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Why is delirium more frequent in the elderly?
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Abstract
An aging-related reduction in the brain’s functional reserve may explain why delirium is more frequent in the elderly than in
younger people insofar as the reserve becomes inadequate to cover the metabolic requirements that are critically increased by
stressors. The aim of this paper is to review the normal aging-related changes that theoretically compromise complex mental
activities, neuronal and synaptic densities, and the neurocomputational flexibility of the functional reserve. A pivotal factor is
diminished connectivity, which is substantially due to the loss of synapses and should specifically affect association systems and
cholinergic fibres in delirious patients. However, micro-angiopathy with impaired blood flow autoregulation, increased blood/
brain barrier permeability, changes in cerebrospinal fluid dynamics, weakened mitochondrial performance, and a pro-
inflammatory involution of the immune system may also jointly affect neurons and their synaptic assets, and even cause the
progression of delirium to dementia regardless of the presence of co-existing plaques, tangles, or other pathological markers. On
the other hand, the developmental growth in functional reserve during childhood and adolescence makes the brain increasingly
resistant to delirium, and residual reserve can allow the elderly to recover. These data support the view that functional reserve is
the variable that confronts stressors and governs the risk and intensity of and recovery from delirium. Although people of any age
are at risk of delirium, the elderly are at greater risk because aging and age-dependent structural changes inevitably affect the
brain’s functional reserve.
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Introduction

In 2006, Speciale et al. [1] raised the question as to whether
delirium, an “enormously impactful syndrome” [2] and a sub-
ject of semantic and research confusion [3, 4] since it was first
described more than two thousand years ago, is a marker of
brain fragility due to aging. This question was partially an-
swered by the European Delirium Association and American
Delirium Society [5], which established that delirium “is un-
questionably a marker of [brain] vulnerability”. However, the
relationship between brain vulnerability and aging has not
been addressed with as much resolution probably because it
is considered obvious given the phenomenology of aging, and
so how agingmaymake the brainmore susceptible to delirium
is still a matter of speculation.

The aim of this paper is to consider the changes that occur
in the brain during normal aging. It is assumed that these
changes reduce the brain’s functional reserve, thus causing
the fragility that may evolve into delirium more frequently
in the elderly than in the young. In hospitalised subjects, the
risk of delirium may increase from 3% in the young to 14%
and 36% in the elderly aged 64–74 years and over [6]: i.e.
about 2% per year after the age of 65 years [7].

Functional reserve and delirium

According to most experts, delirium is a confusional syn-
drome (“an acute disorder of attention and cognition”) [8] that
develops because of the action of various stressors on fragile
brain structures and their connections. Stressors act on nerve
and glial cell systems via metabolic mediators, such as low
energy levels following hypoxia, hypoglycemia and respira-
tory chain impairments, endo- and exotoxins, antibodies and
autoantibodies, unbalanced ions, pH and osmolarity, drugs,
and undue quantities of substantial metabolites and hormones.
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It is probably the balance between stressor strength and brain
resilience that governs the risk and intensity of and recovery
from delirium. Intuitively, brain resilience depends on the
brain’s functional reserve, which diminishes with aging: as
summarised by Inouye et al. [9] “delirium may serve as a
marker of the vulnerable brain with diminished reserve
capacity”.

The brain’s functional reserve has been defined as “the
remaining capacity [of the brain] to fulfil its physiological
activity, [particularly] in the context of disease […] or impair-
ment” [10] of the brain itself and any organ or body system
influencing its metabolism. Functional reserve is due to the
interaction of complex mental activities, neural and synaptic
densities, and neurocomputational flexibility [11], and may
depend on the balance between brain connectivity and adap-
tive plasticity [12, 13], and the brain structures and energy
available at any given moment. This suggests that the in-
creased vulnerability of the elderly to delirium is because they
have less functional reserve than the young [14]. According to
the homeostenosis theory of the aging-related decline in re-
serve [15], which “matches the observation that the typical
organ does not lose visible function so much as it loses mea-
surable reserve” [16], delirium emerges when the reserve can
no longer compensate for the effect of stressors. This view fits
the conclusions of a meta-analysis of functional magnetic res-
onance imaging (fMRI) studies that the risk of delirium is
related to the reduced structural connectivity of fragile net-
works, whereas the onset and course of clinical signs follow
incidental dysfunctions of residual networks [17–19]. The
question raised by Speciale et al. [1] may therefore be fully
answered by considering aging-related structural and func-
tional changes in the brain. Intuitively, the most relevant of
these are changes in neuritic wiring and connectivity, cerebral
blood flow (CBF), the blood-brain barrier (BBB), the dynam-
ics of cerebrospinal fluid (CSF), the respiratory chain, and
native immunity, which may also represent the postulate for
some of the hypotheses concerning the origin of delirium [4,
20, 21]. Moreover, as might be expected, the effect of aging
on functional reserve may be potentiated by the severity of
concomitant diseases, pre-existing cognitive impairment, and
reduced vision and hearing [22].

