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Background. Aging is an inevitable stage of body development. At the same time, aging is a major cause of cancer, cardiovascular
disease, and neurodegenerative diseases. Chinese herbal medicine is a natural substance that can effectively delay aging and is
expected to be developed as antiaging drugs in the future. Aim of the review. 0is paper reviews the antiaging effects of 23
traditional Chinese herbal medicines or their active components.Materials and methods. We reviewed the literature published in
the last five years on Chinese herbal medicines or their active ingredients and their antiaging role obtained through the following
databases: PubMed, EMBASE, Scopus, and Web of Science. Results. A total of 2485 papers were found, and 212 papers were
screened after removing the duplicates and reading the titles. Twenty-three studies met the requirements of this review and were
included. Among these studies, 13 articles used Caenorhabditis elegans as the animal model, and 10 articles used other animal
models or cell lines. Conclusion. Chinese herbal medicines or their active components play an antiaging role by regulating genes
related to aging through a variety of signaling pathways. Chinese herbal medicines are expected to be developed as antiaging drugs
or used in the medical cosmetology industry.

1. Introduction

Aging is the degenerative change in the whole function of the
organism that occurs with increasing age [1]. Aging is an
extremely complex biological process, and its mechanisms
involve the theory of genetic mutation, telomere loss, somatic
mutation, free radical damage, immune disorder, mitochon-
drial dysfunction, and autophagy dysfunction [2, 3]. Car-
diovascular disease, cancer, cataracts, osteoporosis, high blood
pressure, and neurodegenerative diseases, such as Alzheimer’s
and Parkinson’s diseases, are all linked to aging [4–6]. Given
the aging population, many countries enter the aging society,
which poses a serious threat to th economic development and
human life and health. 0erefore, the aging mechanism and
antiaging drugs should be urgently studied [7].

0e life cycle of the body involves a variety of signaling
pathways and transcription factors, such as insulin and in-
sulin-like (insulin/IGF-1 signaling [IIS]), dietary restriction
(DR), gonad (germline signaling [GR]), and mitochondrial

(mitochondrial signaling [mTOR]) signaling pathways
[8–10]. 0ese signaling pathways are shown to be conserved,
which is a positive boost for the search for life-extending
drugs and strategies to improve health [11, 12].

Studies have shown that the drug therapy can effectively
delay aging and has a positive effect on aging-related dis-
eases. Aspirin and metformin are commonly used synthetic
antiaging drugs [13, 14], but these drugs also have significant
side effects. Aspirin causes antiplatelet aggregation, and
long-term use can easily cause bleeding, and patients taking
metformin will have diarrhea, nausea, abdominal discom-
fort, and other adverse reactions [15, 16]. 0e discovery and
development of antiaging drugs is difficult, and the progress
is slow. 0us, finding a safe and effective antiaging drug is
challenging. In recent years, Chinese herbal medicine has
been considered a safe and effective antiaging drug with a
great potential for development [17].

Herb-drug refers to the substance that is used to prevent
and treat diseases and has the function of rehabilitation and

Hindawi
Evidence-Based Complementary and Alternative Medicine
Volume 2021, Article ID 5591573, 13 pages
https://doi.org/10.1155/2021/5591573

mailto:qiaoping@jlu.edu.cn
mailto:wf@jlu.edu.cn
https://orcid.org/0000-0002-1769-6935
https://orcid.org/0000-0002-9713-4579
https://orcid.org/0000-0003-1792-7710
https://orcid.org/0000-0002-3897-3196
https://orcid.org/0000-0003-0871-3454
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5591573


health care under the guidance of Chinese medicine theory.
[18]. Traditional Chinese medicine (TCM) is beneficial for
chronic diseases [19]. For example, ginger has a significant
effect on reducing circulating C-reactive protein (CRP) and
tumor necrosis factor-alpha (TNF-α) levels, which are
systemic inflammatory markers associated with an increased
risk of cardiovascular disease [20]. Curcumin may ame-
liorate hyperandrogenemia and hyperglycemia associated
with polycystic ovary syndrome [21]. Moreover, recent
studies have found that a variety of TCM and their active
components can delay aging and prevent age-related dis-
eases [22, 23]. Polysaccharides, monopolysaccharides, or
sesquiterpenes in TCM have anti-inflammatory, antitumor,
antiviral, acaroid, and sedative effects, which are considered
potential sources for the development of new drugs [24, 25].
In this paper, the antiaging and antioxidation effects of TCM
or their active components are systematically reviewed.

