
RESEARCH ARTICLE

Swarm: A federated cloud framework for

large-scale variant analysis

Amir BahmaniID
1,2,3☯, Kyle Ferriter2,3☯, Vandhana KrishnanID

2,3, Arash Alavi2,3,

Amir Alavi2,3, Philip S. TsaoID
4,5, Michael P. SnyderID

1,2,3*, Cuiping PanID
5*

1 Stanford Healthcare Innovation Lab, Stanford University, California, United States of America, 2 Stanford

Center for Genomics and Personalized Medicine, Stanford University, California, United States of America,

3 Department of Genetics, Stanford University, California, United States of America, 4 Division of

Cardiovascular Medicine, Stanford University, California, United States of America, 5 Palo Alto Epidemiology

Research and Information Center for Genomics, VA Palo Alto, California, United States of America

☯ These authors contributed equally to this work.

* mpsnyder@stanford.edu (MPS); cuiping@stanford.edu (CP)

Abstract

Genomic data analysis across multiple cloud platforms is an ongoing challenge, especially

when large amounts of data are involved. Here, we present Swarm, a framework for feder-

ated computation that promotes minimal data motion and facilitates crosstalk between

genomic datasets stored on various cloud platforms. We demonstrate its utility via common

inquiries of genomic variants across BigQuery in the Google Cloud Platform (GCP), Athena

in the Amazon Web Services (AWS), Apache Presto and MySQL. Compared to single-

cloud platforms, the Swarm framework significantly reduced computational costs, run-time

delays and risks of security breach and privacy violation.

Author summary

With more and more genomic data generated and stored in different computational plat-

forms, federated computation has become an area of strong interest. Our software frame-

work Swarm provides such a solution. With Swarm, large genomic datasets hosted on

different cloud platforms or on-premise systems can be jointly analyzed with reduced data

motion. It not only enables more economical computation, but also enables collaboration

within or between different organizations and institutions, empowering multi-cloud solu-

tions as long as the required users’ authorization and credentials are available. Moreover,

it accelerates discoveries in both inter- and intra- organizations. For instance, information

on disease variants from healthcare data can be quickly shared between two hospitals

potentially seeking faster treatments if procurable. We demonstrated the utility of Swarm

in different application cases, including variant query, functional annotation information

query, their joint computation between databases hosted on different platforms, and a

potential application in federated learning across cloud platforms.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bahmani A, Ferriter K, Krishnan V, Alavi A,

Alavi A, Tsao PS, et al. (2021) Swarm: A federated

cloud framework for large-scale variant analysis.

PLoS Comput Biol 17(5): e1008977. https://doi.

org/10.1371/journal.pcbi.1008977

Editor: Mihaela Pertea, Johns Hopkins University,

UNITED STATES

Received: November 16, 2020

Accepted: April 18, 2021

Published: May 12, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1008977

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The computational and storage cost of

this work, and CP,VK,PST were supported by the

https://orcid.org/0000-0003-4533-9334
https://orcid.org/0000-0002-6475-8019
https://orcid.org/0000-0001-7274-9318
https://orcid.org/0000-0003-0784-7987
https://orcid.org/0000-0002-8152-2489
https://doi.org/10.1371/journal.pcbi.1008977
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008977&domain=pdf&date_stamp=2021-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008977&domain=pdf&date_stamp=2021-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008977&domain=pdf&date_stamp=2021-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008977&domain=pdf&date_stamp=2021-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008977&domain=pdf&date_stamp=2021-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008977&domain=pdf&date_stamp=2021-05-24
https://doi.org/10.1371/journal.pcbi.1008977
https://doi.org/10.1371/journal.pcbi.1008977
https://doi.org/10.1371/journal.pcbi.1008977
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

This is a PLOS Computational Biology Software paper.

Introduction

Big data is radically transforming precision medicine and the landscape of information tech-

nology for the life sciences. For instance, the exponential growth of data in genomics research

is shifting the data generation bottleneck from sequencing costs to new storage and computa-

tion needs [1]. Scalable and distributed computing is integral to solving these bottlenecks.

Cloud computing offers elastic scalability and a flexible pay-as-you-go model that removes

complex maintenance workloads from end users, equips researchers to store massive data in

addition to performing intensive computing [2], and enhances data sharing and collaboration;

therefore, it is well suited for large-scale genomic analysis [3–5]. Currently, multiple cloud ser-

vice platforms are in use by the genomic community for data hosting, computing, and sharing.

For example, Encyclopedia of DNA Elements [6] mainly employs Amazon Web Services

(AWS), while the Genome Aggregation Database [7] data is stored on Google Cloud Platform

(GCP). However, due to the platform heterogeneity, joint analyses across cloud platforms are

not optimized. Indeed, data motion across cloud platforms is non-trivial, as the amount of

data involved is often large and sometimes even unnecessary, resulting not only in high trans-

fer costs, but also drastic delays and a plethora of security and privacy risks.