Aging-related brain changes, functional
reserve, and delirium (Tables 1 and 2)

Connectivity

Brain shrinkage is a gross outcome of normal aging. The
extent of the shrinkage was long debated until Fotenos et al.
[23] used magnetic resonance imaging (MRI) to measure
brain volume in 362 non-demented subjects aged 18–93 years
and found that, after adjusting for head size, it was inversely

related to age and was 0.22% per year (0.40% in the elderly).
This study confirmed the findings of a previous study of 465
healthy subjects aged 18–79 years that revealed grey matter
attenuation, particularly in the anterior cingulate, central, and
angular gyri [24]. Shrinkage is due to cellular and sub-cellular
changes, such as shortening dendritic branches [25], the loss
of dendritic spines [26] and synapses [27], the shrinkage of
large pyramidal neurons [28], the contraction of axonal fields
[29], and centrum ovale re-modelling leading to a 45% loss of
myelinated axons by the age of 80 years [30]. Although less
dramatic than once believed [31, 32] and variably distributed
[33, 34], these changes concur with lesions conventionally
attributed to pathology (β-protein deposits in neuropil and
vessel walls, neuronal and glial phospho-tau tangles, α-
synuclein and TDP43 protein immunoreactive neurons, senile
plaques [35], hippocampal sclerosis, micro-infarcts, and
microbleeds) to reduce neuronal connectivity [36], energy
metabolism [37], and neurotransmitter levels [4, 20].
Salthouse [38] looked for a relationship between cognitive
decline and age-dependent changes, particularly MRI
hyperintensities, and found that at most it was only weak.
However, although this conclusion is in line with the concept
of an asymptomatic burden of structural changes in brains that
have aged cognitively well, as suggested by observations in
the oldest old [39], it does not argue against the possibility that
the changes may become symptomatic because of the action
of stressors that absorb the functional reserve. In this regard,
the interactions between changes and stressors may be
expressed by the stressor-to-synapse ratio, which is expected
to increase with aging.

Table 1 Aging-related brain changes

A. Morpho-functional changes peculiar to aging

1. Reduced

a. Neural connectivity due to shortening dendritic branches, with the
loss of dendritic spines and synapses, the contraction of axonal
fields, and the loss of myelinated axons, all revealed by decreased
neurotransmitter and neurohormone levels

b. Cerebral blood flow due to micro-vessel stiffening, reduced vessel
density, and deficient autoregulation

c. Respiratory chain efficiency

2. Increased blood-brain barrier permeability following changes in
neurovascular components

3. Remodelled

a. Cerebrospinal fluid dynamics, with an increased fluid-to-brain
volume ratio

b. Immunosurveillance leading to the pro-inflammatory status of
microglia and macrophages

B. Incidental structural lesions common to diseases

a. Protein overload in cells, the neuropil, and vessel walls, with neuritic
dystrophy and degeneration

b. Micro-infarcts and micro-bleeds
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There has been a long debate about which brain structures
are the most vulnerable. Meynert [40] and Bonhoeffer [41]
attributed delirium to the fragility of the thalamic and associ-
ation systems supporting sensory perceptions, whereas
Lipowski [42] and Plum and Posner [43] regarded delirium
as a state of altered consciousness, thus implying that the main
target was the brainstem activating system. Later, based on a
longitudinal study of 100 delirious subjects (27 of whomwere
demented), Leonard et al. [44] maintained that delirium was
the consequence of a thalamus-mediated cortical impairment,
consistent with the slowing of electroencephalographic trac-
ings [45, 46] and a global reduction in CBF [47, 48], whereas
McLott et al. [49] speculated that post-operative delirium was
related to abnormalities in thalamic inputs to the amygdala,
hypothalamus, and periaqueductal grey matter. However, dif-
fusion tensor imaging MRI (DTIMRI) allowed Cavallari et al.
[50] to show that inter-hemispheric and fronto-thalamo-
cerebellar networks were the most involved in patients with
post-operative delirium. Trzepacz [51], who analysed func-
tional and imaging studies of psychiatric patients and delirious
patients sharing the same symptoms, reached more varied
conclusions and suggested that the right or left prefrontal

