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Abstract: Fluoroquinolones (FQs) are a widespread class of broad-spectrum antibiotics prescribed as
a first line of defense, and, in some cases, as the only treatment against bacterial infection. However,
when administered orally, reduced absorption and bioavailability can occur due to chelation in the
gastrointestinal tract (GIT) with multivalent metal cations acquired from diet, coadministered com-
pounds (sucralfate, didanosine), or drug formulation. Predicting the extent to which this interaction
reduces in vivo antibiotic absorption and systemic exposure remains desirable yet challenging. In
this study, we focus on quinolone interactions with magnesium, calcium and aluminum as found in
dietary supplements, antacids (Maalox) orally administered therapies (sucralfate, didanosine). The
effect of FQ–metal complexation on absorption rate was investigated through a combined molecular
and pharmacokinetic (PK) modeling study. Quantum mechanical calculations elucidated FQ–metal
binding energies, which were leveraged to predict the magnitude of reduced bioavailability via a
quantitative structure–property relationship (QSPR). This work will help inform clinical FQ formula-
tion design, alert to possible dietary effects, and shed light on drug–drug interactions resulting from
coadministration at an earlier stage in the drug development pipeline.

Keywords: fluoroquinolones; antibiotics; antacids; multivalent metals; pharmacokinetics; bioavail-
ability; oral absorption; molecular modeling

1. Introduction

Quinolones comprise a widely prescribed class of antibiotics against both Gram-
negative and Gram-positive bacterial infections. In 2018, ciprofloxacin alone was pre-
scribed over 6.7 million times in the United States, representing the 109th most prescribed
medication in the country [1]. Significant attention to quinolone development followed the
discovery of the antibacterial properties of nalidixic acid, itself a by-product of chloroquine
synthesis. As the spearheading member of the first-generation quinolones, nalidixic acid
was approved to treat Gram-negative (primarily Escherichia coli) urinary tract infections
(UTIs) and began clinical applications in 1967, yet ultimately saw limited use due to its
narrow spectrum and high dosage requirements for efficacy [2]. Over the last five decades,
quinolone development and structure–activity relationships have focused on expanding
the antimicrobial spectrum and overall activity while also improving compound pharma-
cokinetics (PK) and reducing both toxicity and drug interactions [3,4]. Nalidixic acid, while
technically a 1,8-naphthyridine derivative, exhibits the defining core 4-quinolone bicyclic
ring system shared by quinolone therapeutic compounds (Figure 1). Critical substituents
for high potency are hydrogen substitution at position-2, a carboxylic acid at position-3,
and a ketone at position-4 [5,6]. Fluorine substitution at C6 was identified as key to in-
creased antibacterial potency and tissue penetration [7]. The C6 fluorine substitution to the
initial quinolone scaffold is now recognized as a critical pharmacophoric component, and
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this subclass, termed fluoroquinolones (FQs), comprise most contemporary quinolones in
development and with clinical applications.
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Reduction in oral bioavailability due to chelation between FQs and multivalent metals
is a well-established phenomenon with numerous studies disclosing disruptive interactions
between quinolones and metal cations [8]. Nix et al. studied the effect of aluminum and
magnesium from Maalox antacid on ciprofloxacin PK. The maximum plasma concentration
(Cmax) and area under the plasma concentration-versus-time curve (AUC) of single 750 mg
ciprofloxacin dose were each reduced by 85% relative to ciprofloxacin alone (control) when
administered 5–10 min after Maalox ingestion [9]. Nix et al. investigated the effect of
sucralfate pretreatment at time intervals of 6 and 2 h prior to a single ciprofloxacin dose
with reductions in Cmax and AUC of 30% relative to ciprofloxacin alone [9]. Coadministra-
tion of ciprofloxacin and sucralfate was subsequently studied by Garrelts et al., finding
reductions in Cmax and AUC of 90% and 87%, respectively, versus control [10]. Sahai et al.
probed the effects of magnesium and aluminum found in didanosine on ciprofloxacin PK
highlighting significant reductions in both mean Cmax (94%) and AUC (98%) seen versus
control [11]. Aluminum has emerged as particularly important among product component
salts as aluminum has been observed to modulate quinolone PK to a higher degree than
other metals. For example, Sahai et al. investigated the effects of calcium carbonate from
supplements on ciprofloxacin bioavailability [12]. While both Cmax and AUC were reduced
by about 40%, the comparatively smaller influence on bioavailability is apparent. A num-
ber of studies disclose the effects of magnesium, aluminum, and calcium on the PK of
other fluoroquinolones, including levofloxacin [13,14], enoxacin [15], lomefloxacin [16],
pefloxacin [17], rufloxacin [18], norfloxacin [19–22], ofloxacin [20,23], and fleroxacin [24].

