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Abstract: Community detection is of great significance in understanding the structure of the network.
Label propagation algorithm (LPA) is a classical and effective method, but it has the problems of
randomness and instability. An improved label propagation algorithm named LPA-MNI is proposed
in this study by combining the modularity function and node importance with the original LPA.
LPA-MNI first identify the initial communities according to the value of modularity. Subsequently,
the label propagation is used to cluster the remaining nodes that have not been assigned to initial
communities. Meanwhile, node importance is used to improve the node order of label updating
and the mechanism of label selecting when multiple labels are contained by the maximum number
of nodes. Extensive experiments are performed on twelve real-world networks and eight groups
of synthetic networks, and the results show that LPA-MNI has better accuracy, higher modularity,
and more reasonable community numbers when compared with other six algorithms. In addition,
LPA-MNI is shown to be more robust than the traditional LPA algorithm.

Keywords: community detection; randomness; label propagation; modularity; node importance

1. Introduction

All kinds of complex systems can be described as networks, such as biology network,
social network, collaboration network, and World Wide Web, etc. Community structure
often hides in the network. Community structure refers to a group of nodes that are
similar to each other, but different from that of other parts in the network. In other words,
the nodes within a community structure are tightly connected while the connections are
relatively sparse among community structures [1]. Finding and analyzing community
structures is of great significance for understanding the complex network. Community
detection has been used in the recommendation system [2] and influence maximization
problem [3].

In recent years, the study of community detection has attracted a lot of attention and
many algorithms have been proposed. The pioneering work of community detection was
the GN algorithm that was proposed by Girvan and Newman [4], which was based on
the idea of partition. The basic principle of partition-based method is to find out all of the
links between communities and delete them, and then each connected branch corresponds
to a community. And many related works inspired by GN have been proposed [5-8].
In particular, Newman and Girvan [1] proposed a quantitative standard called modular-
ity function for depicting the quality of the community structure. This function gives
a clear definition of community structure and it has achieved great success in practical
applications. Therefore, it has been gradually accepted. Meanwhile, methods that adopt
modularity function as optimization function have become mainstream for community
detection. For example, Fastgreedy [9], BGLL [10], simulated annealing method [11], and
spectral analysis algorithm [12,13]. However, these methods that are based on modularity
function may fail to identify the community structure whose size is smaller than a certain
size, which is called the resolution limit problem [14]. In order to deal with the problem,
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some modifications of the modularity function have been proposed [15-18]. In addition,
heuristic algorithms [19,20] that were based on Markov random walk theory [21] were
also proposed to identify communities. Additionally, a community detection algorithm,
combined with random walk and MapReduce parallel programming framework, was
proposed in [22]. Furthermore, meta-heuristic algorithm has also gradually become a com-
petitive method, which has attracted many researchers’ attention. Community detection
methods that are based on ant colony algorithm [23], genetic algorithm [24], particle swarm
optimization algorithm [25], bat algorithm [26], and whale optimization algorithm [27]
have been proposed. Although these algorithms can obtain good partition results, their
efficiency cannot be guaranteed with the increase of the dataset. In recent years, with
the development of machine learning technology, network representation learning [28]
has become a new research field. The community detection algorithm, combined with
network representation learning, has also been developed [29]. Additionally, the algorithm
was based on deep learning was proposed [30]. As a valid method in unsupervised learn-
ing, Nonnegative Matrix Factorization (NMF) has also been gradually applied to analyze
community structure [31,32]. Although the algorithm that is based on NMF has good
interpretability, it usually needs the prior knowledge of the number of communities in the
network, but the number of communities is generally unknown. Community detection
algorithms that are based on network topology [33-37] have also been proposed recently.
Other community detection algorithms were mentioned in [38,39].

Different from the modularity optimization algorithm, some of the algorithms based
on heuristic strategy can detect community without a specific objective function and be
designed through an intuitionistic and enlightening idea. The label propogation algorithm
proposed by Raghavan et al. [40] adopts simple label propagation [41] to identify commu-
nity structures. The heuristic rule of the label propagation method is that any nodes in
a community structured network should be in the same community with most of their
neighbors. This heuristic algorithm only uses network structure as input without setting
free parameters. The label propagation algorithm assigns the unique label to each node and
keeps updating the label of each nodes according to its neighnors until no label is changed.
The biggest advantage of LPA is the linear computational complexity, but its uncertainty
and randomness are prominent. Different community structures may be generated in dif-
ferent runs because of its random strategies in initialization and updating orders. Recently,
many extended LPA have been proposed to optimize the performance [42-46]. However,
these extensions cannot completely solve the randomness problem, or they greatly improve
the complexity of the algorithm.