cortex, the anterior and right thalamus, or the right basilar
mesial temporoparietal cortex may cause the core symptoms
of delirium (e.g. disorientation, cognitive and language de-
fects, a disordered sleep-wake cycle, disorganised thinking),
whereas the ancillary symptoms (delusions, hallucinations,
illusions, affective lability) depend on the causative disease.
On the other hand, theories about the brain being organised
into opposing resting- and task-positive networks [52] gave
Sanders [53] the idea that delirium is due to abnormalities in
their functional relationships. The structures active at rest in-
clude the postero-medial cortex, the medial pre-frontal cortex,
and temporo-parietal junctions, whereas those activated by
tasks include the posterior cingulate gyrus and the precuneus,
dorso-, and ventrolateral pre-frontal cortex; the insula; and
supplementary motor areas. Using fMRI, Choi et al. [54]
found that rest- and task-activated structures were not func-
tionally opposed in delirious subjects as they were in normal
subjects and patients after recovery. Furthermore, some sub-
cortical structures (the intralaminar thalamus, the striatum, the
tegmentum, and the basal nucleus) were variably involved.

Changes in neurotransmitter balance, the sleep-wake cycle,
and stress response dynamics have also been considered in the
search for the more fragile structures. Reactions to stress start
from the hippocampus and hypothalamus and, via the auto-
nomic nervous system and pituitary gland, force the adrenal
glands to increase noradrenaline and cortisol secretion (hence
the definition of the hypothalamic-pituitary-adrenal [HPA]
axis) to provide the body and mind with anti-stress support
[55, 56]. In the limbic system (CA1 and CA3 hippocampus,
dentate gyrus, basolateral amygdala) and medial pre-frontal
and orbital frontal cortex (the most widely studied in labora-
tory animals for the presence of specific receptors), glucocor-
ticoids may foster dendritic circuitry and modulate
neurogenesis, but become neurotoxic over time. The shrink-
age of the hippocampus, amygdala, and frontal cortex in the
normal elderly and demented patients has been attributed to
chronic stress and cortisol neurotoxic activity, but neurode-
generation could modify the cortisol set-up [57], increase di-
urnal cortisol secretion [58], and cause abnormal stress re-
sponses. On these grounds, MacLullich et al. [59] speculated
that delirium may be due to stress responses that become
harmful after HPA axis dysregulation possibly caused by in-
flammatory mediators.

Acetylcholine, dopamine, glutamine, GABA, serotonin,
noradrenaline, tryptophan, phenylalanine, and histamine
levels are decreased in the normal elderly [4, 20], and unbal-
anced in delirious patients [60]. Delirium is most frequently
associated with reduced acetylcholine levels, excess dopa-
mine, noradrenaline, and/or glutamate release, or uneven
amounts in serotonin, histamine, and γ-aminobutyric acid
[19]. However, cholinergic deficiency [61] has so far been
the most widely accepted because of the confusional state
caused by anti-cholinergic drugs and the possibility of

Table 2 Principal targets
of morpho-functional
changes in aging brain
and their delirium-related
effects (→)

A. Nerve cell systems

Associative thalamo-cortical and
fronto-thalamic fibres

Brainstem activation system

Resting- and task-positive networks

Hypothalamic-pituitary-adrenal axis

Cholinergic systems

Melatonin-related systems

→ Decreased connectivity

B. Parenchymal vessels

Wall structure and neurovascular units:
endothelium, smooth muscle fibres,
basement membrane, astrocytes,
pericytes, microglia, and nerve cell
terminals