2. Materials and Methods

0e review was conducted following the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement [26].

2.1. Search Strategy. English publications were searched
from PubMed, Scopus, Embase, and Web of Science data-
bases. All databases were limited to the Medical Subject Title
Index (MESH/DECS) and available until 30 November 2020.
Different combinations of the following keywords were used
in the search: “traditional Chinese medicine”, “herbal
medicine”, “TCM”, “aging”, “anti-aging”, “senescence” and
“traditional medicine”. Besides, we looked at the references
of all selected articles to find reports that were not found
when we searched for articles.

2.2. Study Selection. By reading the titles and abstracts of the
articles, the authors excluded the articles that did not meet the
criteria of “Chinese medicine or its active ingredients to delay
aging.” 0e antiaging effect of the TCM or its active com-
ponents was studied in vitro and in vivo, and the possible
mechanism was discussed.0e following types of articles were
excluded from consideration in this review: abstracts, editorial/
letter review articles, meta-analyses, conference proceedings,
case reports, patents, human studies, and articles published
more than five years ago. 0e third author had the right to
decide on any difference of opinion between the two authors.

2.3. Data Extraction. One author summarized the data in
the paper, whereas the other examined the data. Caeno-
rhabditis elegans is a classic model for the study of aging. A
pair of data obtained from the experiment with C. elegans as
a model is separately summarized in Table 1: types of TCM,
role form, component analysis methods, main ingredients,
dose, life expectancy increased, key genes, and pathways.
Table 2 summarizes the experimental data from other animal
models or cell lines: types of TCM, role form action forms,
animal models or cell lines, induced way, and pathways.

2.4. Methodological Quality Assessment. Optimized check-
lists were used to assess the risk and quality of bias of in vivo
clinical studies [50, 51]. It includes blind administration,
blind administration results, average treatment distribution,
and other factors.

2.5. Data Analysis. Given the heterogeneity of the study,
data were presented in narrative form, and no pooled sta-
tistics, sensitivity analysis, meta-analyses were used.

3. Results and Discussion

3.1. SearchResults. Figure 1 shows the search flowchart [52].
A total of 1737 articles are not duplicates (PubMed: 164,
EMBASE: 567, Scopus: 483,Web of Science: 523). By reading
the titles, we have selected 212 articles related to TCM and
antiaging. Finally, through browsing the full text, 23 articles
are recorded in this paper. 0irteen articles are based on
C. elegans as animal models, and the other ten articles are
based on other animals or cells.

3.2. Study Characteristics and Description. 0is paper pres-
ents a systematic review of 20 studies. 0irteen papers have
used the classic C. elegans as an animal model to explore the
effect of TCM or its main components on delaying aging.0e
other seven papers have studied the effects of TCM or its
active components on silkworm, yeast, ultraviolet- (UV-)
induced senescence cells, UV-induced skin senescence mice,
and other aging models. A variety of TCM or their active
components have evident inhibitory effects on aging. 0e
chemical structure of some of the main components of
Chinese medicine is shown in Figure 2. Moreover, 14 articles
were from China; two, from India; two, from Germany; two,
from Iran; three, from Korea; one, from Japan.

Several methods are reported in the antiaging experi-
ments of TCM or its active components with C. elegans as
the model. 0e longevity experiment is used to explore the
effect of TCM on prolonging the lifespan of nematodes. 0e
effects of TCM on the health status of nematodes are
evaluated by measuring their body length and observing
their body swing rate and locomotion ability. 0e effects of
TCM on C. elegans resistance to stress are evaluated using
heat, oxidative, and heavy metal stress tests. 0e fecundity of
C. elegans is evaluated by counting the fecundity of nem-
atodes and the sexual dominance rate of nematodes. 0e
antioxidant capacity of TCM is evaluated by detecting the
reactive oxygen species (ROS) and antioxidant enzyme levels
in nematodes. 0e expression levels of various proteins and
mRNAs are detected by transcriptome sequencing, Western
blot, and Q-PCR. In addition, some articles have studied the
effect of TCM on aging-related diseases.

