNA velocity calculated as described above, and for each category 
(‘treatment’), compute a Markov Chain Model transition matrix. This is 

calculated using an adapted version of ScVelo’s transition_matrix function, in 

which transition probabilities between each two cells, i and j, is calculated from 

the velocity graph pairwise. Each entry is a probability describing the likelihood 

of moving from state i to state j, and each row is the probability distribution of 

transitions from state i. RNA velocity is compared to distances between other 

cells to get a pairwise cosine correlation matrix (velocity graph). A scale 

parameter (default 10) is used to scale a Gaussian kernel applied to the velocity 
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graph, restricted to transitions in the PCA embedding. This transition matrix, T, 

has dimensions nxn, where n = number of cells. It is then normalized to ensure 

each row adds to 1 (because each row is the probability of cell i transitioning to 

any other cell j, which should total 100%. Diffusion for T is scaled to 0 (i.e., 

ignored).

2. Calculate absorbing states (end states) using eigenvectors. Eigenvalues are 

calculated for the transition matrix. Any eigenvalue l = 1 (here, with a tolerance 

of 0.01), is associated with an end state distribution (eigenvector v); i.e., T(v) = 

lv implies that a distribution of states v will not change under further 

transformation (transitions) from T. If the Markov Chain is an absorbing Markov 

Chain, it will contain both transient states (t = number of transient states, where 

T(i,i) < 1), and absorbing states (r = number of absorbing states, where T(i,i) = 

1). For every absorbing state in the matrix, there will be an associated 

eigenvalue/vector pair, with l =1, because any initial configuration of states will 

continue to evolve until every cell has reached an absorbing state. Therefore, the 

multiplicity of l = 1 is equal to the number of end states (absorbing states, or 

irreducible cycles). The associated eigenvectors v thus correspond to the 

absorbing states in the Markov Chain, within the tolerance of 0.01.

3. Calculate the fundamental matrix. In an absorbing Markov Chain, it is 

possible for every cell to reach an absorbing state in a finite number of steps. Let 

us rewrite T, the transition matrix, as P:

P =
Q R
0 Ir

where Q is a t X t matrix, R is a non-zero t x r matrix, 0 is an r X t zero matrix, and Ir is an r 

X r identity matrix. Thus, Q describes the probability of transitioning between transient 

states, and R describes the probability of transitioning from a transient state to an absorbing 

state. The fundamental matrix N of P describes the expected number of visits to a transient 

state j from a transient state i before being absorbed. Because the Markov Chain is 

absorbing, this number is the sum for all k of Qk (k in (0, inf)):

N = ∑
k = 0

∞
Qk = It − Q −1,

Because Qk eventually goes to the zero matrix (all cells are absorbed), this sum converges 

for all absorbing chains. Furthermore, each rowi of the fundamental matrix describes the 

expected amount of time spent in state j starting from state i, and thus the row can be 

thought of as a distribution of weights associated with each state j for each starting state i. In 

practice, N is calculated as written above: the inverse of Q subtracted from the identity 

matrix. In practice, Numpy’s function numpy.linalg.inv(I-Q) is used to calculate N. If, 

however, the determinant of I-Q = 0, which occurs when I-Q is a singular matrix, the 

pseudoinverse is instead calculated using numpy.linalg.pinv(I-Q).
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4. Calculate a distance matrix. A distance matrix D (n X n) is then calculated 

using scipy’s function scipy.spatial.distance.cdist. Here, we calculate the 

Euclidean distance on the PCA embedding of each sample. Because PCA is a 

linear transformation, it preserves the Euclidean distance metric between states 

while reducing extraneous noisy dimensions, increasing the efficiency of the 

calculation. Distance may also be calculated directly on nonlinear dimensionality 

reduction techniques, such as UMAP and tSNE, but these distances tend to break 

down for samples that are highly discontinuous (discrete clusters) and should 

only be applied to continuous data that falls on a single manifold.

5. Calculate Cell Transport Potential. Finally, CTrP is calculated as the inner 

product of fundamental matrix N, and the distance matrix D. This gives an 

expected distance (sum of distances to j from i, weighted by time spent in j 

before absorption).