→ Inadequate blood flow and increased
blood-brain barrier permeability

C. Plexus and ventricles

Ependyma, plexus vessels, and water
pumps

→ Changes in cerebrospinal fluid
dynamics

D. Respiratory chain

Mitochondria in nerve and glial cells,
endothelia, and ependyma

→ Reduced efficiency

E. Immune system

Microglia and macrophages

→ Pro-inflammatory changes
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recovery bymeans of cholinergic agents. A variant hypothesis
based on an imbalance between cholinergic and adrenergic
neurotransmitters has been suggested by Itil and Fink [62],
whomaintained that hyperactive forms are due to a prevalence
of noradrenergic systems. A dopamine to acetylcholine imbal-
ance might also be involved [51], as suggested by the exis-
tence of delirium due to opioids and drugs that promote do-
pamine release, and the anti-delirium efficacy of neuroleptic
drugs that compete with dopamine. Guo et al. [63] have even
suggested that glutamate-glutamine cycle dysfunction may
explain post-surgical delirium. Multiple defects may lead to
contrasting effects [64] as in the case of the susceptibility to
delirium of Parkinsonian patients who have a prevalence of
cholinergic over dopaminergic and monoaminergic neurons.
In comparison, the normal elderly can rely on fewer striatal
dopamine receptors balancing residual nigral neurons
[65–67]: this lasting balance can appropriately support extra-
pyramidal functions under basal conditions, but it cannot eas-
ily combat stressors such as fever, infections, and
neuroleptics.

The reduced duration, continuity, and quality of sleep in
the old age [68, 69] all increase the risk of delirium. They are
associated with lower levels of melatonin and structural
changes in the networks supporting the sleep-wake cycle by
means of circadian melatonin release [70], although this might
be increased in hypoactive delirious patients [71]. Among the
involved structures, Zhong et al. [72] listed the retinal-
hypothalamic tract, the suprachiasmatic and galaninergic ven-
trolateral preoptic nuclei regulating the melatonin clock,
orexinergic neurons in the hypothalamus, brainstemmonoam-
inergic nuclei, hemispheric white matter, and the prefrontal
cortex. However, sleep deprivation is supposedly responsible
for so many dysfunctions [73, 74] that it may contribute to
causing delirium [75] before becoming one of its leading
symptoms.

Blood flow

CBF decreases with age [76] and, according to Amin-Hanjani
et al. [77], who analysed MRI angiograms of 325 healthy
subjects aged 18–84 years, and Zhang et al. [78], who used
arterial spin labellingMRI (ASL-MRI), the reduction amounts
to 2.6 mL/min and 0.38–0.45% every year. Aging also affects
CBF autoregulation: i.e. the ability to compensate for blood
pressure fluctuations and provide the brain with constant rates
of oxygen and glucose by means of arterioles that shrink and
expand in response to nervous and chemical inputs [79].
Aging could affect the neurons that regulate vascular tone
(bipolar nerve cells in sub-cortical white matter and projec-
tions from the locus coeruleus, raphe, tegmentum, and nucleus
basalis) [80, 81], and also affect autoregulation as a result of
structural alterations in arterioles and capillaries, such as the
attenuation of the endothelium with loss of mitochondria,

changes in connective tissue and smooth muscle fibres, the
thickening of basement membranes, microglia and pericyte
proliferation, the decreased expression of water channels in
astrocytic feet [82, 83], and β-protein overload. Additional
modifications such as vessel tortuosity and collagenosis,
string segments in the white matter [84], hyalinisation of ves-
sel walls due to arteriolosclerosis and lipo-hyalinosis [85, 86],
and the enlargement of perivascular spaces following an in-
creased pulse rate indicate wall stiffening [87], which impairs
the elastic reservoirs of pulse energy [88] and contributes to
slowing CBF [79, 89]. These changes may be relevant to brain
reserve insofar as they increase the risk of tissue hypoxia,
metabolic stress, and nerve cell death [90] when blood pres-
sure drops critically and, in the absence of autoregulation,
prevents CBF from fulfilling tissue metabolic requirements.
An additional risk may come from vessel density, which de-
creases with aging [91] despite attempts of capillary regrowth
and repair [82], and the characteristics of some intra-
parenchymal vessels: for example, a narrowing lumen of long
penetrat ing arteries might predispose to chronic
periventricular hypoxia, which can be revealed by MRI as
leukoaraios is . Never theless , the weight of MRI
hyperintensities as a risk marker of delirium in selected surgi-
cal patients [92–94] has been questioned [95]. Likewise, an
association between delirium and global or regional CBF ab-
normalities revealed byASL-MRI before surgery proved to be
doubtful [96], although low levels of cerebral oxygen satura-
tion have been found to predict delirium after cardiac surgery
in aged, neurologically impaired, or chronically hypoxic sub-
jects [97].

