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Cardiovascular disease (CVD) is the most common type of disease and has a high fatality rate in humans. Early diagnosis is critical
for the prognosis of CVD. Before using myocardial tissue strain, strain rate, and other indicators to evaluate and analyze cardiac
function, accurate segmentation of the left ventricle (LV) endocardium is vital for ensuring the accuracy of subsequent
diagnosis. For accurate segmentation of the LV endocardium, this paper proposes the extraction of the LV region features based
on the YOLOv3 model to locate the positions of the apex and bottom of the LV, as well as that of the LV region; thereafter, the
subimages of the LV can be obtained, and based on the Markov random field (MRF) model, preliminary identification and
binarization of the myocardium of the LV subimages can be realized. Finally, under the constraints of the three aforementioned
positions of the LV, precise segmentation and extraction of the LV endocardium can be achieved using nonlinear least-squares
curve fitting and edge approximation. The experiments show that the proposed segmentation evaluation indices of the method,
including computation speed (fps), Dice, mean absolute distance (MAD), and Hausdorft distance (HD), can reach 2.1-2.25 fps,
93.57£1.97%, 2.57 £0.89mm, and 6.68 +1.78 mm, respectively. This indicates that the suggested method has better

segmentation accuracy and robustness than existing techniques.

1. Introduction

Cardiovascular diseases (CVDs) are one of the most common
diseases affecting humans. “Global Burden of Cardiovascular
Diseases and Risk Factors, 1990-2019,” published in [1], shows
that the incidence and mortality of CVD worldwide have been
increasing since 1990 and that the mortality of CVD ranks first
and is far higher than that of other diseases. Therefore, early
detection and diagnosis of cardiac disease through various
means is crucial for reducing the prevalence and mortality of
CVD and improving the quality of life of patients [2].
Compared with X-ray coronary angiography, myocardial
contrast echocardiography, computed tomography, and mag-
netic resonance imaging, the use of ultrasound for the screening
and diagnosis of heart function and disease has great advan-
tages. Using an ultrasound instrument, the heart and blood
vessels, the movement of the ventricular wall, and the opening

and closing of the valve can be observed dynamically in real
time through flexible operation from multiple directions and
angles. In addition, ultrasound has many advantages, such as
safety and noninvasiveness, high diagnostic accuracy, and rapid
inspection, and has become one of the most used and important
examination methods for heart disease.

At present, the diagnosis of heart diseases based on ultra-
sound technology usually focuses on the analysis of the left
ventricle (LV). The LV is responsible for blood supply to the
body. Based on the changes in the LV, indicators such as LV
end-diastolic volume, LV end-systolic volume, LV ejection
fraction (EF), and LV stroke volume can be obtained. To
obtain the indicators above, accurate positioning and segmen-
tation of the LV on echocardiography are very important.

Clinically, the segmentation methods for LV ultrasound
images can be classified into manual and automatic methods.
The manual segmentation method requires the user to outline
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the region of interest manually. Marking the position or con-
tour of the LV manually is tedious and time-consuming, and
there are subjective differences among different observers.
The automatic segmentation method is superior to the manual
segmentation method [3, 4]. Usually, the automatic segmenta-
tion method of LV ultrasound images includes two steps.

First, it is necessary to determine the position of the LV in
the ultrasound images. Methods such as scale-invariant fea-
ture transformation [5] and histogram of oriented gradient
[6] can be used to determine the position of the LV. However,
the shape and appearance of the LV corresponding to differ-
ent individuals are usually different, so these methods cannot
accurately identify the position of the LV, and the segmenta-
tion accuracy of LV is also affected. Recently, the application
of deep learning models for target detection and localization
has attracted increasing attention [7, 8]. Compared with the
faster R-CNN model [9] and the single-shot multibox detec-
tor model [10], the YOLOv3 model [11] has a higher detec-
tion speed and accuracy. Therefore, a method based on the
YOLOvV3 model is proposed herein for accurate positioning
and segmentation of the LV.

