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The brain functions through coordinated activity among distributed regions. Wide-field calcium imaging, combined with
improved genetically encoded calcium indicators, allows sufficient signal-to-noise ratio and spatiotemporal resolution to
afford a unique opportunity to capture cortex-wide dynamics on a moment-by-moment basis in behaving animals. Recent
applications of this approach have been uncovering cortical dynamics at unprecedented scales during various cognitive proc-
esses, ranging from relatively simple sensorimotor integration to more complex decision-making tasks. In this review, we will
highlight recent scientific advances enabled by wide-field calcium imaging in behaving mice. We then summarize several tech-
nical considerations and future opportunities for wide-field imaging to uncover large-scale circuit dynamics.
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Introduction

The brain is a modular structure in which communication across
multiple regions functions to drive behavior and cognition. The
emergent properties of such macroscopic interactions cannot be
deduced simply by characterizing individual brain regions sepa-
rately. Therefore, to better understand how the brain functions as
a whole, it is critical to record from multiple brain regions simulta-
neously. Wide-field functional imaging is well suited for this pur-
pose. In systems neuroscience, wide-field calcium imaging has
been used to record activity across broad brain areas simultane-
ously through one-photon excitation (Cardin et al, 2020).
Although this technique normally does not resolve single cells, it
enables simultaneous capturing of neural dynamics across brain
areas with a sufficient spatial and temporal resolution to resolve
behaviorally relevant information (for comparisons of various
large-scale imaging modalities, see Table 1). This review will
mainly focus on macroscale wide-field calcium imaging applied to
most of the dorsal cortex in mice. Similar approaches are also
called “mesoscale” and “mesoscopic,” often emphasizing the spa-
tial resolution that can resolve subregions within individual brain
areas but does not achieve single-cell resolution.

Wide-field functional imaging has traditionally been achieved
by measuring the “intrinsic signal” or using fluorescent voltage-
sensitive dyes. Intrinsic signals are changes in optical reflectance
caused by changes in blood volume and oxygenation which cor-
relate with local neural activity (Berwick et al., 2005; Ma et al,,
2016b; Mateo et al., 2017). Unlike intrinsic signals, voltage-
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sensitive dyes serve as direct indicators of neural activity by
responding to membrane potential changes; furthermore, they
provide a higher temporal resolution owing to their faster
kinetics (Orbach et al., 1985; Grinvald and Hildesheim, 2004).
Although both approaches have been used to characterize large-
scale functional properties of cortex (Blasdel and Salama, 1986;
Grinvald et al, 1986; Frostig et al., 1990; Bonhoeffer and
Grinvald, 1991; Prechtl et al, 1997; Mohajerani et al., 2010),
their ability to capture cortical dynamics is limited because
of relatively low signal-to-noise ratio (SNR). Therefore,
extracting activity patterns often relies on averaging over
repeated measurements, ignoring the variability in moment-
by-moment interactions between cortical regions.

In recent years, the application of wide-field imaging in systems
neuroscience has been revolutionized with the improvement of ge-
netically encoded fluorescent indicators. These engineered proteins
change the fluorescence intensity in response to a variety of neuro-
nal events, including transmembrane voltage, intracellular calcium
concentration, vesicle release, and changes in neurotransmitter con-
centration (Lin and Schnitzer, 2016; Sabatini and Tian, 2020).
Among these protein sensors, genetically encoded calcium indica-
tors, especially the GCaMP family (Tian et al., 2009; Akerboom et
al, 2012; T. W. Chen et al,, 2013; X. R. Sun et al., 2013; Y. Yang et
al,, 2018; Dana et al., 2019), have become a standard choice to visu-
alize neural activity in both one-photon and multiphoton imaging.
GCaMP fluorescence is sensitive to changes in intracellular calcium
dynamics that are dominated by action potentials and thus reports
neuronal spiking activity with high SNR. Genetic encoding of
GCaMP also enables stable expression over time for longitudinal
recordings. These advantages of GCaMP allow wide-field calcium
imaging to overcome the difficulties often encountered with intrin-
sic signal imaging and voltage-sensitive dye imaging, making it an
attractive approach to characterize large-scale cortical dynamics in
behaving animals.
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Table 1. Comparison of several large-scale imaging modalities in mice based on the parameters typically used in recent studies”

Wide-field calcium imaging Other wide-field functional imaging

Large-scale two-photon calcium imaging 3D volumetric two-photon calcium imaging ~ BOLD fMRI