In addition to the classic model of C. elegans to study the
antiaging effect of TCM, yeast, silkworm, and other natural
aging models are used in many experiments. Other aging
models include hair dermal papilla (DP) cells, UV-induced
hairlessmouse skin agingmodel, UV-inducedHaCaTcells and
human dermal fibroblasts, H2O2-inducedHUVECs aging, and
D-galactose-induced agingmice.Methods include cell viability
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analysis, Western blot analysis, in situ staining for β-galac-
tosidase activity, total collagen determination, stress tolerance
and antioxidant activity, determination of antioxidant enzyme
content, and other methods. 0rough the previously men-
tioned experimental methods, the evident antiaging effects of
Chinese medicine or its active components are proven.

3.2.1. Effect of TCM or Its Active Component on Prolonging
the Life of C. elegans. C. elegans is a multicellular eukaryote
that feeds on microorganisms. Nematodes have unique
advantages, such as short life cycle, strong reproductive
ability, highly homologous genes withmammals [53,54], and
easy maintenance in experiments. 0ese advantages have

Table 1: Antiaging research of TCM and its active components with Caenorhabditis elegans as a model.

Types of TCM Role form Component
analysis method Main ingredients Dose

Life
expectancy
increased

Key genes Pathways References

Clove Essential oil

Gas
chromatography–
mass spectrometry

(GC–MS)

Aryophyllene;
phenol; 2-

methoxyl-3-(2-
propenyl)

1 mg/ml 15.3%
daf-16;

sod-3; gst-
4; cep-1

Antioxidant
pathway;

insulin/IGF-1
signaling
pathway
(IIS);

apoptosis
pathway

[27]

Coix seed Essential oil GC–MS
Linoleic acid;
oleic acid;

palmitic acid
1mg/ml 22.79%

mev-1;
hsf-1; daf-

16

Antioxidant
pathway [28]

Lonicera
japonica

Crude
extractions

High performance
liquid

chromatography
(HPLC)

Chlorogenic acid;
1,5-

dicaffeoylquinic
acid; 1,3-

dicaffeoylquinic
acid

500 μg/
ml 21.87%

mev-1;
hsf-1; daf-
16; daf-2;
sod-3

Antioxidant
pathway; IIS [29]

Glycyrrhizae
radix

Crude
extractions

Reverse phase
high-performance

liquid
chromatography
(RP-HPLC)

Liquiritin;
isoliquiritin;

glycyrrhizic acid

0.24 g/
ml —

daf-16;
daf-18;
pdk-1

IIS [30]

Gengnianchun Aqueous
extract — — 3.94mg/

ml 31.3% age-1; daf-
16 IIS [31]

Rehmannia
glutinosa

Neutral
Polysaccharides

UPLC analysis;
FR-IR spectrum

Galactose,
glucose, and
arabinose

— — sod-3; daf-
16; daf-2

Antioxidant
pathway; IIS [32]

Lycium
barbarum

Neutral
Polysaccharides

Phenol-sulfuric
acid method;

HPLC-GPC; FR-
IR spectrum; GC-

MS

Mannose,
glucose, and
galactose

300 μg/
ml 20.72%

daf-16;
daf-2; daf-
12; sir-2.1

IIS [33]

Juniper berry
(Juniperus
communis L.)

Essential oil GC-MS α-pinene;
limonene 10 ppm 18.5%

sod-3; gst-
4: daf-16;
skn-1

Antioxidant
pathway; IIS [34]

Zanthoxyllum
aramatum

Natural
flavonol;
tambulin

— — 50 μM 16.79%
sod-1; sod-
3; stl-2;
daf-16

Antioxidant
pathway; IIS [35]

Hibiscus
sabdariffa L. — — 1mg/ml 24% daf-16;

skn-1 — [36]

Polygonum
multiflorum

Aqueous
extract — — 1000 μg/

ml 18.6% daf-16;
sir-2.1 IIS [37]

Ganoderma
lucidum

Aqueous
extract — — 7.5mg/

ml — eat-2;
rsks-1

mTor/s6k
pathway;
dietary

restriction
pathway

[38]

Astragalus
membranaceus

Astragaloside
IV (AS-IV) — — — 27.8%

sod-3; sod-
4; sod-5;
daf-16

Antioxidant
pathway; IIS [39]
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made them different from other animals. As a result,
C. elegans has become the classic model of aging research.

0e principal compounds in the clove essential oil (CEO)
are caryophyllene, phenol, and 2-methoxyl-3-(2-propenyl)
[27]. According to the US Food and Drug Administration,
CEO is generally recognized as safe for use as food additive
(U.S. Code of Federal Regulations, 21CFR184.1257). CEO
significantly extends the nematode’s lifespan and improves
its reproductive capacity and health. CEO exerts its anti-
oxidant activity by inducing the expression of sod-3 and gst-
4. In addition, CEO induces the daf-16/Forkhead box O
(FOXO) nuclear transfer and induces germ cell apoptosis in
a cep-1 and daf-16-dependent manner.