Second, after the LV in the ultrasound image is accurately
located, the LV can be segmented. Methods such as structured
random forest based on machine learning [12] have been pro-
posed for LV segmentation; however, such methods require
manual selection of space features. Dong et al. [13] developed
a deep fusion network and deformable model to achieve LV
segmentation in 3-D echocardiography. Smistad et al. [14] suc-
cessfully segmented the LV in two-dimensional ultrasound
images based on the U-Net method. Oktay et al. [15] further
extended the U-Net model to improve the accuracy of LV seg-
mentation. However, these methods usually require significant
morphological features or prior knowledge and have the disad-
vantages of poor real-time performance and high computing
power requirements. Traditional image processing methods,
such as a motion-based method (Kalman filter) [16], deform-
able models (BEAS, level-set) [17, 18], graph-based approach
(graphcut) [19], active appearance model [20], and atlas-
based method [21], have been proven to have high segmenta-
tion speed and robustness in heart image segmentation. There-
fore, the YOLOv3 model and the traditional statistical shape
model are combined in this study to achieve fast and accurate
LV segmentation in ultrasound images.

Herein, an automatic segmentation method based on the
YOLOvV3 model to satisfy the relevant constraints and achieve
appropriate positioning is proposed for accurate segmentation
of the LV endocardium. The results of experiments conducted
using the proposed method show that the segmentation eval-
uation indices, including the computation speed (fps), Dice,
mean absolute distance (MAD), and Hausdorff distance
(HD), can reach 2.1-2.25 fps, 93.57+1.97%, 2.57 +0.89
mm, and 6.68 + 1.78 mm, respectively.

2. Method

To obtain clinical indicators such as EF, strain, and strain rate
of the LV on echocardiography, accurate segmentation of the
LV is crucial. In this study, the YOLOv3 model is first used to
determine the three positions of the apex and bottom of the
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LV, as well as the location of the LV region. Then, based on
the Markov random field (MRF) model with the iterated
conditional mode (ICM), preliminary identification and
binarization of the myocardium of the LV subimages are per-
formed, and under the three constraint points of the LV, the
left and right parts of the myocardium in the LV subimages
are located. Finally, when approaching the edge of the myo-
cardium, the B-spline method is used to smooth the edge of
the endocardium, and then, accurate segmentation and
extraction of the LV endocardium are achieved. Speckle noise
and artifacts in ultrasound images can lead to the loss of bor-
ders and edges during image segmentation; therefore, when
approaching the LV endocardium, a morphological mask is
applied to eliminate the interference from speckle noise and
edge artifacts inside the LV cavity. Figure 1 presents the block
diagram of the proposed technique.

3. Segmentation of LV Endocardium Based on
YOLOV3 for Positioning and Restraint

3.1. LV Localization and Collection of Restraint Points Based on
the YOLOv3 Model. There are large differences in the shape of
the LV in different echocardiogram frames. In addition, due to
the interference of the mitral valve, as well as the influence of
noise, artifacts, and frame-to-frame drift, traditional methods
cannot locate the LV position well or extract the endocardium
accurately. Therefore, this study proposes to use the target
detection model YOLOVS3 to realize the positioning of the LV
region and the three ventricular constraint points in echocardi-
ography. From Figure 2, the YOLOv3 model consists of the
following: a general feature extraction network based on the
Darknet-53 network, a multibranch deep feature extraction
network, and a multiscale target area bounding box detection
network.

In Figure 2, for the general feature extraction network,
the convolutional network (Conv), batch normalization
(BN) layer, and linear activation function (Leaky ReLU) con-
stitute Darknetconv2d BN Leaky (DBL), which extracts the
general features of cardiac ultrasound images. The DBL is
also the basic block of deep feature extraction networks. Con-
currently, to solve problems such as the disappearance of
gradients due to the deep network structure, DarkNet53 uses
the jump structure to form Res_unit, Resblock_body, and
Res_Module in multiple DBLs.