Fov ~10 % 10 mm” to cover most of the dorsal ~10 10 mm? to cover most of the dorsal

cortex cortex

Spatial resolution ~10-100 pum/pixel ~10-100 zem/pixel

Temporal resolution/sampling ~30 Hz, actual temporal resolution may be ~ ~30 Hz for intrinsic signal imaging, actual

frequency lower (~50-100 ms) because of slow temporal resolution may be lower

kinetics of some indicators (~100 ms) because of slow kinetics of
intrinsic signals; ~0.1-1kHz for volt-
age-sensitive dye imaging

Recording depth

Superficial layers, << ~200 um Superficial layers, << ~200 um

Optics/camera/lens requirement Custom-built or commercial fluorescence Custom-built or commercial fluorescence

stereo microscopes and CCD or CMOS stereo microscopes and CCD or CMOS

cameras cameras

Selected references Makino et al., 2017; Musall et al., 2019;

Pinto et al., 2019; Peters et al., 2021

Bauer et al., 2014; Kyriakatos et al., 2017;
Kura et al., 2018; Karimi Abadchi et al.,
2020

~5x 5 mm’ Varying across different designs and studies, Whole brain
typically ~0.16-1 mm2 x 100-
600 um axial range
Cellular or subcellular resolution Cellular or subcellular resolution ~0.2-0.4 % 0.2-0.4 % 0.5-1.2
mm’/voxel in recent studies
Varying across different designs and studies, Varying across different designs and studies, ~1's
ranging from 0.1-7.5 Hz to scan the usually ~10-50 Hz

whole FOV with cellular resolution

Up to ~600 m Up to ~600 um Whole brain

Custom-built or commercial two-photon Custom-built or commercial two-photon Commercial systems

microscopes with wide FOV and ran- microscopes with multidepth scanning,
dom-access scanning using, e.g., deformable mirror, spatial
light modulator, Bessel optical module,
and variable-focus lens
Sofroniew et al., 2016; Stirman et al., 2016; Ji et al., 2016; Nobauer et al., 2017; Song
Ota, 2020; Yu et al., 2020 et al,, 2017; W. Yang et al., 2018;
Weisenburger et al., 2019; Lu et al.,

2020

Schwalm et al., 2017; Schlegel et al.,
2018; Jung et al., 2019; Lake et
al,, 2020

“Within each modality, higher sampling frequency can be achieved at the sacrifice of spatial resolution and vice versa.

Several studies have conducted one-photon calcium imaging
with GCaMP at a mesoscale level with the field of view (FOV) cov-
ering several adjacent cortical regions in adult animals (Vanni and
Murphy, 2014; Niethard et al., 2016; Wekselblatt et al., 2016; T.
W. Chen et al.,, 2017; Zhuang et al., 2017). This approach has also
been used to investigate the developing circuits in both cortex and
subcortical regions (Ackman et al,, 2012; Burbridge et al., 2014;
Gribizis et al., 2019). Meanwhile, a growing list of studies use
wide-field calcium imaging to characterize cortical activity
at a macroscopic level with an FOV encompassing most of
the mouse dorsal cortex (Fig. 1). Such studies have deep-
ened our understanding of cortex-wide dynamics in various
cognitive processes, ranging from relatively simple sensori-
motor integration to more complex decision-making tasks
(Allen et al., 2017; Makino et al., 2017; Gilad et al., 2018;
Musall et al., 2019; Pinto et al., 2019; Shimaoka et al., 2019;
Gilad and Helmchen, 2020; Salkoff et al., 2020). In this
review, we first focus on recent studies performing wide-
field calcium imaging in behaving mice. Using these exam-
ple studies, we highlight the versatility of wide-field calcium
imaging for revealing novel insights into various questions.
We then discuss several technical considerations for wide-
field calcium imaging. Finally, we discuss future opportuni-
ties for the development and application of wide-field imag-
ing to uncover large-scale circuit dynamics.

Propagation of cortical activity in sensorimotor integration

Generating appropriate actions requires integrating sensory in-
formation from the environment, and such sensorimotor proc-
essing often recruits distributed brain regions to achieve precise
sensory perception, action selection, and movement execution.
The spatiotemporal dynamics of large-scale cortical activity dur-
ing sensorimotor transformation have been studied extensively
in the rodent whisker system (Ferezou et al., 2007; Matyas et al.,
2010; Kyriakatos et al., 2017; Sreenivasan et al., 2017; Gilad et al,,
2018). A series of studies using wide-field voltage-sensitive dye
imaging has revealed that a single whisker deflection evokes a