Coix seed, a TCM with remarkable medical value, is
widely planted in China and Japan. 0e coix seed oil (CSO)
has blood lipid-lowering, antioxidation [55,56] and anti-
cancer effects and can delay the aging of nematode worms
[28]. Aging is closely related to environmental stress [57],
but CSO can enhance nematode resistance to heat stress,
oxidative stress, and heavymetal stress. CSO delays the aging
of the nematode and enhances its stress resistance by in-
ducing daf-16 and its downstream genes. Linoleic, oleic,
palmitic, and stearic acids in CSO play a key role in this
process.

Lonicera japonica (LJ) is also known as Japanese hon-
eysuckle [58], and its main component is chlorogenic acid
[29]. Studies have shown that 75% ethanol extract of
L. japonica (LJ-E) can prolong the life of nematodes through
the insulin/IGF-1 signal transduction, antioxidant, and
autophagy pathways. At the same time, LJ-E improves the
health status of C. elegans, including the increase in the body
swing and pharyngeal pumping frequencies, enhancement
of resistance to heat and oxidative stress, and reduction in
the ROS level in vivo. In addition, LJ-E and its extract can

delay the aging of nematode and prevent Alzheimer’s
disease.

Glycyrrhizae radix (GR) is usually used in combination
with other Chinese herbal medicines to treat peptic ulcers,
hepatitis C, and skin diseases [59–62]. Recent studies have
shown that the long-term exposure to GR can prolong the
lifespan of nematodes, enhance their motor capacity, and
reduce intestinal ROS production [30]. In addition, the GR
treatment alters the expression pattern of genes encoding
insulin-like signaling pathways, which play a key role in
longevity control [11].

Geng Nian Chun (GNC) consists of 12 traditional
Chinese medicines (i.e., Radix Rehmanniae, Rhizoma Cop-
tidis, Radix Paeoniae Alba, Rhizoma Anemarrhenae, Cis-
tanche salsa, and Radix Morindae officinalis [63]), which are
used to improve functional loss associated with aging. 0e
wild-type nematodes treated with GNC show prolonged
survival time under normal and oxidative stress conditions,
but the nematodes with daf-16 mutation do not have anti-
oxidant stress effects. 0is result suggests that the life ex-
tension and antioxidant stress effects of GNC are realized
through the daf-16/FOXO-dependent pathway. Further study
shows that GNC cannot prolong the lifespan of the mutant
strains of daf-2, age-1, and daf-16. 0is result implies that
GNC may extend the lifespan of nematodes through the IIS
pathway and has a potential use in the development of an-
tiaging drugs [31].

Rehmannia glutinosa (PRG), a TCM with remarkable
medical value, has anti-inflammatory, antibacterial, and
anticancer activities and can protect cardiovascular function.
Recent studies have found that the main component of ripe
PRG is a neutral polysaccharide. Among them, the neutral
polysaccharide of NPRG, a functional pharmaceutical
component, can regulate daf-2 and daf-16 genes through the

Table 2: Antiaging research of TCM or its active components based on other animal or cell models.

Types of TCM Role form Animal models or cell
lines Induced way Pathways Ref.

Scutellaria baicalensis
Georgi flowers — Rat D-galactose-

induced
Glutamine–glutamate
metabolic pathway [40]

Rhodiola rosea Aqueous extract Silkworm; Bombyx
mori — IIS [41]

Gentiana rigescens
Franch Gentiopicroside (GPS) Yeast — Mitochondrial autophagy

pathway; antioxidant pathway [42]

Zanthoxylum
bungeanum Maxim
(Rutaceae)

Aqueous extract, volatile oil
(VOZ), petroleum ether (PEZ),

and methylene chloride
Mice D-galactose-

induced
PI3K/Akt/Nrf2 signaling

pathway [43]

Nigella sativa Fixed oil Mice D-galactose-
induced

Antioxidant pathway;
antiapoptotic pathway [44]

Safflower seed Oil HaCaT cells and HDF Ultraviolet B-
induced — [45]

Pomegranate Dried pomegranate juice Mice UVB-induced — [46]
Agastache rugosa
Kuntze Hot water extraction HaCaT UVB-induced — [47]

Plumbago zeylanica — Dermal papilla cells — — [48]

Ginseng Ginsenoside Rb1
Human umbilical vein

endothelial cells
(HUVEC)

H2O2-
induced SIRT signaling [49]
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IIS pathway, thereby enhancing the antistress ability and
prolonging the lifespan of nematode worms [32].