In this paper, by combining the modularity function and node importance with the
original LPA, an improved algorithm, termed as LPA-MNI, is proposed to overcome
the randomness of LPA. Firstly, LPA-MNI employs modularity optimization procedures
to identify initial communities. Secondly, all of the nodes in one initial community are
assigned the same label. Subsequently, in the iterative processes of label propagation, LPA-
MNI determines the node order of label updating according to the descending order of node
importance. When more than one label is contained by the maximum number of nodes,
LPA-MNI calculates the importance of each node and then selects the most influential
node’s label to update. Finally, extensive experiments with comparative algorithms on
real-world and synthetic networks have shown that LPA-MNI has an improvement of
performance on community detection. Additionally, LPA-MNI can effectively overcome
the randomness and inaccuracy of the LPA algorithm.

2. Related Work

The graphs that are discussed in this paper are simple, undirected, and unweighted
networks. Let G(V, E) be a graph, where V(G) denotes the node set, E(G) denotes the
edge set. The number of nodes is |V (G)| = n and the number of edges is |E(G)| = m.

Raghavan et al. [40] first applied the idea of label propagation in graph classification to
community detection and proposed the famous label propagation algorithm. The algorithm
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does not require priori knowledge, the number of communities that the network should
be partitioned into, and need not define functions determining when to stop iteration. At
the beginning, suppose that every node in network has a label indicating their attributive
community, and then each node updates its label according to the label with maximum
number in its neighbors. As the labels propagate, the tightly connected individual in the
network can quickly reach a stable state with a unique label (Figure 1), and the nodes with
the same label are considered to belong to the same community structure. Algorithm 1
provides the process of label propagation algorithm.

Algorithm 1 LPA.

Input: G = (V,E)

Output: The result of community detection

: Initializaion: assign a unique label to each node in the network, C,(0) = x

Set t=1

: Arrange nodes in random order and set it to X.

: Select each node x in the X sequentially and update its label according to the fol-
lowing function, Cx(t) = f(Cx; (£), ..., Cx,, (£), Cxy,,qy (E = 1), .., Cy (£ — 1)), where
Xi1,- .., Xy are the neighbors that have been updated before time ¢, and Xi(m41)s - - - r Xik
are the neighbors that have not been updated before time .

5. If the label in network no longer changes, stop the algorithm, else set t = t + 1 and go

to step 3.

B~ W N =

LPA requires neither prior knowledge of the number of community nor functions as
a condition for algorithm convergence. Moreover, the time complexity of the algorithm
is near-linear. Therefore, LPA has become one of the most classical algorithms, and it has
been widely accepted and used.
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Figure 1. Illustration of label propagation. Labels are updated one by one from (a—d). Due to the
high density of edges, all nodes acquire the same label.

Barber et al. [47] considered LPA as an optimization problem, and give the corre-
sponding objective function. By studying the characteristics of the objective function, they
revealed the defects of LPA in principle and practical applications. Most importantly,
during the operation of the algorithm, the increase of the objective function does not
necessarily mean the improvement of quality of the community. In order to overcome this
shortcoming, they modified the objective function and designed a constrained label propa-
gation algorithm, named LPAm (modularity-specialized label propagation algorithm). It is
interesting that the modified objective function is exactly the modularity function Q, and
the improved algorithm LPAm corresponds to modularity function optimization.
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Liu et al. [48] found that LPAm has the characteristic that the number of nodes in
each community is similar, which is to say, the algorithm has a tendency to fall into
local optimum. To jump out the local optimum, they gave a multistep greedy agglom-
erative algorithm (MSG). Subsequently, they combined the algorithm LPAm with the
MSG, and proposed a modularity optimization and hierarchical label propagation algo-
rithm LPAm+, which leaves the clustering performance of the label propagation algorithm
further improved.

Xie et al. [49] found that, after five iterations, ninety-five percent of the nodes can
be correctly clustered by LPA. According to this discovery, they improved the update
and iteration rules in the LPA algorithm, which greatly reduces the unnecessary update
and iteration processes in the original algorithm, especially when dealing with complex
network structures, and the efficiency of the algorithm is greatly improved.

Cordasco et al. [50] proposed a semi synchronous LPA algorithm, which makes any
two adjacent nodes not have the same color by parallel coloring to the network nodes, and
propagates the labels simultaneously.

Gui et al. [51] proposed an improved LPA algorithm that was based on community
belonging degree, named LPA-CBD, which can overcome the randomness of the original
algorithm and determine the center node of each community. However, the time complexity
of the algorithm is O(n?), and it is tremendously increased when compared with the near-
linear time complexity of the original algorithm.