Sources of these multivalent metals are diverse and quite abundant and can origi-
nate from diet or from drug products. The case of significant reduction in drug systemic
concentration in going from the fasted to fed state represents a negative food effect [25].
Multivalent metals are found in antacids containing calcium, magnesium, and aluminum
ions, in addition to vitamin supplements containing manganese, iron, copper, zinc, and
cobalt ions. A typical 30 mL dose of liquid suspension dose of Maalox contains 1.8 g of
magnesium hydroxide and 3.6 g of aluminum hydroxide. Similarly, the antacid tablet
Kolantyl displays a high concentration of active magnesium and aluminum salts, con-
taining a combination of magnesium trisilicate, magnesium hydroxide, and aluminum
hydroxide. Sucralfate, a medication prescribed to treat ulcers, gastroesophageal reflux
disease (GERD), and stomach inflammation, contains a ratio of 16 aluminum cations per
molecule (~200 mg aluminum per gram sucralfate) in the form of free and sulfur-bound
aluminum hydroxide. Buffering agents within product formulations may also contain
multivalent metals that contribute to reductions in bioavailability. Didanosine, an an-
tiretroviral therapy for HIV/AIDS, is often formulated alongside dihydroxy aluminum
sodium carbonate and magnesium hydroxide (in addition to sodium citrate) to lessen acid
hydrolysis within the stomach.

Several clinical failure case studies have been reported due to FQ–multivalent cation
interactions and the resulting undesired modulations of PK [26–29]. These interactions
have also been implicated as contributors to increasing FQ-resistant bacterial strains as
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reduced systemic antibiotic concentrations approach the lower end of the mutant selection
window [30–32]. Clinical management strategies aimed at reducing or avoiding these
interactions during FQ regimens include (1) ensuring the FQ dose and ingested multi-
valent cations are administered separately and sufficiently far apart in time, (2) halt the
patient from ingesting multivalent cation-containing compounds altogether, (3) minimize
the frequency of the patient ingesting multivalent cation-containing compounds, and
(4) switching from oral to intravenous administration. Despite these guidelines, patient
adherence to spaced ingestion of FQ medication and sources of metal cations can be low
and outside a practitioner’s control.

Computational approaches can provide detailed structural and mechanistic insight
into quinolones and their metal complexes. Previous molecular modeling studies tend to
focus on investigating the electronic properties and protonation states of the quinolone
structure alone. Density functional theory (DFT) calculations were applied by Vitorino
et al. in a study comparing neutral and zwitterionic norfloxacin protonation state energies
in water [33]. Similarly, a joint experimental and computational study by Pavez et al.
probed the protonation states of nalidixic acid combining fluorescence measurements and
DFT calculations to locate energetically stable conformers and ionization forms [34]. Time-
dependent DFT calculations and computed spectra by Musa et al. studied the protonation
state, photochemistry, and degradation pathways of norfloxacin [35]. Computational in-
vestigations that do probe interactions with multivalent metals primarily study alkali,
alkali earth, and first-row transition metal complexes. An early example from Aristilde
et al. discloses molecular dynamics (MD) simulations of ciprofloxacin in aqueous solvent
and investigates the stability of complexes formed between ciprofloxacin and sodium,
potassium, calcium, magnesium, and iron(II) [36]. Recent examples include DFT computa-
tions by Bridle et al. modeling pH-dependent complexes of ciprofloxacin and magnesium
in aqueous solution [37], and an experimental and computational study of ciprofloxacin
derivatives complexed with copper(II) [38].