The advantage of this metric over similar techniques, such as pseudotime and other 

trajectory inference metrics, is that CTrP is an expected distance in linear (PCA) space, 

which can be compared across samples (assuming they have been embedded in the same 

PCA). In other words, unitless measures such as pseudotime cannot be compared between 

samples because their scales are arbritrary; alternatively, CTrP has a scale set across all 

samples, dependent only on transformations of the data itself (such as log-normalization and 

PCA).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analyses—NMF algorithm (Skoulidis et al., 2015) with the following criteria 

for gene selection to optimally identify differentially expressed genes to separate clusters: 

gene expression bimodal index ≥ 1.5, mean expression value ≥ 25th percentile, and standard 

deviation of expression value ≥ 50th percentile was utilized to identify the optimal number of 

clusters for SCLC tumor data set. As stated in the text, cophenetic correlation coefficient 

maximization was used to select optimal cluster number for subsequent analyses. Three and 

four cluster approaches yielded nearly identical cophenetic correlation results as shown in 

Figure 1. Generalized linear model via penalized maximum likelihood (glmnet R package) 

was applied to identify markers. Briefly, we used the Glmnet package (glmet_2.0–16) to fit a 

generalized linear model via penalized maximum likelihood. This model was fitted with 

multinomial family. Fit is repeated 20 times and, for each repeat, we do 10-fold change to 

select best alpha and features. We used the features shown in 80% of the repeats to re-fit in 

the 10-fold cross-validation to select the final best alpha and selected features. We then 

performed hierarchical clustering using these selected markers to the independent SCLC 

tumor and cell line cohort. To predict in the other datasets and display heatmaps, clustering 

used Pearson correlation for gene level and Euclidean distance for sample level to calculate 

the distance matrix and used the Ward method to perform clustering. ANOVA was used to 

compare molecular profiling data including gene and protein expression, EMT score, and 

drug response data. Fisher’s exact test was used to compute the association between 

categorical clinical variables and mutations with each subtype. Log rank test was used to 

compare the Kaplan-Meier RFS and OS curves.
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Software—Data statistics and bioinformatics analyses were performed using R (https://

www.r-project.org/) and Bioconductor packages (https://www.bioconductor.org/). For NMF 

and generalized linear model, we used R versions 3.3.0 and 3.5.1 and the following R 

packages: NMF_0.20.6 and glmnet_2.0–16.. For DNA methylation analysis (Figure 5F) we 

used R version 4.0.1 (2020–06-06) with the following R packages: circlize_0.4.10, 

data.table_1.12.8, reshape2_1.4.4, ComplexHeatmap_2.4.2, tidyverse_1.3.0, readxl_1.3.1, 

readr_1.3.1. For single-cell RNAseq analysis, we used R version 4.0.1 and the following R 

packages: circlize_0.4.10, data.table_1.12.8, reshape2_1.4.4, ComplexHeatmap_2.4.2, 

tidyverse_1.3.0, readxl_1.3.1, and readr_1.3.1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Differential expression of ASCL1, NEUROD1, and POU2F3 defines SCLC 

subtypes

• An inflamed SCLC subtype (SCLC-I) has low expression of ASCL1, 

NEUROD1, and POU2F3

• SCLC-I experiences greatest benefit from the addition of anti-PD-L1 to 

chemotherapy

• Subtype switching accompanies acquired resistance to platinum 

chemotherapy
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Figure 1: NMF identifies four transcriptional subtypes of SCLC.
Cophenetic correlation from NMF analysis of resected SCLC tumors (A). Differential 

expression of NMF-selected genes (B) and, specifically, ASCL1, NEUROD1, and POU2F3 
(C) across 4 clusters. IHC analysis of consecutive sections of patient SCLC tumor for 

ASCL1, NEUROD1, and POU2F3 demonstrating staining pattern for example of each of 

four subtypes (D). Bar graph indicating percentage of tumor cell nuclei positive for ASCL1, 

NEUROD1, and POU2F3 by IHC in each of four tumors above (E). Application of NMF-

derived gene signature to independent ES-SCLC (IMpower133) tumor dataset revealing four 