Xing et al. [44] proposed a novel label propogation algorithm for community detection,
called NIBLPA. The algorithm considers both the k-shell value and the degree of node
itself as well as its neighbors’ k-shell values to calculate the node improtance of every node.
Subsequently, NIBLPA fixes the node updating order in the descending order of node
importance value. However, the algorithm introduces a parameter alpha, which brings
uncertainty to the community detection results.

Zhang et al. [45] replaced the method of calculating the node importance of NIBLPA
algorithm with the Bayesian network. Although it can get stable results by avoiding the
randomness in label propogation process, the algorithm also needs to adjust the parameter
alpha. Other improved LPA algorithms, such as COPRA [52] and SLPA [53], have also
been put forward for community detection in complex network.

However, these improved methods cannot completely solve the randomness problem,
or they improve the complexity of LPA. Overcoming the instability and maintaining the
efficiency of the original LPA algorithm still need to be explored. Therefore, in this study,
modularity and node importance are applied to the improvement of LPA.

3. Methods

The sample network shown in Figure 2 illustrates that randomness will affect the
accuracy of LPA. Initially, each node has a unique label (Figure 2a). Suppose that, at some
step, the nodes in the left community have shared the same label 1, while the nodes in the
right community still have unique labels 5-8 (Figure 2b). If node 5 randomly selects label 1
as its new label (Figure 2c), then all of the nodes may eventually be divided into the same
community (Figure 2d). The random strategies implemented in the algorithm lead to the
randomness of LPA.

Figure 3 displays the result of community detection by LPA on Zachary karate club
network [54]. It can be concluded that the number of communities and modularity in
twenty experiments are fluctuant, which proves the division result of LPA is unstable
and inaccurate.

In this paper, we propose an improved label propagation algorithm based on modu-
larity and node importance (LPA-MNI) in order to solve the instability problem of LPA.
The algorithm first discovers rough community of the network, and then assigns same
labels to all nodes in the same rough community. Finally, implement the label propagation
for community detection.
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Figure 2. (a) A sample network; (b,c) a partion result at some step; and, (d) a failed partion result.
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Figure 3. The results of LPA on karate network for 20 times. (a) The number of communities obtained in 20 experiments.

(b) The values of modularity obtained in 20 experiments.

3.1. Rough Community Detection

Modularity that is defined by Newman and Girvan [1] is the most often used function
to measure the result of community partition. It is defined, as follows:

_ 1 kikj
Q=5 %[Ai,j - Zm] 5(C;, Cj) @

where A; ; is the adjacency matrix of network, k; represents the degree of node i, m is the
number of edges in a network, C; is the community to which node i is assigned, the function
0(u,v) = 1if u = v and 0 otherwise. A greater value of Q means a denser connection in
the partition.

The first stage of our algorithm is to discover rough community structure by modular-
ity. Assume that we start with a simple network of N nodes. Firstly, we assign different
communities to each node. After this initialization, the number of communities in the
network is equal to the number of nodes. Subsequently, for each node i, we remove i
from its own community and place it in the community of its neighbor j, evaluating the
modularity gain at the same time. The node i will join the community of j, for which this
gain is positive and maximum. If there is no gain to be satisfied, node 7 stays in its original
community. Such a merging process is applied repeatedly and sequentially for all nodes
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until no further improvement can be achieved. The first phase of the algorithm will reach
the local maximum of modularity function. It should be noted that the order of nodes
has great influence on the results, especially the computation time. Therefore, the degree
centrality [55] is used to arrange the nodes in our algorithm in order to avoid some nodes
with sparse links being considered several times during the merging process. Whether
each node i merges with its neighbor j depends on the value of modularity function that is
related to the node degree and the number of edges in the network, and these two values
are fixed. Accordingly, for fixed iteration order, the initial community structure that is
obtained by each iteration is constant. Equation (2) calculates the modularity before i
is moved out from its own community, and Equation (3) calculates the modularity after
moving i into a neighbor community. ) ;, in equation represents the sum of the edges in
community C, } ;. is the sum of the edges incident to nodes in C. It is obvious that the
gain in modularity AQ can easily be computed by Q1 — Q».

_Zin_ZtotZ i_ﬁz
_ ):in +ki,in Ztat +ki 2
Q= =i (Sl ©)

In this process, the nodes in the network will be divided into rough communities based
on the modularity function. Subsequently, we assign the same label to nodes in the same
community rather than assigning unique label to each node by LPA. This improvement can
significantly reduce the number of labels in the network and further avoid the randomness
in selecting labels of nodes according to their neighbors in subsequent iterations, which
is helpful for dealing with the instability of LPA. In addition, the proposed strategy is in
favor of reducing the number of iterations in label updating.