Lycium barbarum polysaccharide (LBP) is one of the
main active components of L. barbarum. LBP can prolong
the lifespan of nematodes, improve their resistance to a
harsh environment, enhance their reproductive ability,
and ensure the integrity of nematode muscles. 0e RNAi
gene is silenced with mutant nematode strains, and mRNA
expression levels are measured. Using mutated nematode
strains, RNAi silenced daf-16 genes of N2 and Sir-2.1
mutants, and measuring their mRNA expression levels, it
was demonstrated that the life-prolonging activity of LBP
is achieved by regulating sir-2.1, daf-12, and daf-16 genes
[33].

As a powerful antidote and immune system booster,
juniper is often used to treat opportunistic infections [64].
Juniper essential oil (JBEO) extracted from juniper has
certain antioxidant and anti-free-radical activities in vitro
[65]. In addition, JBEO can prolong the lifespan of nema-
todes in vivo and improve the resistance of nematodes to
oxidative stress and heat stress. Meanwhile, the increased
expression of sod-3 (39.49%) and gst-4 (25.13%) is observed.
In exploring the mechanism of JBEO life-prolonging ac-
tivity, conserved transcription factors (i.e., daf-16, skn-1, and
hsf-1) are found to be involved in this process [34].

Tambulin is a hydroxy iodic flavanol separated from
Zanthoxylum armatum. Aging is a major cause of neuro-
degenerative diseases, including Huntington’s syndrome,
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Parkinson’s disease, and Alzheimer’s disease [6,66]. 0e
lifespan and stress tolerance of nematodes are significantly
improved by tambulin treatment, and this phenomenon is
accompanied by the remission of aging biomarkers, such as
lipofuscin and protein carbonyl. Consistent with the de-
creased ROS level, the tambulin treatment results in the
upregulated mRNA expression of ROS-removing genes,
namely, sod-1, sod-3, and ctl-2. Tambulin therapy is shown to
be effective in the treatment of Parkinson’s disease; de-
creasing alpha-synuclein levels and lipid accumulation;
improving motor behavior; elevating dopamine levels [35].

Previous studies have shown that Hibiscus sabdariffa L.
can significantly reduce skin aging markers in female pa-
tients [67] and improve short- and long-term memory
deficits in elderly albino mice [49]. According to recent
studies that have used nematodes as animal models,
H. sabdariffa L. extracts (HSE) can remarkably prolong the
lifespan of nematodes in vivo and slow down the age-de-
pendent decline in locomotor capacity [36].0is role of HSE
depends on key transcription factors daf-16 and skn-1. At the
same time, HSE increases the intracellular ROS level, in-
dicating that HSE has prooxidation activity. HSE is resistant
to the toxicity induced by the amyloid-beta protein and has a
life-prolonging effect.

Polygonum multiflorum extract (PME) can reduce the
accumulation of lipofuscin in the liver and brain of mice
[49] and has a neuroprotective effect on the degeneration
of the substantia nigra striatum. Simultaneously, PME has
an antioxidant effect, and nematodes exposed to PME
have enhanced antioxidant stress ability. In addition,
PME can prolong the average lifespan of C. elegans and
reduce the accumulation of ROS by regulating daf-16 and
sir-2.1 [37].

At present, the clinical application of Ganoderma
lucidum is limited to adjuvant therapy, such as regulating
immune response and reducing inflammatory response
[68,69], but its pharmacological mechanism remains un-
clear. Recent studies have shown that G. lucidum can ef-
fectively improve the resistance of nematodes to paraquat-
induced oxidative stress and heavy metal stress and can
extend their lifespan. 0e protective effect of G. lucidum on
nematodes may be exerted through dietary restriction and
the mTOR/S6K signaling pathway, whereas the lifespan
extension of nematodes is dependent on the germline
signaling pathway [38].