Here, we propose a new framework, Swarm, for federated computation among multiple

cloud platforms and on-premise machines. With Swarm, we developed an API that leverages a

serverless computing model [8] to evaluate data motion needs, perform computation in situ as

much as possible, and facilitate data transfer if moving data between different platforms

becomes necessary. We tested the utility of our framework in several research scenarios involv-

ing genomic variants and showed an optimized data crosstalk solution where the cost associ-

ated with data motion was drastically reduced. This federated computational framework will

enable researchers under the same security protocols and data access rights to freely utilize ser-

vices provided by different computational platforms without being locked into any specific fea-

tures of the original data hosting platform. Performing minimum data motion between cloud

providers in the Swarm federated computational framework also improves the security and

privacy of health data being transferred. Various cloud providers encapsulate best practices to

support health privacy regulations such as the Health Insurance Portability and Accountability

Act (HIPAA)—e.g., HIPAA Compliance on GCP [9] and AWS [10]. Leveraging these logging,

auditing, and monitoring best practices and using strong authentication and encryption mech-

anisms for data in transit would help reduce the security and privacy risks associated with

multi-cloud orchestration.

Design and implementation

Overview of Swarm

Fig 1 shows the architecture of Swarm for federated computation on genomic variants. Swarm

classifies variant inquiry tasks into two main categories. “Stat Query” handles all queries that

do not require data motion, and returns statistics such as counts of matched records and fre-

quency of the alleles. “Data Query” handles queries that involve moving a set of records to

another computing platform for further processing. To handle heterogeneity in how the data

are formatted, we adopted the BED file format: chromosome_name, start_position, end_posi-

tion, reference_bases, and alternate_bases, while the remaining fields are left unchanged to

accommodate more specific information. Specifically, to minimize data motion, Swarm first

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 2 / 16

Veterans Affairs Office of Research and

Development Cooperative Studies Program

(https://www.research.va.gov/default.cfm). MPS,

AB, KF, ARA, AMA received support by National

Human Genome Research Institute at the United

States National Institutes of Health (U24

HG009397 356 and RM1-HG007735), and by the

generosity of Eric and Wendy Schmidt by

recommendation of the Schmidt Futures program

(https://schmidtfutures.com/). The content is solely

the responsibility of the authors and does not

necessarily represent the official views of the VA

Healthcare System, the National Human Genome

Research Institute, the National Institutes of Health,

or the Schmidt Futures program. The funders had

no role in design, data processing, implementation,

decision to publish, or preparation of the

manuscript.

Competing interests: I have read the journal’s

policy and the authors of this manuscript have the

following competing interests: MPS is the

Cofounder and SAB member of Personalis, Mirvie,

SensOmics, Qbio, January, Oralome, Filtricine,

Protos; SAB of Genapsys, Jupiter.

https://doi.org/10.1371/journal.pcbi.1008977
https://www.research.va.gov/default.cfm
https://schmidtfutures.com/

evaluates the amount of data returned from each platform, selects and compresses the smaller

set, and then moves it to the other computing platform where the larger dataset is hosted.

After transforming the small dataset to a temporary table in the new computing environment,

Swarm joins the two datasets and returns the final result to users. In addition to the default

option of moving the smaller dataset, Swarm also provides an option to move the larger data,

for example to better comply with the privacy and security requirements of users’ projects.

Implementation of Swarm

Our current implementation utilized two commercial serverless and interactive query services:

1) Google BigQuery: https://cloud.google.com/bigquery/ from GCP and 2) Amazon Athena:

https://aws.amazon.com/athena/ from AWS. Swarm also supports Apache Presto, an open

source distributed query engine that supports much of the SQL analytics workload at Facebook

[11]. All the above platforms support the SQL standard, which enables a high degree of porta-

bility and interoperability [12]. The proposed framework can be extended to other computa-

tional platforms following a similar achitecture.

Fig 1. Swarm Framework: The Swarm architecture enables federated computation on genomic variants. It

classifies variant inquiry tasks into two main categories. “Stat Query” handles all queries that do not require data

motion, and returns statistics such as counts of matched records and frequency of the alleles. “Data Query” handles

queries that involve moving a set of records to another computing platform for further processing. In this figure, as an

example, we illustrate the use of AWS Athena and GCP BigQuery.

https://doi.org/10.1371/journal.pcbi.1008977.g001

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 3 / 16

https://cloud.google.com/bigquery/
https://aws.amazon.com/athena/
https://doi.org/10.1371/journal.pcbi.1008977.g001
https://doi.org/10.1371/journal.pcbi.1008977

Configuring Swarm framework for the use cases

1. For our first experiment, we randomly split the 1000 Genomes Phase 3 VCF in half and

stored one half in BigQuery and the other half in Athena. Swarm queried the four variants

shown in Table 1 on the split datasets and computed their corresponding allele frequencies.

Such data inquiries do not involve data motion and are categorized as "Stat Query". The ini-

tial set of configurations did not include any optimizations (e.g., partitioning or clustering),

while in the second set of configurations, we split these tables into 4,000 partitions over the

start positions for the BigQuery and Athena tables. Additionally, the BigQuery table was

clustered by reference name and start position. Each Athena partition was created as one

Apache Parquet [13] data file.

2. In the second experiment, we examined data inquiries that involved data motion termed

"Data Query". These types of queries involved joining datasets from multiple cloud plat-

forms for performing the combined analysis. For this, we studied a case of variant annota-

tion in which the variant file containing the 1000 Genomes calls was stored in an Athena

table in AWS, whereas the reference files for functional annotation of the genotypes were

collectively stored in a BigQuery table on GCP. We partitioned both of these tables into

4,000 partitions based on the start position. For the BigQuery annotation reference table,

we also applied clustering using both the start position and reference name.