3.2. Label Update Strategy

When compared with other nodes, the important nodes in a network can affect the
structure of the network to a greater extent. The number of important nodes is small,
but their influences can be quickly transmitted to most nodes in the network [56]. The
importance of node is also called centrality, which refers to that the importance of node is
equivalent to the connection among nodes [57]. There are many strategies for measuring
the importance of node, and the degree centrality [55] is widely applied because of its
simplicity, intuition, and low computational complexity. The degree centrality depicts
the direct influence of node. It is believed that the greater degree a node has, the more it
directly affect its neighbors, and the more important it is. The normalized degree centrality
index of node i is defined, as follows:

ki

DC(i) = @

where k; = }; a;;, a;j is the element of the i row j column in the network adjacency matrix
A, n is the number of nodes in the network, and (n — 1) is the maximum possible degree
value of the node.

As mentioned before, LPA applies three random strategies in updating labels, which
leads to the randomness of the result. LPA-MNI uses the node importance assessment
method (Equation (4)) to avoid the instability. During the iteration, LPA-MNI updates
the nodes in descending order according to the importance of each node. When the
number of more than one label reaches the maximum, the proposed alaorithm calculates
the importance of each label and selects the label with the largest importance to update
the node label. The above two steps effectively solve the randomness problem in LPA and,
thus, the result of LPA-MNI is deterministic and accurate.

3.3. The Framework of LPA-MNI Algorithm
Algorithm 2 provides the details of LPA-MNIL
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Algorithm 2 LPA-MNL

Input: G = (V,E)
Output: The result of community detection

1: Initialize a community to each node of the network.

2: Cancluate the node importance of all nodes according to Equation (4).

3: D < Arrange the nodes according the node importance.

4: For eachnode i € D, remove 7 from its own community and place it in the community
of neighbor j, and compute the gain of modularity during the process. Place the node i
in the community for which this gain is maximum. The process is executed repeatedly
and sequentially for all nodes in order D until the gain is unchanged and the initial
rough communities are obtained.

5. Assign same label to the node in the same initial community defined by step 4.

6: Sett=1.

7. For each i € D, update its label according to the following function, Cy(t) =
f(Cx;y (1), ...,Cy,, (1), Cimin) (t—1),...,Cy, (t — 1)), when the number of more than
one label reaches maximum, the importance of neighbor nodes is calculated
(Equation (4)), and the most important node’s label are assigned to the current node.

8: If the labels in the network become steady, stop the algorithm. Else, set t = t + 1 and
go to step 7.

3.4. Computational Complexity

The computational complexity of the proposed algorithm is discussed here. The
algorithm consists of several independent phases. In the first stage, the time complexity
of initializing each node as an independent community is represented as O(n). For the
process of discovering rough communities, the complexity is denoted by O(n x k), in
which k represents the average degree of the network. The time complexity of computing
importance of all nodes is O(m), and that of the process of ranking nodes according to
degree centrality can be expressed as O(nlogn). In the worst case, the time complexity of
updating the labels for the remaining nodes is O(n * k). Consequently, the time complexity
of the proposed algorithm is O(n) +2 % O(n x k) + O(m) + O(nlogn) = O(m + nlogn).

4. Results and Discussion

In order to evaluate the performance of our proposed algorithm LPA-MNI, several
experiments are conducted on real-world and synthetic networks. The performance of
LPA-MNI is compared with other state-of-the-art methods, i.e., Fastgreedy [9], LPA [40],
Leading eigenvector [6], Walktrap [19], an improved LPA algorithm NIBLPA [44], and
EdMot [58].

4.1. Evaluation Metrics

In addition to the modularity that is discussed in Section 3.1, Normalized Mutual
Information (NMI) [59] is also employed to evaluate algorithm performance. In fact,
these evaluation metrics are widely used to measure the performance of clustering algo-
rithm. For two partitions A and B of a network, the value of NMI is computed by the
following equation:

_ZZiC:Al Z;::Bl Nijlog x%

NMI(A,B) = , -
Y Nilog 3 + L% Njlog

©)

where C4 and Cp denote the number of communities of partition A and B, N represents
the total number of nodes in the network, and N;; represents the number of the same nodes
in the community i of partition A and the jth community in partition B. N; is the sum
of the row i of matrix Nj; and N; refers to the sum of the column j. In this experiments,
partition A represents the real community of the network and partition B represents the
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community discovered by algorithms. The value of NMI(A, B) ranges from 0 to 1, where
NMI(A, B) = 0 when partition A and B are completely different. If partition A exactly
corresponds to partition B, then NMI(A, B) = 1.