highly distributed cortical sensory response, starting in barrel
cortex and then propagating to primary motor cortex, to drive
whisker movements (Ferezou et al., 2007; Matyas et al., 2010;
Kyriakatos et al., 2017). The spread of the sensory response is
attenuated during active whisking, when the animal’s ability to
detect weak stimuli is impaired, suggesting that the distributed
sensory response is dynamically modulated by ongoing behavior
(Ferezou et al., 2007; Kyriakatos et al., 2017). With wide-field cal-
cium imaging, Gilad et al. (2018) further investigated the macro-
scopic cortical dynamics under different behavior strategies in a
whisker-based texture discrimination task with delayed actions
to report the choice (lick or no lick). During the delay period
between the texture sensation and the chosen action, the activa-
tion of different cortical regions, especially the secondary motor
cortex (M2) and a posterior cortical region area P, was contin-
gent on the behavioral strategies animals deployed to solve the
task. When mice took an active strategy (engaging their body to-
ward the approaching texture), M2 showed sustained activity
during the delay period, holding information about the future
action. In contrast, in mice using a passive strategy in which they
quietly awaited the texture touch, area P displayed enhanced ac-
tivity during the delay period, holding information about the
stimulus identity. Furthermore, optogenetic inactivation of M2
and area P during the delay period led to impairment in behav-
ioral performance during active and passive strategies, respec-
tively. These results support the model that cortical activity can
be dynamically routed to different regions to hold the task-rele-
vant information before converging to similar chosen actions
(Gilad et al,, 2018). It is worth noting that the unbiased observa-
tion with wide-field calcium imaging revealed a novel role of
area P in texture discrimination. Area P has been mainly impli-
cated in visual processing in previous literature (Garrett et al.,
2014; Zhuang et al,, 2017), and its function in tactile texture dis-
crimination suggests that it may be generally involved in process-
ing information related to object identity (Gilad et al., 2018).
With wide-field imaging, these studies provide the first glimpse
of the macroscopic activity pattern during sensorimotor
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Wide-field calcium imaging of cortex-wide activity. A, Left, Imaging setup. Middle, An FOV of wide-field calcium imaging in a mouse cortex expressing GCaMP6s in cortical excita-

tory neurons. Right, Cortical regions (based on the mouse brain atlas from the Allen Institute) simultaneously recorded by wide-field calcium imaging. Green dashed box represents the area
within the FOV. M2, Secondary motor cortex; M1, primary motor cortex; S1, primary somatosensory cortex; PPC, posterior parietal cortex; S2, secondary somatosensory cortex; Aud., auditory cor-
tex; RSC, retrosplenial cortex; Vis., visual cortex. B, Example cortex-wide image frames and fluorescence traces of individual pixels in a behaving mouse. Gray dashed lines indicate the time of

image frames in fluorescence traces of example pixels.

integration and demonstrate its fundamental flexibility even in
simple sensorimotor processing.

Distributed encoding of different types of information in
cortex

The distributed activation of many brain areas has been observed
in various sensorimotor tasks (Goard et al., 2016; Allen et al.,
2017; Kyriakatos et al., 2017; Makino et al.,, 2017; Gilad et al,,
2018; Hattori et al., 2019; Musall et al., 2019; Pinto et al., 2019;
Shimaoka et al, 2019; Steinmetz et al, 2019; Gilad and
Helmchen, 2020; Salkoff et al., 2020); however, systematic opto-
genetic inactivation generally localizes behavioral effects to only
a few regions (Guo et al.,, 2014; Goard et al., 2016; Allen et al.,
2017; Pinto et al., 2019; Zatka-Haas et al., 2020). Therefore, it is
important to resolve the information represented in each cortical
region and its relevance to the ongoing behavior. Compared with
wide-field imaging using intrinsic signals or voltage-sensitive
dyes, the higher SNR of wide-field calcium imaging enables a
detailed examination of information encoded in cortical activity
using regression and decoding analyses on a trial-by-trial or
moment-by-moment basis, without averaging out the behavior-
ally relevant variability (Allen et al, 2017; Gilad et al., 2018;
Musall et al., 2019; Pinto et al,, 2019; Salkoff et al., 2020; Zatka-
Haas et al., 2020). By monitoring a variety of behavioral informa-
tion and task events encoded in cortex-wide activity, researchers
are able to systematically relate behavioral processes to neural ac-
tivity (Musall et al., 2019; Shimaoka et al., 2019; Salkoff et al.,
2020; Zatka-Haas et al., 2020).