Blood-brain barrier

Aging-related capillary changes affect the efficacy of the
BBB, a neurovascular unit consisting of endothelial cells lying
on a membrane surrounded by astrocytic feet, pericytes, nerve
cell terminals, and microglia [98]. The tight junctions between
endothelial cells, and cell-specific functions allow the BBB to
act as an intercellular gate for water-soluble molecules and
trans-cellular transfer machine for lipophilic agents, molecules
carried by proteins, and substances that cross cells via recep-
tors and vesicles [99–101]. In addition, astrocytes mediate
metabolic traffic between blood and neurons [102], whereas
pericytes control capillary flow [103]. Any changes in the
neurovascular unit affect its functional coupling and lead to
inaccurate permeabilities that challenge brain tissue and inter-
stitial fluids with abnormal concentrations of ions, metabo-
lites, and substances that otherwise remain or are transferred
outside the brain. Erickson and Banks [104] have drawn at-
tention to the reduced expression of proteins carrying glucose
and insulin into the brain and β-protein outwards, and the
increased intracerebral diffusion of plasma proteins through
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inter-cellular clefts. β-protein overload may also contribute to
BBB breakdown [105].

The CSF-to-plasma albumin ratio has usually been used to
follow the increase in BBB permeability during aging [106].
A dynamic contrast-enhanced MRI study of 113 cognitively
normal subjects aged 21–83 years by Senatorov et al. [107]
found that the increase begins in mid-life, and Chen et al.
[108] have calculated that, in comparison with young barriers
that can stop proteins with a molecular weight of >91.9 kDa,
elderly barriers can be crossed by heavier molecules of up to
120 kDa. Some capillaries are more vulnerable to permeabil-
ity failure than others, thus suggesting where BBB dysfunc-
tion may start. Montagne et al. [109] measured the MRI gad-
olinium blood-to-brain transfer constant in 24 non-demented
subjects aged 23–91 years and found that BBB permeability
increases with age in the capillaries of CA1 and the dentate
gyrus of the hippocampus, but not in the capillaries of CA3 or
other regions. According to Nation et al. [110], hippocampal
BBB permeability is even more compromised in subjects with
mild cognitive impairment and a CSF load of sPDGFRβ, a
growth factor involved in angiogenesis but also a marker of
pericyte damage. This suggests that pericytes might be the
first victims of BBB breakdown, although it is the whole unit
that suffers structural modifications during aging. Erdö et al.
[111] have reviewed the literature on this point and listed a
loss of endothelial cells, a reduction in the number of endo-
thelial mitochondria and the expression of tight junction pro-
teins (occludin, claudin, immunoglobulin), a thickening of the
basement membrane coupled with decreased laminin content
and increased collagen IV and agrin, abnormal bodies and
larger mitochondria in the cytoplasm of pericytes, astrocytosis
with glial fibrillary acidic protein overexpressed in astrocytic
feet, and amoeboid microglia expressing pro-inflammatory
mediators. Similar changes have been reproduced in models
of BBB breakdown. Varatharaj and Galea [112] have
reviewed studies of the pro-inflammatory effects of lipopoly-
saccharides on cell cultures and laboratory animals, and indi-
cated abnormalities in transporters, prostaglandins, cytokines,
tight junctions, astrocytes, and endothelial surfaces. Acharya
et al. [113] reported that flurane anaesthetics can damage the
proteoglycans and sialoproteins contained on the endothelial
surfaces of laboratory animals and increase BBB permeability
to plasma proteins. These changes were much more severe
and lasted longer in older animals, which suggests that
fluranes may be involved in post-surgical delirium in the
elderly.