Adjusted Mutual Information (AMI) [60,61] is an adjustment of the Mutual Informa-
tion (MI) score to account for chance. AMI augments NMI's consistent upper bound (1.0)
with a consistent zero expectation to adjust for chance clusterings. When compared with
NMI, AMI can also calculate the similarity between two clusters, but its value range is
between —1 and 1. The NMI metric has been criticized as not fitting for weak communities.
We also use AMI to measure the performance of the partition results.

4.2. Experiments on Real-World Networks

Firstly, the experiments are conducted on some real-world networks in which the
ground truth communities” membership is already known. Subsequently, other experi-
ments are carried out on other real-world networks with unknown community structure.
The paremeter alpha of NIBLPA is set to 0.5. LPA is processed 100 times and the aver-
age value is used as the results in all of the experiments because of its randomness. We
also analyze the fluctuation range of all results in order to compare the stability of algo-
rithms. Table 1 shows the topology features of real-world networks that were used in this
paper. Ca_Hep, Astro-ph, Cond_mat, and Cond_mat2005 are downloaded from arXiv
(www.arxiv.org/) (accessed on 18 April 2021). The other networks are downloaded from
website (http:/ /www-personal.umich.edu/~mejn/netdata/) (accessed on 18 April 2021).

Table 1. The topology features of real-world networks. |N| and |E| represent the number of nodes
and edges, respectively. Max(k) is the maximum degree, (k) is the average degree, and C is the
average clustering coefficient.

Networks |N| |E| Max(k) (k) C
Karate [54] 34 78 17 4.588 0.256
Dolphins [62] 62 159 12 5.129 0.309
Football [4] 115 613 12 10.661 0.407
Riskmap 42 83 6 3.952 0.435
Lesmis [63] 77 254 36 6.597 0.499
Jazz [64] 198 2742 100 28.563 0.520
PolBlogs [65] 1222 16,714 351 27.355 0.226
Yeast [66] 2375 11,693 118 9.847 0.469
Ca_Hep [67] 9877 25,973 65 5.259 0.284
Astro-ph [67] 16,706 121,251 360 14.516 0.426
Cond_mat [68] 16,726 47,594 107 5.691 0.360
Cond_mat2005 [68] 40,421 175,692 278 8.693 0.650

http:/ /en.wikipedia.org/wiki/Risk(game). Accessed on 1 March 2021 .

4.2.1. The Networks with Known Community Structure

Zachary Karate Club network is the most commonly used network for community
detection, and it is composed of 34 nodes and 78 edges. Each node and each edge represent
a member of the club and the interaction between members, respectively. The conflict
between president (node 34) and instructor (node 1) causes 34 members of the club to be
divided into two clusters. Table 2 shows the actual community structure of karate. Table 3
illustrates the experimental results of seven algorithms on karate network and, for each
instance, the best modularity, NMI and AMI are presented in boldface. The modularity,
NMI, and AMI of LPA are in the form of avg,u,e £ (MaxXya10e — A0G0aiue)- (A00a1e and
MAXya1,. represent the average value and maximum value of 100 times.)
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Table 2. The actual community structure of karate network.

Community ID Members
1 1,2,34,5,6,7,8,11,12,13,14,17,18,20,22
2 9,10,15,16,19,21,23,24,25,26,27,28,29,30,31,32,33,34

LPA-MNI successfully detects two communities and accurately matches the actual
community structure, as shown in Figure 4. However, the number of communities (CN)
obtained by Fastgreedy, Leading eigenvector, Walktrap, NIBLPA and EdMot are 3, 4, 5, 3,
and 3, respectively (Table 3). The NMI and AMI value of LPA-MNI algorithm are 1, which
are the best value when compared with other algorithms especially LPA with uncertainty.
In addition, our algorithm has better modularity (Q) than Walktrap and NIBLPA.

Figure 4. The result of the LPA-MNI algorithm on karate network.

The Bottlenose Dolphins network consists of 62 nodes and 159 edges reflecting the so-
cial behavior of dolphins. It was initially thought to be divided into two communities [62],
while further research [69] shows that the network should be divided into 4 communities,
which can clearly reflect the social relations between dolphins. Figure 5 shows the commu-
nity structure detected by LPA-MNI and four communities are accurately segmented.

Table 4 shows the results of seven algorithms on dolphins network and, for each
instance, the best modularity, NMI, and AMI are presented in boldface. The modularity
(Q =0.527) and accuracy (NMI = 0.843, AMI = 0.833) of LPA-MNI are better than those of
other six algorithms, as shown in Table 4.