Task-relevant information, such as sensory stimuli and
choice, is represented in distributed but specific sets of cortical
regions, generating distinct cortical activity patterns during task
performance (Gilad et al., 2018; Musall et al., 2019; Pinto et al,,

2019; Salkoff et al., 2020; Zatka-Haas et al., 2020). Furthermore,
the cortical activity pattern is modulated by task demands. Tasks
with complex cognitive demands evoked activity profiles that
were more different across cortical regions and engaged more
spatially distributed information processing in the cortex (Pinto
et al., 2019). For example, the encoding of sensory and choice in-
formation was more distributed in evidence accumulation or
memory-guided tasks than simple perceptual decision-making
tasks (Pinto et al., 2019; Salkoff et al., 2020; Zatka-Haas et al.,
2020). The widespread cortical involvement in more demanding
tasks was further confirmed with optogenetic inactivation (Pinto
et al., 2019). These results suggest that the representation of task-
relevant information in the large-scale cortical network is
dynamically modulated by the cognitive processes required in
different tasks, and more complex cognitive processes engage
more spatially distributed computations across the cortex.

In contrast to task-relevant information, movement is repre-
sented in widespread areas of the dorsal cortex regardless of the
task complexity (Musall et al, 2019; Shimaoka et al, 2019;
Salkoff et al., 2020; Zatka-Haas et al., 2020) and learning stage
(Musall et al., 2019). The widespread dominance of movement-
related information in cortex has also been observed in sponta-
neous activity recorded with two-photon calcium imaging and in
electrophysiological data collected from multiple brain regions
during task performance (Steinmetz et al., 2019; Stringer et al.,
2019). The prevalent encoding of movement can precede move-
ment onset, arising in the primary motor cortex and expanding
to the rest of cortical regions before movement (Zatka-Haas et
al., 2020), suggesting an origin from efference copy of the motor
command rather than sensory feedback generated by the move-
ment. Further investigation revealed that uninstructed move-
ments, which were not required for the task but spontaneously
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made by the animals, better explained the trial-by-trial variability
in cortex-wide activity than instructed movements and task
events. Meanwhile, uninstructed movements could also become
correlated with instructed movements and stereotypically
occurred around task events, affecting the trial-averaged neural
activity (Musall et al., 2019). Although the function of such prev-
alent encoding of movements, if any, needs further investigation,
the profound impact of movements on neural activity has raised
the importance of careful behavioral monitoring in the interpre-
tation of neural activity, especially for choices associated with
asymmetric motor outputs (e.g., Go/NoGo tasks).

Learning-related dynamics in macroscopic cortical activity
Learning-induced plasticity has been under intense scrutiny with
electrophysiological recordings and two-photon calcium imaging
(Costa et al., 2004; Peters et al., 2014; Makino and Komiyama,
2015; Grewe et al, 2017). Most of these investigations have
focused on the plasticity of local circuits in only one or a few
brain regions, omitting one important piece of the puzzle: the
interaction across many brain regions during learning. Taking
advantage of the stable expression of genetically encoded calcium
indicators over time, several recent studies have performed lon-
gitudinal wide-field calcium imaging to investigate learning-
related macroscopic dynamics (Makino et al., 2017; Musall et al.,
2019; Gilad and Helmchen, 2020). Makino et al. (2017) system-
atically characterized the reconfiguration of cortex-wide activity
during motor learning. Consistent with what we have discussed
in previous sections, motor learning evoked distributed activa-
tion of most of the cortex, forming a macroscopic sequential ac-
tivity. With learning, this macroscopic sequence of activity
during movement execution became more temporally com-
pressed and reproducible from trial to trial, suggesting that more
efficient and reliable signal transmission across cortical regions
evolves as a function of learning. At the same time, learning
rerouted the cortical activity flow. With learning, a novel activity
stream originated from M2 and flowed to the rest of the cortex,
and the activity of M2 became predictive of the activity of other
cortical regions on a moment-by-moment basis. The novel func-
tion acquired by M2 during learning was further confirmed with
perturbation experiments. Bilateral M2 inactivation with musci-
mol in expert animals reversed both the cortical dynamics and
behavioral performance toward the naive stage of learning, sug-
gesting an indispensable role of M2 in coordinating cortex-wide
dynamics for learned behavior (Makino et al., 2017).

The reorganization of cortex-wide activity is not unique to
motor learning. Gilad and Helmchen (2020) reported a spatio-
temporal refinement of cortex-wide activity flow in an associative
learning task, where mice learned to report different textures
through licking. At the early stage of learning, task engagement
induced a general suppression in association cortices in the inter-
val between the auditory cue signaling the trial start and the
whisker-texture touch (the “pre-period”). As learning proceeded,
activation increased in rostro-lateral cortex (part of the posterior
parietal cortex) and the barrel cortex during the pre-period,
building up an anticipatory activity stream arising in rostro-lat-
eral cortex and flowing to the barrel cortex immediately. The
specific enhancement of task-related cortical activation emerged
in parallel with improved task performance and could contribute
to the improved discrimination between different textures (Gilad
and Helmchen, 2020). The cortex-wide dynamics observed in
different learning tasks demonstrate that the learning-induced
plasticity is not only confined to individual cortical regions sepa-
rately, but also involves cortex-wide changes in the interaction
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between regions. Such reconfiguration of the large-scale cortical
network during learning often involves association cortices and
eventually produces more efficient processing of relevant infor-
mation and more stable representations of learned behaviors.