Variable patient compliance with FQ spacing regimens coupled with the need for new
structures for applications to FQ-resistant bacteria [39–41] points to the utility for continued
studies of chelation interactions between FQs and commonly encountered multivalent
cations found in diet and medication. Reports of aluminum salts and their effect on
bioavailability indicate a higher magnitude of effect compared to other multivalent metals,
but thus far computational studies of FQ interactions with aluminum ion remain more
limited. Furthermore, decreases in bioavailability due to metal chelation are predominantly
attributed to reduced absorption rate [9,42], but direct analysis of absorption rate constants
is rarely presented in the literature.

In this report, examples of FQ interactions with aluminum, calcium, and mixed
aluminum/magnesium metals are presented and analyzed within the context of PK param-
eters and calculated oral absorption rate constants extracted from tabulated literature data
and plasma concentration–time curves. Two main objectives guided this study: (1) investi-
gate the relationship between FQ absorption rate and alkaline earth and aluminum cation
sources, and (2) develop a computational parameter for assessing the extent of bioavail-
ability reduction from FQ structure. Computed binding energies were hypothesized as a
predictor for changes in absorption rate and bioavailability due to metal hydrate chela-
tion. We undertook DFT computations of the energies of binding of structurally diverse
FQs to aqueous magnesium, calcium, and aluminum, and present relationships between
computed chelation energies, molecular descriptors, and relative changes in bioavailability..

2. Methods
2.1. Oral Absorption Rate Constant Calculations

The oral absorption rate constant, ka, describes the rate at which a drug moves from the
gastrointestinal tract to the plasma and systemic circulation. Calculation of ka is achieved
by approximating the elimination phase of a one-compartment model and the time to
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maximum plasma concentration (Tmax). Assuming a first-order absorption process, Tmax is
related to ka and the elimination rate constant, ke, by Equation (1) [43]:

Tmax =
ln
(

ka
ke

)
ka − ke

(1)

The elimination rate constant can be calculated from the concentration-versus-time
curve, where the post-absorption phase of the log scale plot has slope 2ke/2.303. In the
case of a one-compartment model, ke may be derived from the terminal slope and used for
calculation of the half-life period (t1/2). For all compounds, the ke was ultimately calculated
from t1/2 values using Equation (2):

t1/2 =
ln(2)× Vd

CL
=

ln(2)
ke

=
0.693

ke
(2)

where Vd is the drug’s volume of distribution and CL is clearance. If Tmax and t1/2 were
provided as tabulated pharmacokinetic parameters within a literature source, these values
were used as given for the ka calculation, first using t1/2 and Equation (2) giving ke, then
solving for ka given Tmax and Equation (1). While Tmax was consistently available in
primary literature sources, t1/2 was not always available. In such cases, the pertinent
concentration-versus-time curve was digitized and t1/2 and ka were extracted using the
slope of the post-absorption phase in the procedure described above, followed by use of
Equation (1) yielding ka. The complete set of data tabulating dose, administration timing,
Cmax, Tmax, t1/2, AUC, ke, and ka may be found in the Table S1 (Supplementary Materials).

2.2. Physicochemical Descriptor Calculations

SMILES strings for all FQ compounds were used to calculate physicochemical property
descriptors. SMILES strings ware taken from the PubChem public database [44]. PubChem
compound identification numbers and SMILES strings can be found in the Supplemen-
tary Materials (Table S2). Topological polar surface area (TPSA) was calculated using
the surface contribution-based method of Ertl et al. [45] and assuming nitrogen, oxygen,
sulfur, and phosphorus atoms as polar. The calculated logarithm of the octanol/water par-
tition coefficient (logP) was predicted using the Wildman–Crippen model [46]. Tabulated
physicochemical properties can be found in Table 1. All descriptors were calculated as
implemented in the Mordred cheminformatics Python package [47,48].

Table 1. Physicochemical properties of the fluoroquinolones studied in this manuscript.