Table 3. The results of seven algorithms on karate network.

Algorithm Fastgreedy LPA Leading Eigenvector Walktrap NIBLPA EdMot LPA-MNI
CN 3 2 4 5 3 3 2
Q 0.380 0.292 £ 0.292 0.393 0.353 0.352 0.412 0.372
NMI 0.692 0.585 + 0.415 0.677 0.504 0.625 0.602 1
AMI 0.681 0.571 £ 0.403 0.661 0.473 0.618 0.581 1
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Table 4. The results of seven algorithms on dolphins network.

Algorithm Fastgreedy LPA Leading Eigenvector Walktrap NIBLPA EdMot LPA-MNI
CN 4 3 5 4 5 4 4
Q 0.495 0.492 £+ 214 0.491 0.489 0.452 0.518 0.527
NMI 0.787 0.732 £ 0.210 0.679 0.692 0.721 0.830 0.843
AMI 0.773 0.722 = 0.110 0.652 0.671 0.719 0.815 0.833
@ B ®
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Figure 5. The result of LPA-MNI algorithm on dolphins network.

The American College Football network represents the network of the 2000 regular
season football match in the United States. It consists of 115 nodes that represent teams
and 613 edges representing the matches between teams. The 115 teams ought to be divided
into 12 communities [4], and each team has more competitions in its own community than
those in other communities.

11 communities, as shown in Figure 6, are obtained by LPA-MNI algorithm, which
outperforms Fastgreedy (six communities), Leading eigenvector (eight communities),
Walktrap (ten communities), NIBLPA (nine communities), and EdMot (nine communities).
Table 5 shows the experiment results of seven algorithms on football and the better Q,
NMI, and AMI are in boldface. The NMI of LPA-MNI and EdMot are greater than that
of other five methods. In addition, modularity shows that LPA-MNI is superior to other
comparison algorithms besides Walktrap and EdMot.

The LPA-MNI algorithm obtains good community partition results in three networks
with known community structure. Especially in the karate network, the network is divided
into two communities because of the conflict between president and instructor. The LPA-
MNI algorithm can find two communities accurately. These three networks all reflect the
real-world problems. The above results show that the LPA-MNI algorithm can deal with
the community partition in real problems.

Table 5. The results of seven algorithms on football network.
Algorithm Fastgreedy LPA Leading Eigenvector Walktrap NIBLPA EdMot LPA-MNI
CN 6 9 8 10 9 9 11
Q 0.549 0.576 = 0.072 0.492 0.602 0.542 0.604 0.582
NMI 0.697 0.880 + 0.114 0.698 0.887 0.707 0.889 0.889
AMI 0.650 0.866 &= 0.102 0.633 0.856 0.685 0.859 0.870
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Figure 6. The result of LPA-MNI algorithm on football network.

In order to show the improvement of the proposed algorithm in stability, the ex-
perimental results of LPA-MNI and LPA for 100 times on karate, dolphins, and football
are displayed in Figure 7. It can be seen from Figure 7a—c that the modularity (Q), NMI
,and AMI of LPA on the karate network in 100 experiments are fluctuant, while Q, NMI,
and AMI of LPA-MNI in each experiment are 0.372, 1, and 1 respectively, which is very
stable. Figure 7d—f display that the modularity of LPA fluctuates between 0.35-0.50, NMI
fluctuates between 0.5-0.9, and AMI fluctuates between 0.5-0.9. The results reveal that
LPA-MNI is a more robust method when compared with LPA on the dolphins network.
Figure 7g-i exhibits that, on the football network, LPA-MNI has a stable value in each
experiment, yet LPA is unstable. Information entropy [70] is used to reflect the uncertainty
of information sources. Therefore, we calculate the information entropy of Q, NMI, and
AMI sequences that were obtained by the two algorithms. The information entropy of
Q, NMI, and AMI obtained by LPA on karate network are as follows: 3.941, 3.830, and
3.830. Additionally, on the dolphins network, they are: 5.612, 5.660, and 5.660. The results
obtained on the football network are as follows: 5.597, 5.937, and 5.937. For LPA-MNI, the
information entropy of its results on all networks are 0. Therefore, it can be concluded that
LPA-MNI significantly improves the stability of community detection.
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Figure 7. Comparisons of LPA and LPA-MNL

4.2.2. The Networks with Unknown Community Structure

LPA-MNI is also tested on real-world networks with unknown community structure.
For these datasets, we only investigate the modularity, because the number of communities
is unknown. In addition, LPA is processed 100 times and the average value is used as the
results because of its randomness.