Astragalus armor glycoside IV (AS-IV) is isolated from
dry Astragalus root and is widely used in the treatment of
inflammation, viruses, and even cancer [70]. 0e lifespan of
AS-IV-treated nematodes is prolonged under oxidative
stress, heat stress, and normal conditions. At the same time,
AS-IV can enhance the activities of superoxide dismutase
(SOD) and peroxidase, increase the content of glutamic acid,
and decrease the content of glucose in nematodes. Inter-
estingly, the lifespans of sod-1, sod-2, sod-3, sod-4, sod-5, ctl-
1, ctl-2, ctl-3, and daf-16mutants do not change with AS-IV
treatment. 0ese results indicate that the life-prolonging
activity of AS-IV is achieved by improving the age-related
functional decline and antioxidant capacity and partially
regulating the activity of the IIS pathway [39].

3.2.2. Effect of TCM or Its Active Components on Delaying
Senescence in Other Animal Models or Cells. Aside from the
C. elegans model, silkworm, yeast, and other natural aging
models with short life cycle are used in antiaging research
of TCM or its active ingredients. In addition to the natural
aging model, UV-induced senescence cells and hairless
mice are commonly used to simulate skin aging; DP cells
aging model was used to simulate hair loss; H2O2-induced
HUVECs aging was used to study cardiovascular diseases.
In addition, D-galactose-induced aging mice are one of the
main means of antiaging drug research. Chinese medi-
cines or their active components have an antiaging effect
in the body and a significant inhibitory effect on skin
aging.

Snutellaria baicalensis Georgi flowers extract (SFE) is
mainly composed of flavonoids that can improve spatial
memory ability. Studies have shown that SFE can signifi-
cantly regulate malondialdehyde (MDA), SOD, and ad-
vanced glycation end products and significantly improve
liver pathological abnormalities. In addition, SFE signifi-
cantly increases the levels of D-glutamine and D-glutamate.
SFE is speculated to play an antiaging role by regulating the
glutamine–glutamate metabolism pathway [40].

0e water extract of Rhodiola Rosea can significantly
extend the lifespan of silkworms and enhance their resistance
to heat stress and hunger without changing their food intake,
body weight, or fertility. At the same time, R. rosea treatment
increases the activities of glutathione S-transferase and cat-
alase and changes the contents of glutathione and MDA. In
addition, the mRNA expression of BmFOXO is significantly
increased after R. rosea treatment [41]. BmFOXO is a key
transcription factor in the IIS pathway and acts downstream
of the IIS pathway [71]. 0erefore, the IIS may be involved in
the prolonged silkworm life induced by R. rosea.

Gentiopicroside (GPS), which is isolated from Gentiana
rigescens, is an iridoid glycoside compound with an anti-
aging effect. GPS can effectively prolong the replication and
chronological lifespan of yeast, improve the survival rate of
yeast under oxidative stress, and enhance the activities of
catalase, SOD, and glutathione peroxidase. In addition, the
levels of free GFP in the cytoplasm, free GFP in the mito-
chondria, and ubiquitin are significantly increased after GPS
treatment. Autophagy, especially mitochondrial autophagy,
and antioxidant stress may be involved in the GPS-induced
life extension [42].

0e aqueous extract (WEZ) and volatile oil (VOZ) of
Zanthoxylum bungeanum Maxim can alleviate memory im-
pairment and protect against D-galactose-induced hippo-
campal nerve injury. In addition, WEZ and VOZ enhance the
activity of phosphatidylinositol 3-kinase (PI3K)/proteinase B
(Akt). 0e evident therapeutic effect of Z. bungeanum on
memory disorders may be related to the activation of the
PI3K/Akt signaling pathway [43].

Male mice are induced to senescence after the subcu-
taneous injection of D-galactose for 42 days. Treatment with
Nigella sativa fixed oil reduces the lipid peroxidation inmice.
N. sativa fixed oil (0.1 and 0.2mL/kg) significantly restores
the GSH content and reduces Bax/Bcl2 levels. In addition,
0.1mL/kgN. sativa fixed oil downregulates the expression of
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caspase-3 protein in the brain and liver of aging mice.
N. sativa fixed oil may play an antiaging role in D-galactose-
induced aging models through its antioxidant activity and
antiapoptotic effects [44].

HaCaT cells and human dermal fibroblasts (HDF) are
induced by UV light, and cells are aged. Safflower seed oil
(Charthamus tintorius L., SSO) and its main component
acacetin (5,7-dihydroxy-4′-methoxyflavone) inhibit the
expression of matrix metalloproteinases (MMP-1) in
aging HaCaT and HDF cells [72]. MMP-1 plays an im-
portant role in collagen degradation and wrinkle for-
mation. SSO and acacetin may inhibit skin aging through
MMP-1 [45].