SCLC subtypes (F). Sample sizes: n=81 tumors (B-C) and n=276 tumors (F).
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Figure 2: Molecular and phenotypic distinctions between SCLC subtypes.
Differential expression of NE and non-NE genes across all SCLC tumors within each 

subtype (A), including comparison of mean expression of NE markers CHGA (B) and SYP 
(C) and REST, a transcriptional repressor of NE gene expression (D). Lung-specific 

epithelial-mesenchymal transition (EMT) score calculated for each SCLC tumor with 

comparison between mean EMT scores for each subtype (E). IHC analysis of representative 

tumors from SCLC-A and SCLC-N, as well as n=1 tumors of SCLC-I and SCLC-P, for 

Vimentin (VIM) and AXL protein expression with associated H-score (F). Sample sizes: 

n=81 tumors (A-E). p-values are the result of one-way ANOVA. Error bars: +/− 1.5x 

interquartile range (B-E).
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Figure 3: SCLC-I defines an inflamed subtype of SCLC.
Comparison of mean gene expression of CD8+ T-cell markers (A-B). CIBERSORTx 

analysis of total immune infiltrate (C) and specific immune cell populations (D). Heatmaps 

comparing expression of HLA and antigen presenting genes (E) and 18-gene -γ-related T-

cell gene expression profile (F) across subtyped SCLC tumors from George et al. Heatmap 

comparing expression of 18-gene -γ-related T-cell gene expression profile among tumors 

from IMpower133 (G). Forest plot demonstrating hazard ratios for overall survival and 

median overall survival values between carboplatin/etoposide + atezolizumab (EP+atezo) 

and EP+placebo arms in patients from IMpower133 as a collective (all tumors) and by 

subtype (H). Kaplan-Meier curves on a subtype-by-subtype basis for overall survival in EP

+atezo (I) and EP+placebo (J) arms in IMpower133. Sample sizes: n=81 tumors (A-F), 276 

tumors (G), and 132 patients (atezo arm) and 139 patients (placebo arm) (H-J). p-values in 

A-D are the result of one-way ANOVA testing. Error bars: +/− 1.5x interquartile range (A-
D) and +/− 95% CI (H).
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Figure 4. SCLC subtypes possess unique therapeutic vulnerabilities.
Comparison between each SCLC cell line subtype of mean relative in vitro IC50 values for 

PARP inhibitors, nucleoside analogs, anti-folates, AURK inhibitors, and BCL2 inhibitors 

(A). Comparison if IC50 values for cisplatin (B) and the PARPi olaparib (C) among SCLC-A 

cell lines separated into high and low SLFN11 expression. IHC analysis of tumors 

representing each subtype (representative images for SCLC-A and –N; and n=1 each for 

SCLC-P and –I) for expression of BCL2, with associated H-score noted (D). Western blot 

showing expression of E-cadherin and Vimentin in H-841 cell line with addition of TGFβ 
(EMT inducer) and mocetinostat (E). Murine H841 flank cell line xenograft growth curves 

with vehicle or mocetinostat treatment (F). Mean expression of the cell surface protein 

encoding gene SSTR2 in multiple datasets (G-I) along with flow cytometry analysis of 

proportion of analyzed cells that express SSTR2 protein in subtyped cell lines (J). Sample 

sizes: n=62 cell lines (A, H), n=38 cell lines (B-C), n=8 mouse tumors per treatment arm 81 

tumors (G), n=23 tumors (I), and n=18 cell lines (J). p-values are the result of one-way two-

sided T-test (B-C) or one-way ANOVA (A, G-J). Error bars: +/− 1.5x interquartile range (B-
C, G-J) or +/− SEM (F).
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Figure 5: Intratumoral heterogeneity of SCLC subtypes in tumors and tumor-derived models.
Spatially restricted IHC expression patterns of ASCL1 and NEUROD1 in heterogeneous 

tumor (A). t-SNE feature plots from scRNAseq for ASCL1, NEUROD1, and absence of 

ASCL1/NEUROD1/POU2F3 (SCLC-I; triple negative) in representative CDX model of 

SCLC-A (MDA-SC16) (B) and SCLC-N (MDA-SC49) (C) subtypes. Heatmap highlighting 

differential methylation (beta value) of NEUROD1 promoter both distal and proximal to 

transcriptional start site (TSS1500 and TSS200, respectively) in cell lines that express 

ASCL1-only, NEUROD1-only, or both (D). Relative expression of NEUROD1 (E) and 

ASCL1 (F) among SCLC-A cell lines following treatment with LSD1i and DNMT1i. 