Table 6 shows the experimental results of LPA-MNI and other algorithms on these
datasets for comparision, and the better modularity are presented in boldface. The mod-
ularity of LPA are in the form of avg,ue £ (MaXya10e — AV pa1ue) (A0 pa1ne AN MAX 4140
represent the average value and maximum value of 100 times.) It is obvious that LPA-
MNI has the highest value of modularity in the datasets Riskmap, PolBlogs and Astro-ph.
Regarding remaining datasets, LPA-MNI obtains better modularity than LPA, Leading
eigenvector, Walktrap, and NIBLPA, but it is similar to the Fastgreedy algorithm. However,
LPA-MNI is based on a heuristic strategy and the goal is to find reasonable community
structure. As is known to all, the Fastgreedy algorithm is based on the idea of modularity
and it may suffer from resolution limit problems that make it impossible to identify small
communities. The Fastgreedy algorithm merges small communities to obtain higher modu-
larity value, so the number of communities detected by Fastgreedy algorithm is smaller
than Walktrap and LPA-MNI. As for NIBLPA, although the performance is relatively stable,
its results are worse than LPA-MNI. In addition, NIBLPA needs to adjust the parameter
alpha. LPA-MNI can steadily detect communities, while the results of LPA are fluctuant.
When compared with EdMot algorithm, LPA-MNI obtains better community partition
results, except for network Riskmap, Jazz, and Yeast. The experimental results on networks
with an unknown community structure show that the LPA-MNI algorithm can achieve
relatively stable and accurate community partition results. Most of all, LPA-MNI can return
more stable and satisfing results when compared with the original LPA.



Entropy 2021, 23, 497

13 of 19

Table 6. The results of seven algorithms on real-world networks.

Network Metrics ~ Fastgreedy LPA E.Leadmg Walktrap NIBLPA ~ EdMot  LPA-MNI
igenvector

Riskmap Q 0.625 0534 %0.126 0.546 0.623 0.634 0.634 0.634
Lesmis Q 0.501 0348 £ 0.049 0.532 0.521 0.348 0.525 0.527
Jazz Q 0439  0.282+0.105 0.394 0.438 0.293 0.444 0.415
PolBlogs Q 0426  0.418+0.129 0.424 0.425 0.422 0.237 0.427
Yeast Q 0700  0.657 = 0.020 0.628 0.677 0.660 0.728 0.678
Ca_Hep Q 0716 0.631 % 0.045 0.583 0.663 0.628 0.669 0.675
Astro-ph Q 0.633 0551 +0.107 0.595 0.636 0.606 0.546 0.687
Cond_mat Q 0778 0.720 = 0.016 0.588 0.741 0.698 0.745 0.750
Condmat_mat2005  Q 0.631  0.445+0.173 0.359 0.599 0.558 0.626 0.629

4.3. Experiments on Artificial Synthetic Networks

In this section, two types of synthetic networks, namely Lancichinetti-Fortunato-
Radicchi (LFR) [71] and Girvan—-Newman (GN) [4], are used to test the performance of
LPA-MNI. The results are compared with six algorithms introduced in Section 4.1, and
NMI and AMI are treated as the evaluation metrics.

4.3.1. Experiment on LFR Benchmark Networks

The LFR benchmark network that is proposed by Lancichinetti et al. [71] has similar
heterogeneous characteristics to the real network, i.e. node degree and community size
follow power law distribution. The LFR benchmark network is one of the most commonly
used synthetic networks for measuring the performance of community detection algo-
rithms. The LFR generator provides a set of parameters to produce different networks,
including the number of nodes N, the average degree (k), the maximum degree Max(k),
the mixing parameters y, the minimum community size Min(c), and the maximum com-
munity size Max(c). In addition, the exponents for degree distribution and community
size distribution are 77 and Ty, respectively. The mixing parameter y represents the link
fraction that connects to other communities. The larger the mixing parameter, the less clear
the community structure. The parameters of the LER network used in the paper are set, as
shown in Table 7. Eight groups of networks are generated, and each group consists of eight
networks with mixing parameter y ranging from 0.1 to 0.8 and other common parameters.

Table 7. The parameters of the LFR benchmark networks.