3. The third experiment was run on Apache Presto (12.4. Release 331) configured on Google

DataProc (v1.5). As opposed to the serverless model of the BigQuery and Athena experi-

ments where charges were based on the amount of data traversed, the Apache Presto exper-

iment was run on a DataProc cluster with pre-allocated computing resources and charges

were based on the time that storage, memory, and CPU resources remain allocated. In this

experiment, we loaded the second half of the 1000 Genomes dataset that was used in the

first experiment for Amazon Athena. This table comprised 4,000 parquet files partitioned

based on their start positions in Amazon Athena. We created DataProc clusters with differ-

ent numbers of worker nodes (all n1-standard-4 machine types). Although we configured

Apache Presto on Google Cloud Dataproc, note that it can also be configured on any HPC

clusters.

4. The fourth experiment was run on MySQL 5.7 as a traditional relational database system

(RDBMS). MySQL 5.7 is fully multi-threaded, and makes use of all vCPUs made available

to it. For this experiment, we loaded the entire 1000 Genomes dataset without the genotyp-

ing columns. The MySQL queries were executed on different n1-standard machine types on

Google Cloud Platform. In order to compare the performance of Apache Presto on a CSV

file and a Parquet file based on rsID search, the same 1000 Genomes dataset without geno-

typing information was utilized. Similar to the third experiment, the runs on Apache Presto

were performed using a different number of n1-standard machine type-based worker

nodes on Google Cloud Platform.

Table 1. Variants used for testing Stat Queries.

Description rsID Chr Pos

Attention-deficit/hyperactivity disorder (ADHD) rs671 12 112241766

Blue Eye Color (BEC) rs12913832 15 28365618

Coronary Heart Disease (CHD) rs1333049 9 22125503

Lactose Intolerance rs4988235 2 136608646

https://doi.org/10.1371/journal.pcbi.1008977.t001

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 4 / 16

https://doi.org/10.1371/journal.pcbi.1008977.t001
https://doi.org/10.1371/journal.pcbi.1008977

5. As a proof of concept, we also implemented a version of Swarm that supports containeriza-

tion for ad hoc computation such as federated machine learning tasks. Users can provide an

image for one platform (e.g., training a model), and Swarm transfers the output model/files

to the other platform and continues the computation by creating a new container on the

second platform. For this experiment, we followed the tutorial on https://choishingwan.

github.io/PRS-Tutorial/ [14] to build a polygenic risk score (PRS) model from a height

genome-wide association study, transferred the model via Swarm to another cloud, and

applied it to the 1000 Genomes dataset.

Statistical tests

All our experiments were run four times. Average values and standard deviations were com-

puted. For comparing differences between a pair of experiments, F tests were used to evaluate

variances and two sample t-tests were used for computing P values. For comparing within a

group of experiments, e.g., runtimes with varying number of nodes in the Apache Presto runs,

anova tests were used for computing P values.

Results

We demonstrated the utility of Swarm in facilitating genomic variant analysis across datasets

on different cloud platforms, such as BigQuery on GCP, Athena on AWS, and Apache Presto.

While BigQuery and Athena are serviced columnar databases, Apache Presto runs on Hadoop

clusters. Here we used Dataproc, a managed Apache Hadoop [15] and Apache Spark [16] ser-

vice with pre-installed open source data tools for batch processing, querying, streaming, and

machine learning.

A common use case is to query particular variants in a dataset. When genomic positions

and genotypes are provided, our API can query datasets on BigQuery and Athena to retrieve

records of the matched variants. Similarly, if the HUGO Gene Nomenclature Committee

(HGNC) [17] symbol of a gene or the positions of a genomic region are given, our API can

return variant records that fall into that region. It can also perform computation based on stan-

dard SQL, such as computing allele frequency for a specific variant. We conducted the follow-

ing experiments using Swarm, each mapping to the use cases described in the previous section:

Experiment 1: computing allele frequencies for datasets across two cloud platforms, Experi-

ment 2: annotating an input gene using functional reference datasets from another cloud,

Experiment 3 and Experiment 4: retrieving records of a variant given the rsID (i.e., the

matched VCF fields) in databases of different structures, and Experiment 5: a proof-of-concept

study of transferring a genomic model from one cloud to another cloud.

Datasets

To evaluate the capability of Swarm, the 1000 Genomes Project’s variant calling results [18]

were used: https://cloud.google.com/life-sciences/docs/resources/public-datasets/

1000-genomes. Variants indicated in Table 1 were queried in the 1000 Genomes dataset via

Swarm. Annotation of the 1000 Genomes dataset was performed using the resources listed in

Table 2.

Stat Query: Allele frequency computation across clouds

We tested our system, Swarm, using the first experimental set-up as described in Design and

Implementation. Briefly, half of the 1000 Genomes samples and their genomic variants were

stored in GCP and the other half were stored in AWS, and we used swarm to compute variant

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 5 / 16

https://choishingwan.github.io/PRS-Tutorial/
https://choishingwan.github.io/PRS-Tutorial/
https://cloud.google.com/life-sciences/docs/resources/public-datasets/1000-genomes
https://cloud.google.com/life-sciences/docs/resources/public-datasets/1000-genomes
https://doi.org/10.1371/journal.pcbi.1008977

allele frequencies in each cloud, and subsequently merged the results for deriving the com-

bined allele frequencies. To optimize the performance, we introduced the methods of parti-

tioning and clustering. Fig 2A depicts the execution time with or without optimizations. Fig

2B shows the amount of data processed.

For the genotypes in Table 1, partitioning and clustering significantly improved runtimes.