Comparison of mean fraction of SCLC-I (triple-negative) cells from scRNAseq between 

CDXs derived from relapsed SCLC patients SCLC (relapsed) and those derived from never 

treated/currently frontline treated patients (frontline) (G). Sample sizes: n=2000 cells (B-C), 
n=28 cell lines (D), n=5 cell lines (E), and n=10 tumors (G). p-values are the result of 

Wilcoxon Rank Sum Test (E-F) or two-tailed T-test (G). Error bars: +/− 1.5x interquartile 

range (E-F) or +/− SEM (G).
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Figure 6. Emergence of SCLC-I populations coincides with cisplatin resistance in SCLC-A 
predominant xenograft models.
t-SNE feature plots from scRNAseq for ASCL1 comparing parental, treatment-naive and 

cisplatin-resistant/relapsed (cis-relapsed) CDX models (MDA-SC53, A; MDA-SC68, B). 

Highlighted portion of A and B illustrates distinct cluster with prominent ASCL1 loss (C, 
D). The cells in this region are now triple-negative (SCLC-I), with high EMT score (E, F). 
Violin plots comparing ASCL1 expression between MDA-SC68 treatment-naïve and 

cisplatin-relapsed xenograft tumors in all cells (G) and only ASCL1-positive cells (H). 
Sample sizes: n=2000 cells per arm. (A-H). p-values are the result of two-tailed T-test (G-
H).
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Figure 7: Emerging SCLC-I populations support tumor-wide resistance via transcriptional 
plasticity.
tSNE projection of all cells from MDA-SC68 CDXs with treatment history (A) or Leiden 

clustering assignment (B) denoted. Expression of ASCL1 (C) and ZEB2 (D) in these cells. 

Note the upper right, composed largely of cisplatin-relapsed cells, demonstrates lower 

ASCL1 expression, while the island clusters are essentially ASCL1-null. RNA velocity 

vector streams and PAGA maps for cells from cisplatin-naïve (E-F) and cisplatin-relapsed 

(G-H) CDX tumors. Cell plasticity, as measured by cell transport potential, for cells from 

cisplatin-naïve (I) and cisplatin-relapsed (J) tumors highlighting areas of greatest plasticity 

in island cluster within relapsed tumor. Comparison of transport potential between cisplatin-

naïve and –relapsed cells (K) demonstrating higher overall plasticity in cisplatin-relapsed 

cells. Sample sizes: n=2000 cells per arm.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti ASCL1 BD Biosciences Cat # 556604
Clone 24B72D11.1

Rabbit monoclonal anti NEUROD1 Abcam Cat # ab213725
Clone EPR20766

Rabbit polyclonal anti POU2F3 Novus Biologicals Cat # NBP1–83966

Rabbit polyclonal anti vimentin Cell Signaling Technologies Cat # 5741
Clone D21H3

Goat polyclonal anti AXL R&D Systems Cat# AF154

Rabbit monoclonal anti BCL2 Abcam Cat# ab32124
Clone E17

Rabbit polyclonal anti vimentin Cell Signaling Technologies Cat # 3932

Rabbit monoclonal anti E-Cadherin Cell Signaling Technologies Cat # 3195
Clone 24E10

Goat polyclonal anti actin Santa Cruz Cat # sc-1616

Mouse monoclonal anti SSTR2 Alexa Fluor 594 conjugated Novus Biological Cat # IC4224T
Clone 402038