Cerebrospinal fluid

Aging-related changes in CSF have been attributed to oxida-
tive damage and atrophy of the ependymal cells covering
plexus and ventricles, and degeneration of the plexus vascular
stems [114]. Each of the various components of CSF

dynamics [115] is susceptible to senescence: its formation rate
(500–600 mL/day is filtrated and secreted via the choroid
plexus, ependyma, BBB, arachnoid surface, and modulated
by endocrine mechanisms), pressure (100 cmH2O), flow (pul-
satile from the plexus to subarachnoid spaces), turnover rate
(up to 4-fold daily), volume (160 mL inversely related to
turnover and intra-cranial blood volume), composition (99%
water, with a very low protein content), sleep-related recycling
via perivascular spaces and interstitial glymphatic networks,
and reabsorption by lymphatic and venous streams. Combined
with brain shrinkage, the overall effect of senescence on these
parameters is an increase in the CSF-to-brain volume ratio
[116, 117], which reflects reduced CSF formation (−50%),
turnover, recycling, and reabsorption, and increased protein
and glucose content with higher osmolarity [118].
Ventricular enlargement can also be magnified by hypoxia
because of the over-expression of aquaporin 4, a water chan-
nel of pericapillary astrocytes that pumps water from the blood
into interstitial spaces and may increase CSF water content
[119, 120].

The findings of experimental studies [121, 122] indicate
that aged CSF and changes in the BBB obstruct the adequate
delivery of nutrients (glucose, vitamins, peptides, nucleosides,
growth factors, etc.) to tissues via interstitial fluids and the
total removal of harmful metabolites [123]. Particular atten-
tion has been paid to β-protein, which accumulates in grey
matter during aging, particularly in subjects with Alzheimer’s
disease. This apparently neurotoxic accumulation is probably
due to an imbalance in the activity of RAGE (a receptor for
advanced glycation end products) and LRP-1 (low-density
lipophilic receptor-associated protein 1), which reside in plex-
us epithelia and capillary endothelia [124]. The former moves
β-protein from the blood into interstitial fluids and CSF, and
the latter does the opposite [125, 126]. Aging increases the
expression of RAGE and decreases that of LRP-1 [127], and
thus drives β-protein turnover towards accumulation. The
generation of β-protein is stimulated by aging-related chronic
hypoxia, glucose deprivation [128–130], and sleep dysfunc-
tions [131, 132], and its neurotoxicity may be strengthened by
the aging-related decreased expression of transthyretin, a pro-
tein that is secreted by plexus and binds and blocks β-protein
[114, 133].

Respiratory chain

Aging impairs cellular respiration because of a mitochondrial
dysfunction that lessens ATP production by 8% every ten
years, and even more in sedentary, overweight subjects
[134]. Furthermore, mitochondria cross reduced antioxidant
defences and accumulate reactive oxygen species, thus lead-
ing to oxidative stress and the generation of mitochondrial
DNA mutations, a loss of efficient energy metabolism, and
metabolic changes that progress to cell degeneration and
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apoptosis. Harman [135] suggested that this process, which
induces muscle volume to shrink from mid-life onwards, was
the basic mechanism of aging but it is now regarded as just
part of the involution of various interactive cell pathways
[136]. However, it has been suggested that delirium is related
to oxidative neuronal stress because oxygen saturation and
catalase levels are consistently lowered in delirious post-
operative patients [137, 138]. Neurons are particularly vulner-
able to mitochondrial impairment and anaerobic metabolism,
and the consistently increased lactate levels in elderly brains
due to mitochondrial involvement may be a marker of aging in
general [139]. The hypoxic vulnerability of neurons is related
to the fact that they depend on oxidative phosphorylation to
satisfy their energy needs. A review by Grimm and Eckert
[140] describes neurons as life-long cells that cannot retain
the mitochondrial assets received at birth because of the fail-
ure of mitochondrial functions of paramount importance, such
as fusion and fission dynamics, debris autophagy, and the
ability to increase energy production when required. It is pos-
sible that mitochondrial vulnerability to aging is greater in the
neuronal compartments that require more energy, particularly
the synaptic terminals and axons at the level of the nodes of
Ranvier, which suggests that mitochondrial aging is a critical
event that consistently affects neuronal connectivity.

Little is known about the mitochondrial aging of glial cells
or its neuronal effects, but Jiang and Cadenas [141] have re-
ported increased energy production by astrocytes at the ex-
pense of neurons, which suggests that aging is associated with
a detrimental change in the previously protective neuro-
centred functions of astrocytes.