Multimodal recordings with wide-field calcium imaging
Combining wide-field calcium imaging with complementary
imaging modalities

Although wide-field calcium imaging has revealed many novel
features of macroscopic cortical dynamics, its current applica-
tions are still restricted by two major factors: the lack of single-
cell resolution and limited recording depth in brain tissue. These
limitations can be mitigated by combining wide-field calcium
imaging with other imaging modalities, such as two-photon cal-
cium imaging and fMRI (Barson et al., 2020; Lake et al., 2020).
Barson et al. (2020) successfully performed simultaneous wide-
field and two-photon calcium imaging in awake mice. To avoid
interference between the two imaging modalities, the light path
of two-photon calcium imaging was redirected through a micro-
prism mounted on the cortical surface. This multimodal setup is
particularly advantageous for investigating the relationships
between individual neurons and the entire cortex. For example,
Barson et al. (2020) found that the activity of individual neurons
in the same cortical region coincided with diverse cortex-wide
activity patterns, such that different neurons correlated with dif-
ferent cortex-wide activity patterns. The activity of neighboring
neurons can couple with distinct cortical activity patterns, which
may arise from different anatomic connectivity. Furthermore,
the association between the activity of individual neurons and
cortex-wide activity can be modulated by behavioral states
(Barson et al., 2020). These results suggest diverse and dynamic
associations between local and global neural networks, where in-
formation can be dynamically routed depending on behavioral
contexts and cognitive processes.

To complement the limited accessibility in the recording
depth of wide-field calcium imaging, Lake et al. (2020) combined
wide-field calcium imaging and fMRI, which allows simultane-
ous recording of large-scale cortical and subcortical activity.
They found that calcium signals from excitatory neurons par-
tially explained the variance in fMRI BOLD signals. Since the
fMRI BOLD signal is an indiscriminate representation of inte-
grated brain activity while wide-field calcium imaging can
achieve cell type specificity, this multimodal recording setup
could be instrumental in quantifying the contributions of differ-
ent cell types to the fMRI BOLD signal (Lake et al., 2020).

Combining wide-field calcium imaging with electrophysiological
recordings

The relatively simple surgical preparation and imaging setup
make wide-field calcium imaging a feasible platform to be
combined with electrophysiological recordings. To minimize
obstruction of the FOV in wide-field imaging, this combination
can be achieved by either inserting a traditional probe (e.g., glass
pipette or silicon probe) at an angle (Xiao et al., 2017; Clancy et
al., 2019; Peters et al., 2021) or using a flexible transparent probe
(Liu et al,, 2021). This multimodal recoding setup has been effec-
tive in investigating the relationships between cortical or sub-
cortical single-neuron activity and large-scale cortical activity
(Xiao et al., 2017; Clancy et al., 2019), as well as the communica-
tion between the cortex and subcortical regions (Liu et al., 2021;
Peters et al., 2021). Consistent with observations from simultane-
ous wide-field and two-photon calcium imaging (Barson et al.,
2020), multimodal recordings combining wide-field calcium
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imaging with electrophysiological recordings revealed that the
cortex-wide activity patterns associated with single cortical or
subcortical neurons were variable from neuron to neuron and
modulated by behavior states (Xiao et al., 2017; Clancy et al,,
2019).

A more systematic characterization of the functional mapping
between cortex and subcortical regions was recently achieved
with the Neuropixel probe, which significantly boosted the sam-
pling power of electrophysiological recordings. By simultane-
ously recording in the cortex with wide-field calcium imaging
and in the striatum with Neuropixel probes, Peters et al. (2021)
revealed a topographical mapping between cortical and striatal
activity. This functional mapping was consistent with the ana-
tomic corticostriatal projections and independent of the animal’s
behavior states, suggesting that corticostriatal projections reliably
propagate cortical activity to the associated striatal regions
regardless of the behavioral state (Peters et al., 2021).