Mouse monoclonal anti BCL2 Dako Cat # M0887
Clone 124

Mouse monoclonal anti AXL Abcam Cat # ab54803

Rabbit polyclonal anti DLL3 Cell Signaling Technologies Cat # 2483

Rabbit monoclonal anti cMYC Abcam Cat # ab32072
Clone Y69

Rabbit monoclonal anti TTF1 Epitomics Cat # 5883–1
Clone EPR8190

Rabbit polyclonal anti P53 Cell Signaling Technologies Cat # 9282

Mouse monoclonal anti RB1 Cell Signaling Technologies Cat # 9309
Clone 4H1

Polyclonal rabbit anti E-Cadherin Cell Signaling Technologies Cat # 4065

Bacterial and Virus Strains

None

Biological Samples

Circulating tumor cell-derived xenografts (CDX) MD Anderson Cancer Center
(Stewart et al., 2020)

MDA-SC16
MDA-SC49
MDA-SC53
MDA-SC68

Chemicals, Peptides, and Recombinant Proteins

5-aza-2’-deoxycytidine Millipore Sigma Cat # 189825

GSK-LSD1 inhibitor Millpore Sigma Cat # SML1072

Mocetinostat Selleck Chemicals Cat # S1122

Recombinant TGFβ Millipore Sigma Cat # GF111

Cisplatin MD Anderson Pharmacy

Critical Commercial Assays
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REAGENT or RESOURCE SOURCE IDENTIFIER

None

Deposited Data

SCLC tumor transcriptomic data George et al., 2015 EGAS00001000925

SCLC tumor transcriptomic data Sato et al., 2013 GSE99312

SCLC cell line transcriptomic data Polley et al., 2016 GSE73162

SCLC cell line methylation data Polley et al., 2016 GSE145156

SCLC cell line transcriptomic data This paper GSE151904

SCLC cell line drug response data Polley et al., 2016 https://sclccelllines.cancer.gov/sclc/

SCLC cell line drug response data Stewart et al., 2017 N/A

SCLC CDX single-cell RNAseq Stewart et al., 2020 GSE138474

IMpower133 tumor transcriptomic data This paper EGAS00001004888

Experimental Models: Cell Lines

Human: H446 cells ATCC Cat # HTB-171

Human: H1048 cells ATCC Cat # CRL-5853

Human: H847 cells ATCC Cat # CRL-5846

Human: H211 cells ATCC Cat # CRL-5824

Human: H196 cells ATCC Cat # CRL-5823

Human: H526 cells ATCC Cat # CRL-5811

Human: H841 cells ATCC Cat # CRL-5845

Human: H82 cells ATCC Cat # HTB-175

Human: DMS79 cells ATCC Cat # CRL-2049

Human: H1930 cells ATCC Cat # CRL-5906

Human: H341 cells ATCC Cat # CRL-5864

Human: H146 cells ATCC Cat # HTB-173

Human: H250 cells ATCC Cat # CRL-5828

Human: H510A cells ATCC Cat # HTB-184

Human: DMS273 cells Sigma Aldrich Cat # 95062830–1VL

Human: H69 cells ATCC Cat # HTB-119

Human: H524 cells ATCC Cat # CRL-5831

Human: H889 cells ATCC Cat # CRL-5817

Experimental Models: Organisms/Strains

Mouse: Athymic Nude-Foxn1nu Envigo Cat# 069-US

Oligonucleotides

qRT-PCR primers for ASCL1 BioRad qHsaCED0007040

qRT-PCR primers for NEUROD1 BioRad qHsaCID0006095

qRT-PCR primers for GAPDH BioRad pHsaCED0038674

qRT-PCR primers for RPL13A BioRad qHsaCED0020417

Recombinant DNA

None

Cancer Cell. Author manuscript; available in PMC 2022 March 08.

https://sclccelllines.cancer.gov/sclc/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gay et al. Page 39

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

FlowJo version 10.7.1 BD www.flowjo.com

CIBERSORT Stanford University www.cibersort.stanford.edu/

R versions 3.3.0; 3.5.1; 3.6.3; 4.0.1 R Foundation for Statistical Computing www.r-project.org

Bioconductor www.bioconductor.org

Python version 3.7.6 Python Software Foundation www.python.org

Other

None
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