Microglia and macrophages

The word “inflammaging” was coined by Franceschi et al.
[142] to define the pro-inflammatory state of the immune sys-
tem induced by life-long antigen pressure and stress [143],
which can generate an immuno-senescence that favours the
onset of aging-related diseases. This generalised involution
also affects microglia (the resident immune cells that protect
the brain against organic intruders) by eventually allowing
them to develop a neurotoxic pro-inflammatory phenotype.
According to Cornejo and von Bernhardi [144] and many
others who have studied the subject [145–147], aging microg-
lia are characterised by molecular changes (an increased ex-
pression of pro-inflammatory cytokines, inflammatory and
toll-like receptors and signalling, a decreased expression of
anti-inflammatory cytokines and the activation of inhibitory
factors, and the overproduction of reactive oxygen species)
that make them abnormally primed and unfit to do their work.
The morphology and dynamics of senescent microglia are in
line with changes in their younger functions [148, 149] as they
show an increased propensity for proliferation and enlarge-
ment. Their cytoplasm is fragmented, and the residual

processes are thicker, less ramified, and poorly reactive to
extra-cellular signals of injury. These changes lead to exag-
gerated inflammatory responses and simultaneously impaired
ability to catch and phagocyte intruders [150]. Two additional
phenotypes (rod-shaped and dark microglia) have been de-
scribed in elderly humans [151] and mice [152], but it is
doubtful that they are pertinent to normal aging. Unlike mi-
croglia, brain macrophages derived from circulating mono-
cytes become more anti-inflammatory and less prone to pro-
liferation; however, they are functionally like aging microglia
as they do not activate phagocytosis as effectively as when
they were young [153]. In addition, a senescent BBB may
interfere with their ability to cross vessel walls, which normal-
ly occurs at venule level. Conversely, increased BBB perme-
ability allows plasma albumin to enter astrocytes and over-
activate neurotoxic cytokines [107], particularly in patients
whose peripheral inflammation is responsible for further en-
dothelial and perivascular cell involvement [154]. Perry and
Holmes [155] have underlined the role of β-protein and
misfolded proteins in microglial priming, whereas Safaiyan
et al. [156] have observed microglia that become senescent
after accumulating membrane debris from myelin turnover.

“Inflammaging” implies that aging-related inflammation
can promote delirium, and so cytokines capable of mediating
the detrimental effect of stressors on the brain (and possibly
modifying the release of neurotransmitters [157] and activat-
ing the HPA axis) [55, 158, 159] may be markers of delirium.
Peripheral inflammation and infections are powerful humoral
and cell-mediated stressors that reach the brain via the blood
and the vagus nerve and stimulate innate immune cells to
produce pro-inflammatory cytokines [160, 161]. Interleukin-
6 (IL-6) may be the best peripheral marker of delirium as it is
not only detectable in plasma and CSF samples from delirious
post-surgical and post-stroke patients [158, 162–167], but also
in brain tissue together with markers of astroglial and
microglial activation [168]; however, plasma and CSF C-
reactive protein, tumour necrosis factor α, IL-1α and 1ß, IL-
8, IL-10, and soluble IL-1 and IL-6 receptor antagonist levels
may be equally important [169–174]. On the other hand, these
diagnostic markers have no predictive value as they are unde-
tectable before the onset of delirium [175].

Comments

This overview argues that senescence involves many
entwined changes that deplete the structural and metabolic
resources supporting cerebral functions and reserves, thus
making the brain increasingly vulnerable to the progression
of stress to a state of delirium without precluding recovery.
The relationships between these magnitudes can be trans-
formed into the proportion delirium : recovery = stressor :
reserve, which indicates that functional reserve and stressor
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strength are factors that act in opposition to each other to
govern not only the individual risk and severity of delirium,
but also the prospect of recovery, thus explaining why the aim
of treating delirium is to weaken stressors and strengthen
reserve.