UV radiation can produce ROS that damages the skin
structure and causes skin aging. Skin aging can be simulated
through the UV irradiation of hairless mice [73]. 0e
treatment of pomegranate juice concentrated powder (PCP)
can significantly improve skin wrinkling and edema caused
by photoaging and significantly increase the content of skin
moisture, type I collagen, and hyaluronic acid. In addition.
glutathione consumption is inhibited by PCP therapy.
Moreover, PCP decreases the expression levels of MMP-1, 9,
and 13 and NOX2 mRNAs in the skin of mice exposed to
UV. PCP has a good protective effect on skin aging induced
by UVB [46].

Agastache rugosa Kuntze, a perennial herb, belongs to the
mint family (Lamiaceae).A. rugosa has been shown to contain
several kinds of flavonoids, including acacetin-7-O-β-D-
glucopyranoside (tilianin), acacetin, linarin, agastachoside,
and rosmarinic acid [74]. Hot water extract of Agastache
rugosa Kuntze leaf (ARE) can attenuate the UV-B-induced
ROS generation and reduce the activity and protein level of
ProMMP-2 and -9 induced by UV-B and increase the activity
level of total GSH and total SOD reduced by UV-B in HaCaT
keratinocytes [47]. 0e protective effect of ARE on UV-B-
induced photoaging in HaCaT keratinocytes may be based on
the upregulation of antioxidant components, including total
GSH and SOD.

DP cells play an important role in the occurrence and
development of androgenetic alopecia (AGA) [75]. Aging
DP cells may participate in the occurrence of AGA by
upregulating the expression of SRD5A2. Plumbago zeylanica
(also known as Chitrak) and its components can promote
the growth of DP cells and downregulate the expression of
SRD5A2 in DP cells [48]. It is speculated that Plumbago
zeylanica may be used to treat AGA.

Endothelial cell aging is a major risk factor for in-
ducing cardiovascular disease (CVD) [76, 77]. 0e vas-
cular endothelial dysfunction induced by hydrogen
peroxide (H2O2) is partly responsible for the development
of aging [78, 79]. Ginsenoside RB1 (RB1) is the main
component of ginsenoside, which has biological activities
such as relieving oxidative stress, antiobesity, and anti-
inflammation [80–82]. Studies have shown that RB1 re-
stored the H2O2-induced reduction in SIRT1 expression
and activated AMPK phosphorylation to protect HuVecs
from H2O2-induced senescence [81]. 0is provides a new
way to prevent cardiovascular diseases associated with
aging.

3.3.Methodological Quality/Risk of Bias. Figure 3 introduces
the methodological features of this review. In all papers, the
frequency of TCM treatment and age and strain of exper-
imental animals are described in detail. Experiments using
C. elegans and silkworm as animal models do not need the
approval of the animal protection evaluation committee, and
experiments requiring support have already been approved.
0e main purpose and findings of the study have been
accurately expressed in all articles.

Figures 4 and 5 present the year and country of publi-
cation of each article in the review. From the perspective of
expression years, the number of articles published is in-
creasing yearly. As a traditional treatment method, TCM is
gaining new vitality, and its antiaging effect is also attracting
increasing attention. In terms of publishing countries,
Chinese herbal medicine is widely studied in China, Japan,
South Korea, Germany, India, and Iran. Chinese herbal
medicine has been widely valued worldwide, and its in-depth
research has promoted the development of new drugs based
on the natural products of plants.

4. Conclusion

0is paper reviews the antiaging and antioxidant potentials
of TCM or its active components as natural products. TCM
or its active components play a significant antiaging effect in
various aging models. Considering the rigor of this review,
although improvement is still needed in some aspects, the
quality of the articles included in the review is of a medium
or high level.