For the deep-level feature extraction network, YOLOv3
forms a multibranch network and a Concat layer through
the route structure. Simultaneously, YOLOV3 uses a bilinear
upsampling layer to expand the feature map to form three
branch networks for locating target areas of three different
scales; through these three branch networks, the feature
matrix of the LV ultrasound image can be obtained. In prac-
tice, it is difficult to obtain enough labeled LV images, and to
avoid overfitting, transfer learning is applied in this study to
train the entire feature extraction network: first, load the
weight parameters obtained based on the VOC dataset [22]
and then fine-tune the weight parameters of the feature
extraction network using the labeled heart dataset.

After the feature matrices of the LV ultrasound images of
the heart are obtained, they are input into the detection
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network to obtain the positioning matrices. The YOLOv3
model divides the original input images into three types of
Sx S grids (ie., 13 x 13, 26 x 26, and 52 x 52) for positioning
the target area; hence, three types of positioning matrices
with different dimensions are obtained. As shown in
Figure 2, the y, matrix corresponding to a 13 x 13 grid is used
to detect a large target area and is used to locate the LV area
in this study; the y, and y, matrices correspond to the 26 x 26
and 52 x 52 grids, respectively, which are used to locate three
ventricular restraint points in this study.

Each grid corresponds to a (B+ O) x anchors-dimen-
sional positioning vector, where B is the bounding box of
the target area, composed of (b,, b, b, by, b,), correspond-
ing to the center abscissa, ordinate, width, height, and confi-
dence from the center of the target area, respectively, and O is
the number of types of the target area. In this study, there are
four types of targets: the LV region and three ventricular con-
straint points. anchors are the number of anchor frames in
the positioning matrix; the number of anchor frames with
three scales in this study is three.



The anchor box is used to describe the length and width
of the target area in this study, and the relationship between
the anchor box and bounding box is shown in Equation (1).

where C,, C,, P, and P, are the abscissa, ordinate, and

the width and height of the upper left corner of the grid
where the center point of the anchor frame is located, respec-
tively; o(e) is the sigmoid activation function; ¢, and t, are
the abscissa and ordinate offsets of the center of the anchor
frame; and t,, and t;, are the changes in the length and width
of the anchor frame.

In this study, the target area in the training set is divided
into nine anchor boxes using the K-means [23] clustering algo-
rithm, and each anchor box is represented as (w, h). For these
anchor boxes, three small anchor boxes ((0 x 0), (11 x 13), and
(11 x 15)) (ie., the y, matrix in Figure 2) are used to locate the
LV area: three medium anchor boxes ((13 x 15), (14 x 20), and
(15x17)), and three large anchor boxes ((16 x 22), (110 x
218), and (146 x323)) (ie, the y, and y, matrices in
Figure 2) are used for the positioning of three constraint points.

3.2. Extraction of Endocardium Based on Constraint Points.
The three positions of the apex and bottom of the LV, as well
as the positioning of the LV area, can be found by the YOLOv3
model mentioned above. Then, based on the MRF model, the
binarization and preliminary identification of the LV myocar-
dial region in the subimages can be performed. Under the
constraints of the three position points of the apex and bottom
of the LV, curve fitting was performed on the left and right
myocardial parts in the LV subimages, and the edge of the
endocardium was approximated to realize accurate segmenta-
tion of the LV endocardium, and the B-spline method was also
employed to smooth the edge of the LV endocardium.

3.2.1. Binarization of LV Myocardium Based on MRF Model.
Before the LV myocardial images are binarized, to reduce
the influence of speckle and noise in echocardiograms, the
echocardiograms are denoised on the premise of preserving
the characteristics of the LV myocardium. First, the LV subi-
mages are smoothed via 2-D adaptive Wiener noise-removal
filtering [24], the local neighborhood size is set to (5% 5),
and then, the pixel-wise Wiener filter can be constructed using
Equation (2).

b(ny,ny) =p+ (a(ny, ny) — ), (2)

where y and o2 are the local mean and variance around each
pixel, respectively, and v* is the variance of the noise. The
Wiener filter adjusts itself to the local image variance, i.e.,
when the variance is large, a minor smoothing operation is
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performed by the Wiener filter whereas when variance is
small, the Wiener filter performs a major smoothing.

