Skip to main content
. 2020 Mar 1;10(2):138–161. doi: 10.1080/20476965.2020.1729666

Table 4.

Implementation parameters for the classification methods

Method Implementation
Decision trees • Splitting criterion: Gini index
  • Pre-pruning: minimum of 1, 3 and 5 instances in lead nodes
  • Post-pruning: test all admissible prune levels between minimum and maximum values for each tree
Naïve Bayes • Feature distributions: multivariate multinomial (discrete), kernel estimation (continuous)
  • Classification threshold: from 0 to 1 in steps of 0.005
Logistic regression • Classification threshold: from 0 to 1 in steps of 0.005
Support Vector Machines • Linear kernels
  • Penalty parameter (C) 102 to 102 (unitary exponent increments)
Deep Neural Network • Stochastic Gradient Descent
  • Number of epochs: 10
  • Softmax activation function
  • Learning rate 101 to 106 (unitary exponent increments)