0e IIS pathway is the first confirmed pathway to regulate
aging [83]. From humans to nematodes, this longevity control
pathway has always been highly conserved [84, 85]. 0e IIS
pathway acts through the PI3K/Akt and is activated by insulin
peptides. Age-1 and daf-2 encode phosphoinositol-3 kinase
(PI3K) and insulin/IGF-1 receptors [86, 87], respectively,
which are key upstream components of IIS. Decreased daf-2
function leads to inactivation of downstream kinase cascades
beginning with AGE-1/PI3K [88]. Downregulation of age-1
inactivates 3-phosphoinositol-dependent kinase 1 (PDK-1)
[89]. 0is, in turn, downregulates the Akt/protein kinase B
(PKB) family members, AKT-1 and AKT-2 [89]. 0e PI (3, 4,
5) P 3/PI (4, 5) P 2 ratio can also be decreased by the activation
of DAF-18/phosphatase and tensin (PTEN) phosphatase,
which mediates dephosphorylation of PI (3, 4, 5) P3 and
increases lifespan [88, 90–92]. FOXO/DAF-16 plays an im-
portant role in the PI3K/Akt pathway. Under weak insulin
signaling conditions, unphosphorylated FOXO/DAF-16 is
transported to the nucleus to promote the transcription of
genes related to longevity in the organism [93, 94]. 0rough a
systematic review of 20 studies, we have found that most of
the antiaging effects of TCM are involved in the IIS pathway.
Coix seed essential oil, clove essential oil, Lonicera japonica
crude extractions, Glycyrrhizae Radix crude extractions,
Gengnianchun aqueous extractions, Rehmannia glutinosa
neutral polysaccharides, Lycium barbarum neutral polysac-
charides, juniper berry (Juniperus communis L.) essential oil,
Zanthoxyllum aramatum natural flavonol,Hibiscus sabdariffa
L., Polygonum multiflorum aqueous extract, and Astragalus
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membranaceus astragaloside IV (AS-IV) can all increase the
expression of daf-16 [22–32,34].Hsf-1 expression inC. elegans
was increased after treatment with coix seed essential oil and
Lonicera japonica crude extractions [23,24]. After treatment
with Rehmannia glutinosa neutral polysaccharides, Lycium
barbarum neutral polysaccharides, and Lonicera japonica

crude extractions, the expression pattern of daf-2 in C. elegans
was low [24, 27, 28].

Sirtuin family is a kind of nicotinamide dinucleotide
(NAD+) dependent deacylase, which plays a significant role
in preventing diseases and delaying senility [95, 96]. Levels
of sirtuins, including silencing information regulator 1
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(SIRT1) and silencing information regulator 6 (SIRT6) but
not silencing information regulator 2 (SIRT2), have been
reported to decline in senescent cells exposed to oxidants in
mouse embryonic fibroblasts, lung epithelial cells, human
endothelial cells, and macrophages [97, 98]. Sirtuin plays an
active role in maintaining gene integrity [96], regulating
telomere reverse transcriptase expression [99], promoting
DNA repair [100–102], changing the expression of se-
nescence related genes, and maintaining stem cell self-
renewal [103,104]. Sirtuin also regulates body longevity.
0e life span of the budding yeast Saccharomyces cer-
evisiae, nematodes, Drosophila melanogaster, and mice
would be prolonged with the increase of sirtuin levels
[105–108]. Sirtuins were found to interact with all major
longevity conserved pathways, such as AMP-activated
protein kinase (AMPK), insulin/IGF-1 signaling pathway
(IIS), target of rapamycin (TOR), and forkhead box O
(FOXO) [109–111]. It was found that the expression level
of sir-2.1 gene was increased after LBP treatment, and the
longevity prolonging effect of LBP on the sir-2.1 mutant
was shorter than that of N2. 0is implies that the life-
extending effect of LBP requires sir-2.1 [33]. In addition,
Polygonum multiflorum can prolong the life span of wild-
type Caenorhabditis elegans and improve its ability to
resist paraquat stress, but not the SIR-2.1-deficient strain
[37]. Curcumin pretreatment significantly reduced H2O2-
induced premature senescence of HUVECs, which was
characterized by decreased percentage of senescence as-
sociated β-galactosidase positive cells, enhanced cell di-
vision ability, and decreased expression of senescence
associated protein p21 [112]. SIRT1 short interfering RNA
(siRNA) inhibition of SIRT1 can reduce the expression
and phosphorylation of eNOS and eliminate the protec-
tive effect of curcumin on H2O2-induced premature se-
nescence. 0ese results suggested that curcumin could
reduce the premature senility of HUVECs induced by
oxidative stress by activating SIRT1. It has been found that
ginsenoside can reduce the positive rate of β-galactosidase
in H2O2-induced HUVEC. In addition, RB1 reduced
eNOS acetylation and promoted more NO production,
accompanied by an increase in SIRT1 expression. Inter-
estingly, after SIRT1 was knocked out, the effect of RB1 on
HUVEC aging was weakened [113].

0e continuous research on the antiaging effect of TCM
and the exploration of the antiaging pathway will be helpful
in the research and development of new antiaging drugs.
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