The MRF model utilizes the correlation between the
upper and lower adjacent pixels in the image; thus, the spatial
connectivity and edge smoothness of the binarized region
can be improved. Therefore, an MRF model based on the
ICM algorithm was used in this study to binarize and initially
identify the myocardial region.

Assume that X and Y are random fields on a two-
dimensional plane, where X = {x;,i=1,2,3, -, M x N} rep-
resents the input image and Y={y,i=1,2,3,--,MxN}
represents the labeling field, where M and N represent the
rows and columns of the image, respectively. In this study,
the K-means clustering method was used to obtain the initial
marker field, and the category was set to 2.

Considering the input images as an MRF model, the
image segmentation problem can be transformed into an
optimization problem using the ICM algorithm. According
to the Bayesian principle, the posterior probability distribu-
tion of MRF is as follows:

Y=y|X=x)P(X=x)
P(Y =y) ’

P(X:xIY:y)zp( (3)

=x) is the prior probability of the label domain, and P(Y
=y | X =x) is the likelihood function.

When binarizing the LV images, the optimal labels can be
obtained by maximizing the posterior probability of Equa-
tion (3).

PX=x|Y=y)p=argmax{P(Y =y | X=x)P(X=x)}.

(4)

MAP

The prior probability P(X = x) in the MRF neighborhood
system can be expressed using the Gibbs distribution func-
tion [25]. Then, based on the Gibbs distribution, the prior
probability P(X = x) of the marker field can be characterized
as follows:

P(X=x)= % exp {—KT’C)] (5)

where Z=Y ., exp [-E(x)/T] is a normalized constant,
E(x)=Y .V (x) is the energy function, V. (x) is the
potential function, and T is the temperature parameter,
which is usually set to 1 [26].

Similarly, the posterior probability P(X =x|Y =y) can
also be expressed by an energy function, as shown in Equa-
tion (6).

P(X=x|Y=y)= - exp {—E(xm} (6)

Substituting Equations (5) and (6) into Equation (4), and
taking the logarithms on both sides of the equation simulta-
neously, the product form is transformed into a summation
form, and the result is as follows:
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FIGURE 3: Binarization results of LV endocardium images based on MRF: (a-d) the original frames extracted at the equal interval from the

same echocardiogram and (e-h) the corresponding binarization results.

E(x|y)=argmax{E(y| x) + E(x)}, (7)

where E(x|y) represents the minimized energy function,
E(y|x) is the likelihood function energy of pixel x, and
E(x) is the prior probability energy corresponding to pixel
x. Therefore, the final energy relationship can be expressed
as Equation (8).

E(xply)=E(ylx) + E(x), (3)

where xp is the final segmentation mark.

The ICM algorithm is used to optimize Equation (8), i.e.,
to minimize the energy function E(x | y). Finally, the binari-
zation results of LV myocardium images can be obtained and
are shown in Figure 3. As shown in Figure 3, the LV myocar-
dium can be clearly observed after the original LV images are
binarized using the MRF model.

3.2.2. Segmentation and Extraction of LV Myocardium Based
on Position Constraints. After binarizing the original LV
images based on the MRF model, the positioning curve of
the LV myocardium will be fitted based on the position con-
straints. Firstly, divide the LV into the left and right regions
and then use the nonlinear least squares (NLS) method to
perform curve fitting on the two regions. Because only the
LV endocardium is approximated in this study, three con-
straint points are used to limit and constrain the fitted curve.

In this study, a polynomial model based on the NLS
method is employed to fit the left and right segments, respec-
tively, as shown in Equation (9).