Swarm processed 0.15GB data from BigQuery for calculating their allele frequencies in one

half of the samples in the 1000 Genomes dataset. Given that the whole BigQuery table was

540GB, this was a small fraction. Compared to the scenario of moving the dataset to the second

cloud, Swarm computed in situ and reduced the egress cost by 99.98%, and in this particular

example, users could run approximately 3,600 similar queries before reaching the break-even

point. Note, this experiment used only half of the 2,500 samples from the 1000 Genomes Proj-

ect. Larger cohorts with hundreds of thousands or millions of samples can benefit largely from

systems like Swarm.

Data Query: Comprehensive functional annotation of variants or genes

across clouds

In the second experiment, we mimicked a scenario where the variant calling results were

stored in one computing platform (e.g., AWS Athena), and the reference files for functional

annotation (Table 2) were stored in another (e.g. GCP BigQuery), and users wanted to anno-

tate all variants pertaining to the TP53 gene. Our API determined that the smallest dataset to

transfer would be the extracted entries of the TP53 functional annotation records from BigQu-

ery. This subset of records from BigQuery containing the TP53 functional information was

compressed and sent in an encrypted format to AWS, stored in a temporary AWS Athena

table, and then used to perform joint analysis with the functional reference table.

Fig 3 shows the performance of Swarm for annotating a set of genes. In this case, Swarm

moved the annotation records that overlap with the input genes from BigQuery to Athena and

then performed annotation. Again, our optimization using partitioning and clustering signifi-

cantly shortened the runtime and reduced the amount of data scanned. Here, Swarm pro-

cessed 99.4 MB in BigQuery and 13.5 MB in Athena, and then compressed and copied a 3.1

Table 2. Databases used for annotating the 1000 Genomes data sets in this study.

Annotation Dataset

Name

Reference

dbNSFP 35a https://sites.google.com/site/jpopgen/dbNSFP

1000Genomes https://www.internationalgenome.org/data/

RegulomeDB https://www.regulomedb.org/regulome-search/

ClinVar https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/

UCSC gtex Eqtl Cluster https://genome.ucsc.edu/gtex.html

gnomAD https://gnomad.broadinstitute.org/downloads

Cosmic70 https://annovar.openbioinformatics.org/en/latest/user-guide/filter/#cosmic-

annotations

Dann https://annovar.openbioinformatics.org/en/latest/user-guide/filter/#dann-annotations

Eigen https://annovar.openbioinformatics.org/en/latest/user-guide/filter/#eigen-score-

annotations

eQTL & Diseases http://www.exsnp.org/Download

GTEx Analysis v7 eQTL https://gtexportal.org/home/datasets

SNP151 https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38\&g=snp151

Wellderly https://genomics.scripps.edu/browser/files/wellderly/vcf

https://doi.org/10.1371/journal.pcbi.1008977.t002

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 6 / 16

https://sites.google.com/site/jpopgen/dbNSFP
https://www.internationalgenome.org/data/
https://www.regulomedb.org/regulome-search/
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/
https://genome.ucsc.edu/gtex.html
https://gnomad.broadinstitute.org/downloads
https://annovar.openbioinformatics.org/en/latest/user-guide/filter/#cosmic-annotations
https://annovar.openbioinformatics.org/en/latest/user-guide/filter/#cosmic-annotations
https://annovar.openbioinformatics.org/en/latest/user-guide/filter/#dann-annotations
https://annovar.openbioinformatics.org/en/latest/user-guide/filter/#eigen-score-annotations
https://annovar.openbioinformatics.org/en/latest/user-guide/filter/#eigen-score-annotations
http://www.exsnp.org/Download
https://gtexportal.org/home/datasets
https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg38%5C&g=snp151
https://genomics.scripps.edu/browser/files/wellderly/vcf
https://doi.org/10.1371/journal.pcbi.1008977.t002
https://doi.org/10.1371/journal.pcbi.1008977

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 7 / 16

https://doi.org/10.1371/journal.pcbi.1008977

MB subset of the 233 GB annotation table from BigQuery to Athena, in contrast to copying

the whole annotation table to the other side of the computation in Athena. This resulted in

moving only 0.001% of the full annotation table.

Variant query in Apache Presto

With the third computing configuration set-up as described in Design and Implementation,

we demonstrated the cloud-agnostic feature of the Swarm platform. This was achieved by

assessing the query processing times using the rsID rs671, provided in Table 1 to compute

allele frequencies. Table 3 shows the average runtime for querying rs671 for the cluster with

different numbers of nodes.

The short computation time stems from the fact that these sets of nodes were dedicated to

Presto experiments (i.e., after the process of partition discovery, these nodes cache metadata).

On the other hand, in the serverless systems (e.g., BigQuery and Athena), for every input

query, a new set of nodes unfamiliar with the structure of the data are prospectively assigned,

increasing the query response times in the absence of caching. Our Presto cluster had a signifi-

cantly faster execution time than Amazon Athena. Note that the serverless system leverages

auto-scaling features and scales its clusters automatically.

The runtimes for searching for rs671 in a Dataproc cluster using partitioning versus ignoring

partitioning are displayed in Fig 4A. Also, average runtime using partitioning with preemptible

and non-preemptible instances is shown in Fig 4B. In this example, for the preemptible cluster

among N worker nodes, only two were non-preemptible instances (Non-PVM); the rest were

preemptible (i.e., N-2 PVMs). The execution time was almost identical in the above tested

example. However, Fig 4C shows a large cost reduction for using preemptible instances as the

number of worker nodes increased. Dataproc uses preemptible instances as secondary workers

to scale computation without scaling storage. This is because preemptible instances are not suit-

able for HDFS storage, since a preemption would impact the availability of HDFS blocks.