Network N <k> Max(k) T ) Min(c) Max(c) U

LFR N1 1000 15 50 2 1 10 50 0.1-0.8
LFR N2 1000 15 50 2 1 20 100 0.1-0.8
LFR N3 2000 15 50 2 1 10 50 0.1-0.8
LFR N4 2000 15 50 2 1 20 100 0.1-0.8
LFR N5 5000 25 50 2 1 20 50 0.1-0.8
LFR N6 5000 25 50 2 1 20 100 0.1-0.8
LFRN7 10,000 25 50 2 1 20 50 0.1-0.8
LFR N8 10,000 25 50 2 1 20 100 0.1-0.8

Figures 8 and 9 illustrate the experimental results of LFR benchmark networks, and
the result of LPA is the average value obtained by running 100 times. The results indicate
that all algorithms have good performance, since the mixing parameter y is small. With the
increase of y, the network becomes increasingly complex, which makes it more difficult
to reveal the community. The LPA-MNI algorithm has stable and good performance on
LFR N1-N4 under # < 0.5, on LFR N5-N8 under y < 0.7. However, the performance of
Fastgreedy and Leading eigenvector decrease obviously when u > 0.1, and the perfor-
mance of LPA drops significantly when p > 0.5, which is same to NIBLPA. In all of the
experiments, LPA-MNI algorithm generally outperforms other four compared algorithms
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LPA, Fastgreedy, Leading eigenvector, and NIBLPA in all datasets. Additionally, the EdMot
algorithm obtains the comparable results with LPA-MNI algorithm. Although Walktrap
has a slightly higher value of NMI when p > 0.6, LPA-MNI can obtain better results on
LFR N1-N4 under p < 0.7 and on LFR N5-N8 under p < 0.8.
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Figure 8. The NMI results of seven algorithms on LFR benchmark networks.
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Figure 9. The AMI results of seven algorithms on LFR benchmark networks.

4.3.2. Experiment on GN Benchmark Networks

Girvan-Newman [4] proposed the GN benchmark network. Each network is composed
of four communities and 32 nodes are in each community. Each node has the expected
degree piy, + pout = 16, in which p;,, and p,.,+ donate the connection probability of internal
and external nodes, respectively. That is to say, each node expected 16 links, p;, links
are connected to its own community, and po, links are randomly connected to other
communities. With the increase of p,,t, the community structure is becoming less obvious.
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With the increase of the external degree of each node, the ability of all algorithms to
divide the community structure gradually decreases, as shown in Figure 10. When the
parameter is greater than 0.6, all of the algorithms can not divide the community structure.
When the parameter is less than or equal to 0.6, LPA-MNI algorithm has better performance
than that of LPA, Fastgreedy, Leading eigenvector, and NIBLPA, and it is comparable to
Walktrap and EdMot. In particular, it is a disappointment that the original LPA algorithm
cannot distinguish any community when p,,+ > 0.5.

(a) GN N=128 (b) GN N=128

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8
external degree of each node external degree of each node

Figure 10. Comparisons of seven algorithms on GN benchmark networks.

4.4. Comparison of Computational Complexity

Table 8 shows the computational complexities of LPA-MNI and other comparison
methods. The experimental results show that LPA-MNI has significant improvement in
stability when compared with the original LPA algorithm, but its time complexity does not
increase. In addition, the time complexity of LPA-MNI is lower than Fastgreedy, Leading
eigenvector, Walktrap, and EdMot algorithms. Although the time complexity of NIBLPA
algorithm is linear, its performance is worse than that of LPA-MNIL

Table 8. Comparisons of computational complexity.

Algorithm Time Complexity
Fastgreedy O(nlog*n)
LPA O(m)
Leading eigenvector O(n?)
Walktrap O(n? % m)
NIBLPA O(m)
EdMot O(m'> + nlogn)
LPA-MNI O(m + nlogn)

4.5. Critical Discussion

The networks that are adopted in the experiments are static networks that have been
widely used for community detection. Therefore, the performance of proposed algorithm in
dynamic network have not been tested. In the future, the problem of community detection
in dynamic network will be further explored.

5. Conclusions

Traditional LPA is a classical algorithm with near linear time complexity for commu-
nity detection. However, there is strong randomness in its partition results. Therefore, in
this study, an improved algorithm LPA-MNI is proposed to detect the community structure
in complex networks. The core idea of LPA-MNI is to combine the modularity and node
importance to deal with the instability of LPA. 12 real-world networks and two types of
synthetic networks are used to measure the performance of the LPA-MNI algorithm and
the results are compared with six advanced algorithms. The experimental results show
that the LPA-MNI algorithm can get closer results to the real partition in the networks with
known community structure. Additionally, LPA-MNI can achieve higher modularity in the
networks with unknown community structure. Furthermore, the comparisons indicate that
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LPA-MNI has better stability than LPA. Further research will focus on developing a more
effective community detection algorithm for weighted, directed, and dynamic networks.
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