In addition to functional mapping, pairing wide-field calcium
imaging with electrophysiological recordings can capture real-
time interactions between cortex and subcortical regions. Liu et
al., 2021 characterized the coordination between the cortex and
the hippocampus during awake hippocampal sharp-wave ripples
using a newly developed flexible transparent probe (Neuro-
FITM). They found that diverse patterns of cortex-wide activity
accompanied sharp-wave ripples. In contrast to the conventional
view that cortical activity is mainly triggered by hippocampal
sharp-wave ripples, the cortical activation preceded hippocampal
sharp-wave ripples in a majority of cases. Furthermore, the
ongoing cortical patterns could be decoded from the spiking ac-
tivity of hippocampal neuron populations, indicating a predict-
able relationship between cortical and hippocampal activity
patterns. These results support the model that the hippocampus
and the cortex interact during sharp-wave ripples in a selective
and diverse manner at the macroscale (Liu et al., 2021).

Combining wide-field calcium imaging and other recording
modalities extends the application of wide-field calcium imaging
in at least two aspects. First, it bridges the gap between neural ac-
tivity at different spatial scales and helps study how local circuits
relate to larger neural networks (Xiao et al., 2017; Clancy et al,,
2019; Barson et al., 2020). As typical two-photon calcium imag-
ing and electrophysiological recordings often focus on a single
brain area, investigations of the relationship between individual
neurons and the larger brain network will contribute to a more
comprehensive interpretation of local neural dynamics. Second,
it compensates for the limited accessibility in the recording depth
of wide-field calcium imaging and offers an attractive platform
to investigate the dynamics of large-scale neural networks span-
ning the cortex and subcortical regions during various cognitive
processes (Lake et al., 2020; Liu et al., 2021; Peters et al., 2021).

Technical considerations of wide-field calcium imaging

Although wide-field calcium imaging is a powerful tool for mon-
itoring large-scale cortical dynamics and the technique per se is
relatively simple to set up using conventional wide-field micro-
scopes, several considerations should be kept in mind in the
implementation of wide-field calcium imaging. First, wide-field
calcium signals are likely dominated by activity from superficial
cortical layers because of the strong scattering of both excitation
and emission light in brain tissue. In one-photon excitation, the
intensity of excitation light (~480 nm) of GCaMP already drops
to ~10% at a depth of 200 um (Yizhar et al., 2011), suggesting
that most signals come from cortical layer 1 and layer 2/3.
Second, as wide-field calcium imaging does not possess single-
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cell resolution, the signal in each pixel is an integration of both
somatic and neuropil activity. The latter mainly consists of activ-
ity from the dense neuropils in layer 1, including dendrites from
local neurons whose somata reside in layers 2/3 and 5, as well as
axons innervating these layer 1 dendrites. Although the majority
of wide-field calcium signals reflect local activity (Makino et al.,
2017), the contributions of long-range axonal projections are not
negligible. Soma-targeting of GCaMP would ensure a cleaner
representation of local neural activity in future studies (Y. Chen
et al., 2020; Shemesh et al., 2020).

In addition, the raw fluorescence signal of wide-field calcium
images is contaminated by hemodynamic changes. The excita-
tion and emission wavelengths of GCaMP reside in the absorp-
tion spectrum of oxyhemoglobin and deoxyhemoglobin, so
changes in blood oxygenation can contaminate measures of
GCaMP fluorescence signals. Currently, there are several meth-
ods available to correct hemodynamic contamination. For exam-
ple, using a secondary wavelength of light allows the estimation
of reflectance changes caused by hemodynamics, which can then
be used for a regression-based subtraction of hemodynamic sig-
nals (Ma et al, 2016a; Wekselblatt et al., 2016; Valley et al.,
2020). Low-pass filtering of wide-field signals has also been used
to reduce hemodynamic contamination, as hemodynamic arti-
facts are the strongest in the frequency range corresponding to
the heartbeat (Vanni and Murphy, 2014; Xiao et al, 2017).
Another analytical correction for hemodynamic signals is to
extract hemodynamic components using principal component
analysis followed by independent component analysis, and
reconstructing the corrected wide-field signals from the remain-
ing components that reflect neural activity (Makino et al., 2017).
Alternatively or in addition, repeating the same experiments in
animals expressing activity-insensitive GFP can be used as a con-
trol to test whether the observed wide-field signals are mainly at-
tributable to neural activity instead of hemodynamic artifacts
(Vanni and Murphy, 2014; Wekselblatt et al., 2016).

The temporal resolution of wide-field calcium signals is lim-
ited by the relatively slow kinetics of existing calcium indicators.
For example, GCaMP6f failed to track synchronous population
activity beyond 40 Hz (Li et al., 2019). Deconvolution of wide-
field calcium signals can improve the temporal resolution. The
heterogeneous spiking activity of many neurons contributing to
wide-field calcium signals makes it difficult to generate a general
deconvolution algorithm, but attempts are being made to pro-
vide the ground truth by simultaneous electrophysiological
recordings in the cortex during wide-field calcium imaging
(Stern et al., 2020; Peters et al., 2021).