Note that in this third example, because Presto is a columnar database, every VCF field in

the 1000 genomes VCF file was stored in a columnar format. Therefore, for the input Stat

Query on an rsID, Presto scanned the column associated with the corresponding rsID field.

The speed-up, displayed in Fig 4A deteriorated as the number of nodes increased, indicating

that there was not enough work for each worker node, and a significant portion of overall

turnaround time was spent on sequential processing, rather than parallel worker processing.

Variant query in MySQL

With respect to interoperability, we also demonstrated the utility of Swarm in facilitating geno-

mic variant analysis on MySQL. Fig 5A depicts the performance of MySQL 5.7 for searching

rs671. For this experiment, MySQL performs well on the instance with 8 vCPUs and 30 GB

memory, which is mainly due to the table size. The size of the VCF table is 15.97 GB, so the

table fits well into the main memory of the instance.

Fig 5B depicts the performance of running a query on a table imported as CSV as opposed

to the Parquet version, on Apache Presto. As shown, the amount of data scanned for Parquet

Fig 2. Runtime and amount of data processed for computing allele frequency for an input set of rsIDs in BigQuery and Athena. Average values and standard

deviations were plotted. (A) depicts the average execution time in seconds. The light blue and light green bars represent configurations without any optimizations

(i.e., the entire input data used as it was), and the dark blue and dark green bars represent configurations with optimizations (i.e., the input data was divided by

partitioning or clustering); (B) shows the amount of data processed in megabytes, and the y-axis is logarithmic in scale. Significance differences between groups are

indicated on top of the bars (two samples t-test). Note that for each rsID experiment, differences in runtimes between any BigQuery and Athena runs in (A) were

highly significant (P< 1e-5), and for (B), differences within the BigQuery or Athena runs were also highly significant (P< 1e-5).

https://doi.org/10.1371/journal.pcbi.1008977.g002

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 8 / 16

https://doi.org/10.1371/journal.pcbi.1008977.g002
https://doi.org/10.1371/journal.pcbi.1008977

Fig 3. Runtime and the amount of data processed for annotating an input set of genes. A, V and J stand for Annotation records, Variant records and Join

table operations, respectively. Average values and standard deviations were plotted. (A) depicts the execution time in seconds for the two input genes. In this

experiment, the annotation table was in BigQuery and the variant table in Athena. Therefore, Swarm first found all the annotation records in BigQuery that

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 9 / 16

https://doi.org/10.1371/journal.pcbi.1008977

was 1.27 GB, which was significantly smaller compared to the CSV version of 12.7 GB. This

shows that Parquet as a columnar storage format, is efficient for columnar distributed SQL

query engines such as Apache Presto.

For both experiments in Fig 5, we used the 1000 Genomes VCF by leaving out the genotyp-

ing columns. The MySQL experiment illustrates vertical scaling (i.e., increasing the number of

vCPUs per worker node) whereas the Presto experiment represents horizontal scaling (i.e.,

increasing the number of worker nodes). As a simple comparison, it can be observed that

MySQL run on a worker node with 8 vCPUs (CSV: 63.2625 seconds) is significantly slower

than the Apache Presto run on two worker nodes with collectively 8 vCPUs (Parquet: 12.205

seconds, CSV: 29.005 seconds).

An example of federated learning

In addition to querying variants and computing summary statistics, Swarm can in principle

facilitate federated learning by transferring models across clouds. We demonstrated this

potentiality via the computation of genomic polygenic risk scores (PRS) (see Design and

Implementations). We first learned the PRS model based on the summary statistics of a

genome-wide association study (GWAS) on height, and then applied the model to the Euro-

pean sub-population in the 1000 Genomes dataset, which were stored in a different cloud plat-

form, for constructing the PRS for individual genomes. This represents a common scenario

where large computing can be performed in one cloud platform for deriving a statistical

model, and the actual application of the model is elsewhere. In addition, Swarm can help trans-

fer intermediate results of the machine learning models across the cloud, so that the model can

continue to learn and improve using the new data in the second cloud. For instance, gradients

of deep learning models can be transferred by Swarm. However, we note that currently model

transfer in Swarm uses localized sever, and further development in security measures are nec-

essary. Particularly, individual genomes are regarded as protected data in healthcare, so model

transfer should use caution. In the Future Directions, we elaborate on a few promising tech-

niques for strengthening the security feature for federated learning.

Availability

Swarm is available as an open source tool at https://github.com/StanfordBioinformatics/Swarm

Future directions

In this paper we presented Swarm, a framework for federated computation that promotes min-

imal data motion and facilitates crosstalk between genomic datasets stored on various cloud

overlapped with the input gene regions, compressed them and moved them to Athena. Then, on the Athena side, Swarm decompressed the overlapping

annotation data and created a temporary table, which was eventually processed to join with the existing variant table. The light blue and light green represent

the configurations without any optimizations by partitioning or clustering, and the dark blue and dark green represent the configurations with optimizations.