Generation Fluoroquinolone Structure MW TPSA Calculated logP

Second Ciprofloxacin
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2.3. Molecular Modeling
2.3.1. Metal Chelate Construction

Amphoteric FQs can exist in several protonation states in aqueous solvent [49,50].
At neutral pH, both the carboxylic acid and piperazine nitrogen atom are predominantly
ionized, forming a zwitterionic species [51]. To reflect the acidic environments of the
stomach and gastrointestinal tract (GIT), the cationic species was used throughout all
molecular modeling computations. FQ structures were modeled under acidic conditions
assuming unionized 3-carboxyl group and protonated terminal N-piperazinyl group in
the R7 position. It was assumed that gastric pH remains acidic even after antacid adminis-
tration [52]. Magnesium, calcium, and aluminum ions were constructed as the octahedral
hexahydrate species. Bidentate FQ chelation (3-carboxyl and 4-keto oxygen atoms bound to
the metal center) was considered for all computed complexes as observed experimentally
from spectroscopy and crystal structures [53,54]. FQ–metal complexes were built as the
1:1 stoichiometry chelates. Under higher metal concentrations or acidic conditions, a 1:1
ratio of FQ to metal is the most observed species [55]. Quinoline–metal chelates can exhibit
higher ratios of 2:1 and 3:1 dependent on, among other factors, pH, quinolone structure,
and the specific multivalent metal [53,56–58]. The energetic favorability of 1:1 chelate
formation under the acidic conditions was taken as a quantitative metric for the propensity
of FQ–metal interactions that affect bioavailability.

2.3.2. Conformational Search

Three-dimensional coordinates of ciprofloxacin were taken from the PubChem public
database [59] and imported into the Avogadro molecular modeling interface [60]. The
cationic N-protonated species was then constructed and submitted to a conformational
search using the MMFF94 force field [61] to locate all pertinent low energy conformers.
Starting ciprofloxacin chelate complexes between magnesium, calcium, and aluminum
were built and an additional conformational search was performed on the complexes to
exhaustively probe the conformational space of the bound water molecules and torsions of
the R1 and R7 rings (Figure 1). Recent DFT computations of ciprofloxacin and levofloxacin
identified the importance of piperazine ring conformations and potential intramolecular
interactions in determining the stability of ground state FQ structures [62].

2.3.3. Quantum Mechanical Computations

FQ and FQ–metal chelate structures from the conformational search were then sub-
mitted to geometry optimization using the PBE method [63], 6–31G(d) basis set [64,65],
and included the D3 dispersion correction with Becke–Johnson dampening [66,67]. This
level of theory is denoted as PBE-D3BJ/6–31G(d). Ground state minima were confirmed
at the same level of theory with vibrational frequency calculations to ensure zero imagi-
nary frequencies were present in the optimized structures for magnesium, calcium, and
aluminum–ciprofloxacin chelates. Frequencies were computed at a temperature of 310 K,
matching approximate conditions within the stomach and GIT. Further single-point ener-
gies for all optimized structures were computed using PBE-D3BJ/6–31+G(d,p). Aqueous
solvation was modeled implicitly using the polarizable continuum model (PCM) [68],
denoted as PBE-D3BJ/6–31+G(d,p)/PCM=water. PCM-corrected single-point energies
were used to compute the predicted energy of binding (∆Ebind) while the sum of the Gibbs
free energy thermal correction and the PCM single-point was used to predict the Gibbs free
energy of binding (∆Gbind). All quantum mechanical computations were completed using
the Psi4 ab initio quantum chemical computational package [69]. All reported energies
are in units of kcal mol−1 (1 hartree = 627.5095 kcal mol−1), and all labeled distances in
structural images are Ångstroms (Å) [70]. Computed energies for all compound species
are tabulated in Table S3 (Supplementary Materials).
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3. Results and Discussion

Measured human in vivo pharmacokinetic parameters comparing control administra-
tion (FQ alone) and coadministration with products containing aluminum, magnesium,
and calcium cations were extracted from the literature for thirteen FQ compounds. The
full set of parameters tabulated and calculated were Cmax, Tmax, AUC, t1/2, ke, and ka, in
addition to dose amounts and precise administration timing (concurrent versus FQ given
1 to 10 minutes after multivalent metal dose). Table 2 summarizes relative percent change
in Cmax, AUC, and calculated ka for each FQ, the co-administered multivalent metal, and
associated metal source. The bioavailability of each FQ was reduced in all combinations
of multivalent metal and metal sources compared to FQ administered alone. A similar
trend was observed for Cmax, with the lone exception of rufloxacin, which showed a small
increase in Cmax upon administration of Maalox antacid. The small magnitudes of relative
change in both Cmax (6.1%) and AUC (–15.2%) for rufloxacin indicate overall little sensi-
tivity to bioavailability changes because of aluminum/magnesium interactions [18]. The
most common source of aluminum was aluminum hydroxide originating predominantly
from the crossover study of Shiba et al., which tested the effects of aluminum hydroxide on
FQ bioavailability [71].