F(x)=a;x" + a,x™ '+ 4a,x + a,,,, (9)

where a,,a,, -+, a,,,, represents the fitting coefficient of the
polynomial, and m is the polynomial degree; in this study,
the polynomial degree m is set to 3.

For a given set of coordinate points {(x;,y,): i=1,2, -,
n}, the polynomial fitting error equation can be written as
Equation (10).

V=BX-1, (10)
where
m . m—1
Xp Xy X
xal x
Bo 2 2 2 |
_xnm xnm’I oo xn
a;
a
x=| | (11)
am+1
F(x,)
= F(x,)
F(x,)



6 Computational and Mathematical Methods in Medicine

FIGURE 4: Fitting curve results of the LV subgraph in different sequences without and with constraints.

FIGURE 5: Extraction and segmentation of LV endocardium. (a) Result of binarization of the LV image using MRF model. (b) Morphological
mask generated according to the fitted positioning curve. (c) Binary myocardial image obtained after mask processing. (d) Approximation
result of the endocardium based on the three constraint points. (e) Result of smoothing the myocardium based on the B-spline method.
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Based on the NLS method, the estimated value of X can
be obtained as follows:

X=(B"B) 'B'L. (12)

Substituting the result obtained from Equation (12) into
Equation (9), the LV myocardial positioning fitting curve
can be obtained, as shown in Figure 4, where the red boxes
in Figure 4(a) are the constraint points obtained by the
YOLOvV3 model. The obtained three constraint points are
used for the constraint of the myocardial fitting curve.
Figure 4(b) is the positioning fitting curve without restraint,
and Figure 4(c) is the constrained positioning fitting curve.

As shown in Figure 4, under the three constraint points
obtained based on the YOLOv3 model, the positioning curve
of the myocardium can be accurately determined in the LV.

To mitigate the influence of speckle noise around the LV
myocardium, the binary LV images obtained based on the
MRF model are processed using the morphological masking
method. After the initial positioning of the LV myocardium
is achieved, the endocardium is approached based on the
three constraint points, the edge of the endocardium is
smoothed by the B-spline method [27], and the segmentation
and extraction of the LV endocardium can be realized as
shown in Figure 5.

4. Results

The cardiac ultrasound imaging data used in this study were
provided by the Ultrasound Imaging Department of the First
Affiliated Hospital of Medical College of Shantou University.

4.1. Evaluation Criteria. For target detection tasks, the
average precision (AP) indicator [28] is commonly used to
evaluate whether a model can detect a target class accurately.
The AP is computed as the intersection of union (IOU)
between the detection bounding box and the label bounding
box. When the IOU of the detection bounding box and the
label bounding box is greater than the set IOU threshold, it
is considered that the model detects the target correctly. Sub-
sequently, the AP value of the target class is calculated. In
practice, the IOU threshold is usually set to 0.5, and the
corresponding AP indicator is called AP50. For a model used
to detect multiple target classes, the mean average precision
(mAP) can comprehensively evaluate the performance of
the model, i.e., compute the average value of the AP values
of all target classes.

A precision-recall (P-R) curve [29] is shown with precision
and recall as the vertical and horizontal axis, respectively. Also
the size of the area under the P-R curve can comprehensively
reflect the performance of a model for detecting the target.

AP can be expressed as

AP= JIP(R)dR, (13)

where P and R represents the precision and recall rates,
respectively. The precision and recall in the P-R curve are

TaBLE 1: Evaluation results of the YOLOv3-based LV and three
bounding box positioning model using AP50.

LV Left_down
AP 100.00% 92.33%

Right_down Top
95.44% 94.50%

P-R curve based on test dataset

1.0
0.8 4
& 0.6
S
=y
0.4
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0.0 0.2 0.4 0.6 0.8 1.0
Recall
— VS —— Lower right
—— Lower left —— Top

FIGURE 6: P-R curve of the LV identification and constraint box
based on the proposed method in this paper. (VS: ventriculus
sinister; Lower left: the constraint point in the lower left corner;
Lower right: the constraint point in the lower right corner; and
Top: the constraint point on the top of the myocardial wall).

calculated using Equations (14) and (15), respectively.