Another issue of consideration arises from parcellation meth-
ods used to define cortical regions, as different methods can gen-
erate very different results (Barson et al., 2020; Lake et al., 2020).
The most common method is to segment the cortex based on an
anatomic reference atlas (Wang et al., 2020). The advantage of
this approach is the consistency across different studies and
research groups, making it convenient to compare results from
different studies. However, anatomic reference atlases inevitably
ignore individual variations in anatomic structures. Such static
atlases also fail to track the dynamic organization of functional
cortical modules in different sensory and cognitive processes,
which may mask real activity features because of imprecise par-
cellation (Barson et al., 2020; Saxena et al., 2020). An alternative
approach is to define cortical regions based on activity and gen-
erate a unique atlas for individual animals. Related methods
include grouping pixels using clustering analyses (Barson et al.,
2020; Lake et al.,, 2020) and extracting functional modules using
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non-negative matrix factorization (Saxena et al., 2020) or inde-
pendent component analysis (Makino et al., 2017). Compared
with anatomic atlases, atlases derived from neural activity can
more faithfully represent functional organization of the cortex in
individual animals. They may also be able to detect neural dy-
namics localized to regions that do not correspond to standard
areas in anatomic atlases. However, functional modules often
vary across individual animals and different studies (Makino et
al., 2017; Barson et al., 2020; Lake et al., 2020). Different research
groups also use different terminologies to refer to regions in their
functional atlases. All these factors make it difficult to compare
and interpret results across studies. An open platform that allows
researchers to register their functional atlases to a common ana-
tomic framework based on coordinates or certain landmarks
(e.g., surface blood vessels) would help comparisons across studies.
Finally, as is common in neural recording experiments, caution
is warranted in interpreting cortex-wide activity patterns.
Functional connectivity and information flows revealed in recent
studies using wide-field calcium imaging were extracted by corre-
lational analyses. In these analyses, whether and how cortical
regions are connected and influence each other is unclear.
Furthermore, cortical regions exhibiting task-related activity may
not actually contribute to task performance (Goard et al., 2016;
Allen et al, 2017; Pinto et al, 2019; Zatka-Haas et al., 2020).
Combining wide-field calcium imaging with activity manipula-
tions (Allen et al., 2017; Makino et al., 2017) and anatomic tracing
(Oh et al,, 2014) will provide additional insights into causal rela-
tionships between cortical regions and their roles in behavior.

Perspectives

The recent improvements to genetically encoded calcium sensors
have resurrected broader interests in using wide-field imaging to
investigate large-scale cortical dynamics in behaving animals. As
we have discussed above, with wide-field calcium imaging, sig-
nificant progress has been made to uncover the macroscopic
properties of cortical dynamics in various cognitive processes. In
the future, we see transformative opportunities for the applica-
tion of wide-field imaging in the following directions.

Characterizing cell type-specific functions with genetically re-
stricted expression of indicators

The majority of existing studies using wide-field calcium imaging
focused on the dynamics of pan-cortical excitatory neurons, but
cortical circuits consist of different neuronal types and each car-
ries out distinct functions. For example, cortical excitatory neu-
rons can be further defined by their transcriptomics and
anatomic connections, and distinct subpopulations route differ-
ent information from a specific set of inputs to outputs
(Economo et al., 2018; Tasic et al., 2018; Harris et al., 2019). The
recent expansion of transgenic mouse lines to target specific sub-
populations of excitatory, inhibitory, and modulatory neurons
allows genetic targeting of these distinct subpopulations
(Madisen et al., 2015; Daigle et al., 2018). By restricting the
expression of activity indicators, the monitoring of cell type-spe-
cific macroscopic dynamics will dissect the role of different neu-
ronal types and help researchers understand how different
components cooperate in cortical circuits at the macroscale. It
will also provide valuable datasets for the development of large-
scale computational models with cell-type resolution.

Macroscopic dynamics of various neurotransmitters
The nervous system uses a large variety of neurotransmitters and
modulators, each of which has unique functions. There has been
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a recent expansion of toolkits with genetically encoded indicators
of various neurotransmitters (Lin and Schnitzer, 2016; Leopold
et al,, 2019; Dong et al., 2020; Jing et al., 2020; Ravotto et al.,
2020; Sabatini and Tian, 2020; F. Sun et al.,, 2020; Wan et al,,
2021; Wu et al,, 2020). Wide-field imaging of indicators of spe-
cific neurotransmitters/modulators will allow direct tracking of
how different molecular signaling is orchestrated at the macro-
scale. Several pioneering studies have started characterizing cor-
tex-wide patterns of specific neurotransmitters/modulators in
spontaneous brain activity (Xie et al., 2016; Lohani et al., 2020).
Of particular interest in the future is how different neuromodula-
tory systems function at the macroscale, because they often pro-
ject broadly to the cortex and have widespread impacts on
behavior and cognition (Avery and Krichmar, 2017).