Table 2. Relative change of fluoroquinolone pharmacokinetic parameters upon coadministration with antacids and drug
products containing multivalent metals.

Relative Change (%)

Fluoroquinolone Multivalent Metal Metal Source Cmax AUC Calculated ka Reference

Ciprofloxacin

Aluminum Aluminum hydroxide −81.1 −84.6 −14.3 [72]
Aluminum Aluminum hydroxide −84.6 −87.5 −60.6 [71]
Aluminum Sucralfate −90.0 −87.5 N/A [10]

Aluminum/Magnesium Maalox −80.1 −84.9 157.9 [9]
Aluminum/Magnesium Didanosine −92.6 −98.3 49.2 [11]

Calcium Titralac −37.9 −41.1 5.9 [12]

Enoxacin
Aluminum Aluminum hydroxide −78.3 −84.2 N/A [71]

Aluminum/Magnesium Maalox −70.0 −73.2 −52.1 [15]

Fleroxacin
Aluminum Aluminum hydroxide −25.0 −17.2 −47.6 [71]
Aluminum Sucralfate −26.4 −24.0 −40.3 [24]

Lomefloxacin
Aluminum Aluminum hydroxide −54.5 −34.8 −55.1 [71]
Aluminum Kolantyl −46.1 −40.8 25.6 [16]

Norfloxacin

Aluminum Aluminum hydroxide −93.3 −97.0 N/A [71]
Aluminum Sucralfate −92.2 −91.3 −23.8 [20]

Aluminum/Magnesium Maalox −95.1 N/A −6.1 [21]
Calcium Titralac −65.9 −62.6 −80.2 [21]

Ofloxacin
Aluminum Aluminum hydroxide −59.4 −47.9 −65.0 [71]
Aluminum Sucralfate −69.5 −61.0 −46.2 [20]

Pefloxacin Aluminum/Magnesium Maalox −60.8 −54.3 −57.5 [17]

Rufloxacin Aluminum/Magnesium Maalox 6.1 −15.2 −34.0 [18]

Levofloxacin Aluminum Aluminum hydroxide −66.7 −45.2 −55.5 [71]

Sparfloxacin Aluminum Aluminum hydroxide −22.2 −35.1 47.1 [71]

Tosufloxacin Aluminum Aluminum hydroxide −66.7 −70.8 −67.4 [71]

Gatifloxacin Aluminum/Magnesium Maalox −68.4 −60.8 −13.5 [73]

Moxifloxacin
Aluminum Sucralfate −79.5 −59.9 −80.7 [74]

Calcium Calcium-Sandoz −15.5 −2.4 −74.1 [75]

N/A: not available; Cmax: maximum plasma concentration (µg·mL−1); AUC: area-under-the-curve of the concentration plasma profile
(µg·h·mL−1); Calculated ka: calculated absorption rate constant (h−1) using Equations (1) and (2) and the methods outlined in Section 2.1 of
this manuscript.

Changes in bioavailability from mixed metal (aluminum/magnesium) antacid Maalox
and sucralfate allow comparison to the effects of pure aluminum salts. In general, alu-
minum hydroxide, Maalox, and sucralfate all exhibited similar effects on PK and changes
in bioavailability for the studies reported in this manuscript. Reductions in ciprofloxacin
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AUC were within experimental variability for Maalox (−84.9%) and aluminum hydroxide
metal sources (−84.6% and −87.5%). A greater difference in AUC reduction is observed
when comparing aluminum hydroxide versus Maalox co administration for enoxacin
(−84.2% versus −73.2%). Norfloxacin AUC measurements were not reported in the orig-
inal literature source for the dosing regimen of 30 mL Maalox 5 minutes prior to FQ
administration [21]. In this case, Cmax values are compared and indicate similar reductions
between aluminum hydroxide versus Maalox coadministration (−93.3% versus −95.1%).
Aluminum hydroxide and sucralfate comparisons indicate more variability. While similar
reductions in AUC are seen for ciprofloxacin (−84.6% and −87.5% versus −87.5%), differ-
ences emerge between fleroxacin (−17.2% versus −24.0%) and norfloxacin (−93.3% versus
−92.2%), and most significantly, ofloxacin (−47.9% versus −61.0%).