(B) shows the amount of data processed in megabytes, and the y-axis is logarithmic in scale. Significance differences between groups are indicated on top of the

bars (two samples t-test). Note that for (A), differences between any BigQuery and Athena groups were highly significant (P< 1e-5), and for (B), differences

within the BigQuery or Athena groups were also highly significant (P< 1e-5).

https://doi.org/10.1371/journal.pcbi.1008977.g003

Table 3. Average execution time for querying rs671 with the binID on the partitioned Parquet files of one half of

the 1000 Genomes dataset using Apache Presto, with different numbers of worker nodes. Each configuration addi-

tionally includes one master node.

Number of Worker Nodes 2 4 8 16

Average Runtime (seconds) 3.6725 3.1500 3.1900 3.9375

https://doi.org/10.1371/journal.pcbi.1008977.t003

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 10 / 16

https://github.com/StanfordBioinformatics/Swarm
https://doi.org/10.1371/journal.pcbi.1008977.g003
https://doi.org/10.1371/journal.pcbi.1008977.t003
https://doi.org/10.1371/journal.pcbi.1008977

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 11 / 16

https://doi.org/10.1371/journal.pcbi.1008977

platforms. We demonstrated that it accurately performs genomic analysis across multiple data-

bases on different cloud platforms, including GCP BigQuery, AWS Athena, Apache Presto on

an Apache Hadoop cluster (e.g., Google Dataproc), and the traditional row-based database

MySQL. For the tested computing platforms, we observed an obvious reduction in run-time

and cost by utilizing partitioning and clustering techniques.

Our evaluations were scripted in Python against the REST interface provided by Swarm.

Timing and data values were automatically extracted from output messages provided by the

REST server. Each query was performed over four averaged runs and negligible variance was

observed. The outputs from the queries spanning BigQuery and Athena were validated by

comparing the original data files.

While Swarm performed well for the tested experiments, it is worth mentioning some of

the limitations associated with the underlying computing frameworks. Currently in BigQuery,

the maximum number of partitions per partitioned table is 4,000, and the maximum number

of columns is 10,000 https://cloud.google.com/bigquery/quotas. At the same time, AWS

Athena has the ability to support a maximum of 20,000 partitions per partitioned table https://

docs.aws.amazon.com/athena/latest/ug/service-limits.html. Furthermore, BigQuery and

Athena scale automatically based on the workloads. In contrast to Athena and BigQuery,

Apache Presto utilizes Hadoop cluster, a different compute environment based on distributed

computing architecture. We used Google Dataproc, a managed cloud service for running

Apache Spark and Apache Hadoop. System engineers need to tune their clusters based on the

number of requests and the size of the table, as well as the complexity of the queries. Although

there are no explicit hard limits for the number of columns in Apache Presto, users are limited

by available memory and maximum size of collection in Java. Google Dataproc used for

Apache Presto has options to use either preemptible or non-preemptible secondary worker

nodes, thereby helping reduce costs. Additionally, Google Dataproc used for Apache Presto

required a minimum of two worker nodes.

In Google BigQuery, a feature for performing integer range partitioning into fixed-sized

bins was added recently and was found to perform well under our experimental workloads. In

Amazon Athena, performing integer range bin partitioning within Athena itself was not possi-

ble due to the Athena time and memory constraints on jobs. Since partitioning could not be

performed within Athena, we instead performed this separately on an AWS EMR cluster using

Python and Spark.

We showcased how the Swarm framework could accommodate federated machine learning

tasks. Federated learning facilitates model training without the need of sharing raw data, and

therefore strengthens privacy protection. However, it has been shown that federated learning

is vulnerable to attacks against machine learning models such as model inversion, member-

ship, or properties inference attacks [19–21].

This emphasizes the need for security and privacy preservation mechanisms in federated

learning systems. A previous study showed that individuals in the beacon service of the Global

Alliance for Genomic and Health (GA4GH) study were susceptible to re-identification attacks

by allele-presence only queries [22]. Prohibiting anonymous access via monitoring and imple-

menting best practices access control play the most important role for improving security and

Fig 4. Execution time for searching rs671 with different number of worker nodes for running Apache Presto on Dataproc. (A) The average runtime using

partitioning versus ignoring partitioning in Apache Presto. (B) The average runtime using preemptible (PVM) and non-preemptible (Non-PVM) instances.

Average values and standard deviations were plotted. (C) The projected cost of reserving the dedicated nodes on GCP on a monthly basis. Monthly cost as of

February 2021 https://cloud.google.com/compute/all-pricing. Note, for serverless systems like BigQuery and Athena, users are charged based on the amount of

data processed, respectively. In (A), Differences between the paired groups of with or without partitioning were highly significant (two sample t-tests P< 1e-5).

In (B), differences between the paired groups of Non-PVM and PVM, although not significant, had marginal P values close to 0.05.

https://doi.org/10.1371/journal.pcbi.1008977.g004

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 12 / 16

https://cloud.google.com/bigquery/quotas
https://docs.aws.amazon.com/athena/latest/ug/service-limits.html
https://docs.aws.amazon.com/athena/latest/ug/service-limits.html
https://cloud.google.com/compute/all-pricing
https://doi.org/10.1371/journal.pcbi.1008977.g004
https://doi.org/10.1371/journal.pcbi.1008977

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 13 / 16

https://doi.org/10.1371/journal.pcbi.1008977

reducing loss of privacy. On the other hand, in the case of unauthorized accesses, minimizing

data motion as enabled by Swarm can effectively protect data against data in-transit attacks

(e.g., man-in-the-middle).