TP
sion= L 14
preC1510n TP n FP 5 ( )
TP
n-_t 15
e TP EN (15)

where TP, FP, and FN represent the true positive, the false
positive and the false negative, respectively.

The Dice coefficient [30], MAD [31], and HD [32]
parameters are used to evaluate the segmentation results of
the LV endocardium:

2Area(SNG)
Area(S) + Area (G)

MAD(4, B) { Zd ; b,,A}

D(A, B) = max {miax{d(ai, B)}, m]ax{d(bj, A) } },
(16)

Dice(S, G) =

=
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(d)

(h)

FIGURE 7: Binarization results of ultrasonic LV images using the Otsu method, K-means clustering method, and MRF model. The area
enclosed by the blue line in (a) and (e) is the gold standard for the LV myocardium. (b, f) The binarization results obtained by using the
Otsu method. (¢, g) The binarization results obtained by using the K-means clustering algorithm. (d, h) The binarization results obtained

by using the method proposed in this paper.

where S represents the myocardial area data obtained by
different binarization methods, G is the gold standard data
of the myocardial area, A = {a,, a,, -**, a,, } is the endomyo-
cardial edge data obtained by the method proposed in this
paper, and B={b,, b,, ---, b, } is the gold standard endomyo-
cardial edge data.

4.2. LV and Restraint Point Positioning Model Based on
YOLOv3. Table 1 illustrates the performance of the
YOLOV3-based LV and bounding box positioning model on
the test dataset using AP50. From Table 1, all the AP50 values
of the four target regions formed by the LV and the three
bounding boxes are above 92%, and the mAP value reaches
95.57%, which indicates that the model designed in this study
can detect the LV and the three bounding box areas well and
meet the requirements of LV myocardium segmentation.

The P-R curve, which can intuitively evaluate whether the
model can detect a target class well, is drawn based on the
precision-recall value pairs calculated from different confi-
dence values when the model detects a target class. The value
of the area enclosed by the P-R curve is the AP value.

The P-R curve of the model on the test dataset is shown
in Figure 6. It can also be seen from Figure 6 that the area
under the four P-R curves is sufficiently large, which indi-
cates that the performance of the model is satisfactory.

4.3. LV Binarization. To analyze the effect of the MRF model
on the binarization of the ultrasound LV images, the
proposed method, traditional Otsu method, and K-means clus-
tering algorithms were used to binarize the same LV image for

TaBLE 2: Comparison of binarization results obtained by different
methods and gold standards.

Otsu K-means MRF
Dice 0.58 +£0.07 0.59 +0.06 0.88 +0.03

comparison; the binarization results obtained by different
methods were also compared with the gold standard, and the
results are shown in Figure 7.

From Figure 7, it can be verified that the myocardial area
obtained using the proposed model is closest to the gold
standard.

For quantitative analysis, the Dice index is used for evalua-
tion. The LV myocardial regions obtained by the Otsu method,
K-means clustering algorithm, and the method based on MRF
proposed in this paper are compared with the gold standard
myocardial region obtained by manual segmentation by senior
clinicians, and the corresponding Dice indices are obtained,
and the results are shown in Table 2.

It can be seen from Table 2 that the Dice value corre-
sponding to the proposed binarization method based on the
MRF model is 0.88 + 0.03, which is far greater than the Dice
values corresponding to the Otsu method and K-means clus-
tering algorithm, namely, the performance of the binariza-
tion method based on the MRF model proposed in this
paper is much better than the other two methods. Therefore,
the binarization method proposed in this study can fully
meet the requirements for extraction of the LV myocardial
region.



Computational and Mathematical Methods in Medicine 9
TaBLE 3: Comparison of endocardial segmentation results by different methods.