If a decreasing reserve predisposes to delirium, residual
reserve and the capacity to resist stressors may not only par-
tially explain differences in individual resilience, but also al-
low the brain to recover. This was first pointed out byMeynert
[40], who coined the word “amentia” to connote confusion as
the clinical hallmark of delirium and underline the fact that,
unlike dementia, delirium is not necessarily irreversible.
Nevertheless, despite residual reserve, delirium can increase
the risk of incident dementia [176, 177], accompany long-
term cognitive decline [178], and worsen the severity of pre-
existing dementia [179, 180]. Davis et al. [181, 182] have
investigated whether the acceleration of cognitive decline in
later life induced by delirium is influenced by the tangles,
plaques, Lewy bodies, micro-infarcts, and micro-bleeds asso-
ciated with aging that may cause late-onset dementia. Their
study of 987 brain donors (mean age at death 90 years, median
follow-up 5.2 years, 279 with delirium) showed that the con-
version of delirium to dementia is not influenced by the bur-
den of the lesions conventionally associated with dementia;
they concluded that “additional […] pathologic processes
[should] specifically relate to delirium”, and suggested inflam-
mation as one of these. A complementary study by Erten-
Lyons et al. [183] investigated the progression of brain disease
and atrophy in 71 elderly subjects and the authors concluded
that the burden of Alzheimer-type and vascular lesions does
not justify the amount of brain atrophy in patients with mild
cognitive impairment and dementia, thus suggesting the in-
volvement of other factors. These findings may argue against
the conventional view that there is a continuum between nor-
mal aging and late-onset Alzheimer’s disease based on the
progression and increasing burden of plaques and tangles in
both conditions [184] and support the pathogenic role of
aging-related and stressor-mediated structural changes that
are accelerated and increased by particularly severe, recurrent,
and long-standing delirium. In other words, stressors may not
only drain functional reserve and lead to the onset of delirium
but, depending on their severity and the duration of delirium,
simultaneously increase the burden of common aging-related
changes in CBF, BBB, CSF dynamics, the respiratory chain,
immunosurveillance, and, finally, connectivity. One example
of the multiple consequences of even a single stressor on the
aging brain is COVID-19 encephalopathy [185, 186].

The difficulty of assigning these changes a recognisable
dimension is due to the difficulty of assessing and following
them during life to identify traits that are comparable with
those of dementia. However, some instrumental data have
been obtained from delirious patients that are consistent with
recovery or ongoing neurodegeneration. Yokota et al. [47]

used xenon-enhanced computed tomography to measure
CBF in delirious patients, and found that it was significantly
reduced at the level of the frontal, temporal, and occipital
cortex; the thalamus; and basal ganglia, but normalised after
delirium regression, and Choi et al. [54] found that fMRI
abnormalities involving the connections between the dorsolat-
eral, prefrontal, and posterior cingulate cortex can disappear
after recovery, although vanMontfort et al. [16] used the same
experimental design and found that functional abnormalities
persisted. Sharshar et al. [187] have reported that MRI
perivascular hyperintensities in the white matter of patients
with septic shock had a poor outcome that was attributed to
abnormally increased BBB permeability. Morandi et al. [188]
studied the structure of corpus callosum and internal capsule
white matter in 47 delirious patients by means of DTI-MRI
and found that reduced fractional anisotropy values indicating
white matter disruption persisted for a long time in association
with worse cognitive scores. Similar changes were found by
Cavallari et al. [189] in the periventricular, frontal, and tem-
poral white matter of 25 subjects presenting cognitive decline
one year after post-operative delirium. Prolonged delirium
may be responsible for reduced frontal lobe and hippocampal
volume [190], and worse global cognition and executive func-
tion scores after three and 12 months [5]. According to van
Munster et al. [191], increased plasma levels of astrocytic
protein S100 may be a marker of brain tissue damage in de-
lirious patients.

Concluding remarks

Although elderly subjects are at much higher risk of delirium
than the young, children and adolescents are also at high risk.
A review by Hatherill and Flisher [192] has described preva-
lence rates of 17–66% among referrals from paediatric inten-
sive care units, and others have reported rates of 4–29% and
13–44% [193, 194]. The size of the intervals has been attrib-
uted to methodological differences in diagnostic procedures
[194, 195], but a complementary explanation might be age,
given that delirium occurs more frequently in children aged <5
years and its prevalence peaks at 56% [196] before the age of
two years [194, 196]. The reduction in the prevalence of de-
lirium as children and adolescents become older indicates that
the ongoing organisation of neuronal hierarchies in
myelinogenetic cycles, and the maturation of barrier and
ependyma, blood flow autoregulation, native immunity etc.,
allows functional reserve to increase during brain develop-
ment as much as it decreases during aging following the onset
and progression of structural and functional changes. Taken
together, these data show a U-shaped distribution of brain
vulnerability to delirium in relation to age, which reflects the
availability of functional reserve and supports the relevance of
its pathogenic role in lifetime delirium.
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