Further privacy protection techniques can be integrated into our proposed framework: 1)

Secure Multiparty Computation (SMPC). SMPC cryptographic protocols allow multiple par-

ties to jointly compute a function over their inputs while ensuring complete zero knowledge

about the inputs. However, while the SMPC protocols preserve the privacy of inputs and pro-

cesses among parties fairly, the privacy concerns about the output need to be addressed; 2) Dif-

ferential Privacy. These methods add noises to the data in a way to simultaneously deliver high

anonymization and utility preservation. The Swarm framework can be adapted to support dif-

ferential privacy, K-anonymity, and K-isomorphism anonymization schemes to the data. 3)

Homomorphic encryption. This is another cryptographic protocol that can protect data pri-

vacy through computing over encrypted data without access to the secret key. The main bottle-

neck of such computation-heavy privacy-preserving techniques is latency.

Moreover, for a secure cloud-to-cloud model transfer, one can use traditional asymmetric

encryption methods (e.g., RSA) or leverage the built-in account-based transfer services (e.g.,

GCP Storage Transfer Service) to securely transfer models to the other cloud. Currently the

GCP Transfer Service, AWS DataSync, and AzCopy support secure data transfer to/from Goo-

gle cloud storage, Amazon S3 bucket, Microsoft Azure storage, or object URLs. For the object

URLs, signed URLs can be used for limited permission and time access.

Swarm can also be extended to use in-memory transfer of data without using local storage

for caching. Additional improvement for security and performance would be to leverage exist-

ing libraries for point-to-point transfer between cloud storage services without needing to pass

through the Swarm server until the very end when data must be returned.

Another improvement could be in expanding the core code APIs of the service to make

them more flexible and capable of accommodating data types beyond variants and variant

annotation. This would enable more generic querying and adding functionality comparable to

dataframes in the Pandas or Spark libraries, where columns can be detected and arbitrary table

keys can be defined more broadly.

Acknowledgments

We acknowledge the Stanford Genetics Bioinformatics Service Center (GBSC) for providing

the gateway to GCP and AWS for this research. We thank members of the MVP bioinformat-

ics team of Stanford University and VA Palo Alto for constructive feedback.

Author Contributions

Conceptualization: Amir Bahmani, Kyle Ferriter, Vandhana Krishnan, Arash Alavi, Cuiping

Pan.

Data curation: Amir Bahmani, Kyle Ferriter, Cuiping Pan.

Formal analysis: Amir Bahmani, Kyle Ferriter, Vandhana Krishnan, Arash Alavi, Cuiping

Pan.

Fig 5. Searching rs671 in the 1000 Genomes dataset loaded in (A) MySQL and (B) Apache Presto with different settings, i.e., varying number of vCPUs

and main memory sizes. Average values and standard deviations were plotted. For the Apache Presto runs in (B), runtimes between CSV input versus

Parquet input were compared, and significant P values are indicated (two sample t-tests). In addition, anova tests indicated that the number of worker

nodes had a significant impact on the runtimes (P< 1e-5).

https://doi.org/10.1371/journal.pcbi.1008977.g005

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 14 / 16

https://doi.org/10.1371/journal.pcbi.1008977.g005
https://doi.org/10.1371/journal.pcbi.1008977

Funding acquisition: Philip S. Tsao, Michael P. Snyder, Cuiping Pan.

Investigation: Amir Bahmani, Kyle Ferriter, Vandhana Krishnan, Arash Alavi, Amir Alavi,

Cuiping Pan.

Methodology: Amir Bahmani, Kyle Ferriter, Cuiping Pan.

Project administration: Amir Bahmani, Michael P. Snyder, Cuiping Pan.

Resources: Amir Bahmani, Cuiping Pan.

Software: Amir Bahmani, Kyle Ferriter, Amir Alavi.

Supervision: Amir Bahmani, Philip S. Tsao, Michael P. Snyder, Cuiping Pan.

Validation: Amir Bahmani, Kyle Ferriter, Cuiping Pan.

Visualization: Amir Bahmani, Kyle Ferriter, Vandhana Krishnan, Arash Alavi, Cuiping Pan.

Writing – original draft: Amir Bahmani, Kyle Ferriter, Vandhana Krishnan, Arash Alavi,

Amir Alavi, Philip S. Tsao, Michael P. Snyder, Cuiping Pan.

Writing – review & editing: Amir Bahmani, Kyle Ferriter, Vandhana Krishnan, Arash Alavi,

Amir Alavi, Philip S. Tsao, Michael P. Snyder, Cuiping Pan.

References
1. Kahn SD. On the future of genomic data. Science. 2011; 331(6018):728–729. https://doi.org/10.1126/

science.1197891 PMID: 21311016

2. Langmead B, Nellore A. Cloud computing for genomic data analysis and collaboration. Nature Reviews

Genetics. 2018; 19(4):208. https://doi.org/10.1038/nrg.2017.113 PMID: 29379135

3. Bahmani A, Sibley A, Parsian M, Owzar K, Mueller F. SparkScore: Leveraging Apache Spark for Distrib-

uted Genomic Inference. IEEE International Parallel and Distributed Processing Symposium Work-

shops (IPDPSW), Chicago, IL, USA. 2016;435–442.

4. Wall DP, Kudtarkar P, Fusaro VA, Pivovarov R, Patil P, Tonellato PJ. Cloud computing for comparative

genomics. BMC Bioinformatics. 2010; 11(1):259.