Relative changes in calculated absorption rates constants were much more variable
than AUC and Cmax, both in magnitude and direction of change upon coadministration
of multivalent metals. As a result, the previously hypothesized correspondence between
reductions in AUC and reduced ka values was not consistently observed. For example, as
seen in Table 2, ciprofloxacin co-administered with aluminum hydroxide yielded relative
decreases in ka values of 14.3% and 60.6% yet observed decreases in AUC from Maalox
and didanosine interactions were associated with increases in absorption rate constants
of 157.9% and 49.2%, respectively. As a metal source, aluminum hydroxide salt solutions
did yield reductions in ka in the majority of FQ pharmacokinetic studies investigated apart
from sparfloxacin, which is associated with a 47.1% increase in ka upon metal coadminis-
tration. Sucralfate as an aluminum source also showed consistent reductions in ka upon
concurrent FQ administration with diminished absorption rates of 40.3% (fleroxacin), 23.8%
(norfloxacin), 46.2% (ofloxacin), and 80.7% (moxifloxacin).

Analyzing effects on bioavailability across metals highlights calcium ion’s smaller in-
fluence compared to aluminum and mixed aluminum/magnesium sources. Ciprofloxacin
coadministered with calcium carbonate antacid Titralac leads to a 41% reduction in AUC
compared to ciprofloxacin alone (Table 2), but this observed reduction in AUC is close
to half that of aluminum and magnesium (85% to 98% reduction). A similar difference
in AUC relative change is seen for norfloxacin (>90% versus 63% reduction), and most
significantly with moxifloxacin, where calcium (Calcium-Sandoz) has little effect entirely
on bioavailability (−59.9% versus −2.3%). Figure 2 shows the computed octahedral
bidentate chelate structures of cationic N-protonated ciprofloxacin 3-keto and 4-carboxyl
groups bound to aluminum, magnesium, and calcium tetrahydrate. The trend in pre-
dicted free energy of binding (∆Gbind) in order of decreasing ciprofloxacin–metal chelate
stability is aluminum (−16.1 kcal mol−1) > magnesium (−5.3 kcal mol−1) > calcium
(0.9 kcal mol−1). The energetic trend is reflected in the 4-keto and 3-carboxyl oxygen–
metal bond lengths as an indication of bond strength. The strongest bonds are formed
between aluminum (C3=O···Al = 1.9 Å, C4=O···Al = 1.8 Å) and the weakest between
calcium (C3=O···Ca = 2.3 Å, C4=O···Ca = 2.4 Å) as function of ion charge density [56,76].
Aluminum ion exhibits a higher positive charge distributed over a smaller volume, while
calcium ion is the least charge dense, and the FQ oxygen–metal bonds lengthen to avoid
disfavored bond angle distortion with the larger calcium ion.