Expanding toolkits of novel genetically encoded indicators and
miniaturized imaging devices

Genetically encoded indicators with enhanced brightness, sensi-
tivity, stability, and faster kinetics will be fundamental to improv-
ing the SNR and temporal resolution of wide-field imaging in
future studies. Some recently developed indicators for specific
neurotransmitters hold promise for applications in in vivo wide-
field imaging (Feng et al.,, 2019; Jing et al., 2020; Lohani et al.,
2020; F. Sun et al, 2020). Improvements in voltage indicators
could enable future wide-field voltage imaging to capture macro-
scopic dynamics at millisecond resolution with cell type specific-
ity and longitudinal monitoring (Knopfel and Song, 2019;
Piatkevich et al., 2019; Pal and Tian, 2020). Furthermore, indica-
tors targeting specific subcellular compartments (e.g., soma,
axon) will help further determine the relative contributions of
different sources in wide-field signals (Broussard et al., 2018; Y.
Chen et al,, 2020; Shemesh et al., 2020). Meanwhile, broadening
the color spectrum of genetically encoded indicators could ena-
ble simultaneous imaging of different circuit components and
investigations of their interactions (Inoue et al., 2019; Montagni
et al, 2019). In addition, virtually all studies with wide-field
imaging so far have been performed in head-fixed animals.
Miniaturized devices for wide-field imaging in freely-moving
animals would uncover large-scale neural dynamics in more nat-
uralistic behavioral contexts (Scott et al,, 2018; Adams et al.,
2020; Rynes et al., 2021).

Activity manipulations with simultaneous wide-field imaging
Little is known about how large-scale cortical networks are influenced
by individual brain regions and how they might be able to compensate
for loss of individual regions. Such interactions between local and
global networks can be probed by combining manipulations on cer-
tain brain regions or neuronal populations with simultaneous wide-
field imaging of the cortex. This approach can dissect the functions of
individual circuit components and their different contributions in var-
ious cognitive processes or at different developmental stages. For
example, bilateral M2 inactivation with muscimol combined with si-
multaneous wide-field calcium imaging uncovered an indispensable
role for M2 in orchestrating cortex-wide dynamics acquired with
learning (Makino et al., 2017). Manipulating activity in specific areas
will also help reveal how large-scale cortical circuits adapt to insults
and neurologic disorders. Here a careful comparison between acute
(e.g., optogenetics, pharmacogenetics, and pharmacology) and chronic
(e.g., lesion) manipulation methods would be critical.

Analysis methods
The rich dataset obtained by wide-field imaging brings both
challenges and unprecedented opportunities to gain insights into
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large-scale cortical dynamics. Sophisticated data-science tools,
including dimensionality reduction techniques, will help extract
latent and novel patterns from such high dimensional measure-
ments of neural activity and facilitate data-driven discoveries
(Williamson et al., 2019). Meanwhile, other analysis tools and
computational approaches created for other large-scale recording
techniques, such as fMRI and ECoG recordings, can be trans-
ferred to wide-field imaging for analyzing network properties
(Bressler and Menon, 2010; Rubinov and Sporns, 2010;
Pourahmadi and Noorbaloochi, 2016; Cohen et al., 2017). We
predict an exponential growth in collaborations between experi-
mental neuroscientists and data scientists to interpret these and
other high-dimensional data. For example, creating data-guided
circuit models that operate similarly to biological neural net-
works would provide insights for understanding large-scale cort-
ical networks and in turn guide future experiments (Chaudhuri
et al., 2015; Brunton and Beyeler, 2019; Mejias and Wang, 2019).

Conclusion

Wide-field calcium imaging enables large-scale, unbiased obser-
vation of many cortical regions with a sufficient spatiotemporal
resolution to capture moment-by-moment features in macro-
scopic neural dynamics. This technique has started to reveal how
cortex-wide dynamics support various cognitive processes,
including sensorimotor integration, decision-making, and learn-
ing. In addition, combining wide-field calcium imaging with
complementary recording modalities provides a novel platform
to examine the relationship between local and global neural net-
works and to characterize the interactions between the cortex
and subcortical regions. Although several technical considera-
tions still exist, future applications of wide-field imaging together
with rapidly growing data science tools will advance our under-
standing of how different cell types, neurotransmitters, and brain
regions cooperate at the macroscale to give rise to perception
and behavior.
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