5. Pan C, McInnes G, Deflaux N, Snyder M, Bingham J, Datta S, et al. Cloud-based interactive analytics

for terabytes of genomic variants data. Bioinformatics. 2017; 33(23):3709–3715. https://doi.org/10.

1093/bioinformatics/btx468 PMID: 28961771

6. The ENCODE Project Consortium., Moore JE., Purcaro MJ., Pratt HE, Epstein CB, Shoresh N et al.

Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 2020; 583,

699–710. https://doi.org/10.1038/s41586-020-2493-4 PMID: 32728249

7. Karczewski K. J., Francioli L. C., Tiao G., Cummings B. B., Alföldi J., Wang Q et al. The mutational con-

straint spectrum quantified from variation in 141,456 humans. Nature. 2020; 581, 434–443. https://doi.

org/10.1038/s41586-020-2308-7 PMID: 32461654

8. Ebert C, Gallardo G, Hernantes J, Serrano N. Devops. IEEE Software. 2016; 33(3):94–100.

9. HIPAA Compliance on Google Cloud Platform: https://cloud.google.com/security/compliance/hipaa

10. AWS HIPAA: https://aws.amazon.com/compliance/hipaa-compliance/

11. Sethi R, Traverso M, Sundstrom D, Phillips D, Xie W, Sun Y, et al. Presto: SQL on everything. IEEE

35th International Conference on Data Engineering (ICDE). 2019;1802–1813.

12. Cattell R, Barry DK, Berler M, Eastman J, Jordan D, Russell C, et al. The object database standard.

Morgan Kaufmann.1993.

13. Kestelyn J. Introducing parquet: Efficient columnar storage for Apache Hadoop. Cloudera Blog. 2013;

3.

14. Choi S. W., Mak T. S. H., and O’Reilly P. F. Tutorial: a guide to performing polygenic risk score analy-

ses. Nature Protocols, 15(9):2759–2772. https://doi.org/10.1038/s41596-020-0353-1 PMID: 32709988

15. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, et al. (2013). Apache Hadoop

YARN: yet another resource negotiator. In Proceedings of the ACM Symposium on Cloud Computing.

2013;1–16.

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 15 / 16

https://doi.org/10.1126/science.1197891
https://doi.org/10.1126/science.1197891
http://www.ncbi.nlm.nih.gov/pubmed/21311016
https://doi.org/10.1038/nrg.2017.113
http://www.ncbi.nlm.nih.gov/pubmed/29379135
https://doi.org/10.1093/bioinformatics/btx468
https://doi.org/10.1093/bioinformatics/btx468
http://www.ncbi.nlm.nih.gov/pubmed/28961771
https://doi.org/10.1038/s41586-020-2493-4
http://www.ncbi.nlm.nih.gov/pubmed/32728249
https://doi.org/10.1038/s41586-020-2308-7
https://doi.org/10.1038/s41586-020-2308-7
http://www.ncbi.nlm.nih.gov/pubmed/32461654
https://cloud.google.com/security/compliance/hipaa
https://aws.amazon.com/compliance/hipaa-compliance/
https://doi.org/10.1038/s41596-020-0353-1
http://www.ncbi.nlm.nih.gov/pubmed/32709988
https://doi.org/10.1371/journal.pcbi.1008977

16. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, et al.. Apache Spark: A unified engine for

big data processing. Communications of the ACM. 2016; 59(11):56–65.

17. Povey S, Lovering R, Bruford E, Wright M, Lush M and Wain H. The HUGO gene nomenclature commit-

tee (HGNC). Human genetics. 2001; 109(6):678–680. https://doi.org/10.1007/s00439-001-0615-0

PMID: 11810281

18. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A et al. A global reference

for human genetic variation. Nature. 2015; 526, 68–74. https://doi.org/10.1038/nature15393 PMID:

26432245

19. Truex S, Baracaldo N, Anwar A, Steinke T, Ludwig H, Zhang R, et al. A Hybrid Approach to Privacy-Pre-

serving Federated Learning. In Proceedings of the 12th ACM Workshop on Artificial Intelligence and

Security (AISec’19). Association for Computing Machinery, New York, NY, USA, 1–11.

20. Wang Z, Song M, Zhang Z, Song Y, Wang Q, and Qi H. Beyond Inferring Class Representatives: User-

Level Privacy Leakage from Federated Learning. IEEE INFOCOM 2019—IEEE Conference on Com-

puter Communications, Paris, France, 2019, pp. 2512–2520.

21. Yang Q, Liu Y, Chen T, and Tong Y. Federated Machine Learning: Concept and Applications. ACM

Trans. Intell. Syst. Technol. 10, 2, Article 12 (February 2019), 19 pages.

22. Shringarpure SS, Bustamante CD. Privacy Risks from Genomic Data-Sharing Beacons. Am J Hum

Genet. 2015 Nov 5; 97(5):631–646. https://doi.org/10.1016/j.ajhg.2015.09.010 PMID: 26522470

PLOS COMPUTATIONAL BIOLOGY Swarm for federated computation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008977 May 12, 2021 16 / 16

https://doi.org/10.1007/s00439-001-0615-0
http://www.ncbi.nlm.nih.gov/pubmed/11810281
https://doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
https://doi.org/10.1016/j.ajhg.2015.09.010
http://www.ncbi.nlm.nih.gov/pubmed/26522470
https://doi.org/10.1371/journal.pcbi.1008977