Relationships between FQ physicochemical properties and changes in bioavailability
were investigated to provide insight into the structural properties that drive modulations
in PK behavior upon metal coadministration (Figure 3A–C). The plotted changes in AUC
are primarily taken from concurrent administration of aluminum hydroxide solutions
from Shiba et al. [71], with Maalox administration used for compounds without alu-
minum hydroxide data. For AUC reductions derived from aluminum hydroxide shown in
Figure 3, all FQ doses were 200 mg (except tosufloxacin, which was 150 mg) and all alu-
minum hydroxide doses were 1 g aluminum hydroxide gel (99%). Three widely applied
parameters for developing absorption and bioavailability quantitative structure–property
relationships (QSPRs) are molecular weight (MW), TPSA, and the logarithm of a com-
pound’s octanol/water partition coefficient (logP) [77,78]. Plotting relative change in AUC
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versus each of these descriptors yielded relationships ranging from no correlation (TPSA,
R2 = 0) to moderate correlation (calculated logP and MW, R2 = 0.23 and 0.25, respectively).
Slight correspondences are observed between both decreasing molecular weight and logP
and reduction in AUC. A possible deficiency in these predicted descriptors is a lack of
sensitivity to the change in molecular properties upon chelation (e.g., for calculated logP,
∆logP = logP(chelate) - logP(FQ) = constant across all structures). Even so, calculation
of these descriptors from the parent structure may still act as proxies to more complex
three-dimensional, electronic, and mechanistic effects.
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FQ chelation to metals represents an equilibrium process dependent on the energetic
stability of both the parent FQ and the resulting metal complex. In this study, a strong
relationship was observed between percent reduction in AUC and the computed energies
of FQ–metal complex formation (Figure 3D, R2 = 0.70). These results demonstrate an in
silico connection between FQ–metal equilibria and decreases in overall bioavailability.
Early experimental work investigating FQ absorption in the presence of the metal ions
proposed that the reduction of FQ absorption is due to formation of insoluble and un-
absorbable chelates in the GIT [79]. Further studies observed that the solubility of FQs
actually increases in the presence of calcium, magnesium, aluminum, and iron(III) [56].
These findings suggest that the reduction of the gastric absorption of lomefloxacin at co-
administration with these metal ions are not caused by the insoluble precipitation, but
by a decrease in permeability. FQs which experience dramatic decreases in bioavailabil-
ity due to metal complex formation may be considered class 3 products (high solubility,
low permeability) according to the Biopharmaceutics Classification System (BCS) [80,81].
Aluminum complexation can act as a solubilizer but converts the active ingredient into a
form that is less permeable through the intestinal lumen [56,82]. This phenomenon is a
significant component of the complete mechanistic picture of bioavailability reduction due
to metal chelation [58,83,84].

Novel and more structurally diverse FQs will continue to be developed for application
to challenging bacterial infections with increasing antibiotic resistance. Predicting potential
drug–drug interactions and quantifying the extent is a significant hurdle as new FQs enter
the drug development phase [85]. While spacing the administration of the multivalent
metals and FQs serves as a general guide in clinical practice, the effect of chelation on
FQ pharmacokinetics remains highly variable (e.g., rufloxacin, which only shows a 15%
decrease in AUC upon aluminum coadministration, Table 2) and patient compliance cannot
be guaranteed. We have highlighted FQ–aluminum binding energy, a simple metric for
assessing the magnitude of bioavailability reduced from FQ–aluminum chelation. The com-
putational chemistry workflow outlined herein used free and open-source tools at all steps,
and the methodology could easily be applied early in the drug development pipeline. As
the model presented has only been developed for aluminum, further research will expand
this methodology to other metals known to chelate FQs and disrupt pharmacokinetics
such as iron and copper. These QSPR models will then be incorporated into our integrated
mechanistic modeling and artificial intelligence platform, BIOiSIM, for predicting complete
drug disposition [86,87].

4. Conclusions

A multitude of literature sources disclose reductions in bioavailability of fluoro-
quinolone (FQ) antibiotics due to interactions with the multivalent metals magnesium,
calcium, and aluminum commonly found in antacids and drug formulations. Of these met-
als, aluminum is shown to affect pharmacokinetic (PK) parameters the highest. Literature
sources for PK studies of FQ–metal interactions and effects on the PK parameters Cmax,
AUC, and t1/2 were leveraged to calculate the oral absorption rate constants for thirteen
FQs alone in the presence of magnesium, calcium, and aluminum. Rates of absorption
were found to generally decrease with concomitant metal administration, with exceptions
dependent on the identity of the drug product. Quantum mechanical computations pre-
dicted the Gibbs free energy of binding (∆Gbind) of ciprofloxacin to magnesium, calcium,
and aluminum ions under aqueous acidic conditions, showing good agreement with trends
in relative AUC reduction. Descriptors commonly applied in absorption prediction models
(molecular weight, polar surface area, and logP) were identified as poor-to-moderate pre-
dictors of AUC reduction of FQs due in the presence of aluminum. The predicted energy
of binding (∆Ebind) corresponded well with reductions in bioavailability for a structurally-
diverse set of FQs. A straightforward computational metric has been developed to evaluate
metal chelation interaction propensity and the magnitude of the resulting diminished
bioavailability that may be applied to novel FQs in clinical development.
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