Methods Training set size (frame) ~ Computation speed (fps) Dice (%) MAD (mm) HD (mm)
Hansson et al. [33] 0 0.3 — 2.58 +£0.85 —

Qin et al. [34] 450 0.01 90.8 +1.7 2.0+£0.42 6.86+1.71
Carneiro and Nascimento [35] 496 0.2 — 1.94+0.51 —

The method without constraints 252 1.5-1.8 80.103+2.13  7.06+0.85 10.34+3.51
Proposed method 252 2.1-2.25 93.578+1.97  2.57+0.89 6.68+1.78

4.4. LV Endocardium Segmentation. In order to evaluate the
performance of the method proposed in this paper, the same
LV ultrasound images were segmented using different
methods (listed in Table 3) along with the proposed method,
and the segmentation results by different methods were com-
pared with the gold standard obtained by manual segmenta-
tion by cardiologists, and five evaluation indicators including
training set size, computation speed, Dice coefficient, MAD,
and HD were used to evaluate the segmentation results.
The results are shown in Table 3.

It can be seen from Table 3 that the proposed segmenta-
tion technique is superior to other methods in terms of vari-
ous evaluation indicators. In particular, for the computation
speed index, the method proposed in this paper has a great
advantage, and owing to the use of transfer learning, the
method uses less training data to obtain a better segmenta-
tion effect.

5. Discussion

In this paper, an automatic LV segmentation method based on
the YOLOvV3 model is proposed to determine the constraints
and positioning. Through the YOLOv3 model, the three posi-
tions of the apex and bottom of the LV and LV area are posi-
tioned, and based on the MRF model, the LV myocardium
subimages are binarized; under the limitation of the three
constraint points of the LV, combined with NLS curve fitting
and B-spline smoothing, the accurate segmentation and
extraction of the LV can be realized. Experiments show that
the suggested method can accurately and automatically iden-
tify and segment the LV in cardiac ultrasound images.

In the experimental section, a comparison is presented
with other segmentation models. Hansson et al. [33] pro-
posed an unsupervised segmentation method based on a
Bayesian probability map. Although MADs corresponding
to the aforementioned method and the method proposed
herein are similar (which means that the two methods are
similar in terms of segmentation accuracy), the computation
speed of the latter is much higher than that of the former (see
the computation speed indicator). The level set segmentation
method proposed by Qin et al. [34] is unsupervised, does not
require a training dataset, and can yield accurate segmenta-
tion results. However, owing to the need for sparse matrix
transformation to identify the right ventricle, this method
requires many training sets and a large processing time; in
addition, it is necessary to readjust the parameters according
to the movement of the heart, which will lead to unstable
results. Compared with that of the aforementioned method,

the MAD of the method proposed herein this paper is slightly
lower, but the Dice value is better. In fact, the method pro-
posed by Qin et al. is similar to our method in terms of seg-
mentation accuracy. However, the method proposed herein
is far superior in terms of the computation speed indicator.
The method proposed by Carneiro and Nascimento [35] uses
a deep neural network method to segment the systolic and
end-diastolic contours and achieves high segmentation accu-
racy; however, a large number of datasets is required, and
thus, a set of 496 images had to be established. Compared
with this method, the method proposed herein only requires
a small amount of data (252 frames) to obtain a suitable posi-
tioning effect; in terms of calculation speed, the method pro-
posed herein this paper is significantly better than that
proposed by Carneiro and Nascimento (see the correspond-
ing computation speed index in Table 3). Finally, according
to the computation speed, Dice, MAD, and HD, the auto-
matic LV segmentation method based on constraints and
positioning are better in the proposed technique than uncon-
strained positioning segmentation methods in terms of
segmentation accuracy and computation speed.

In summary, if the segmentation accuracy indices (i.e., Dice,
MAD, and HD) are considered, the method proposed is not the
best, but it can be said that the method proposed in this paper is
one of the best methods in terms of segmentation accuracy;
however, if the computation speed, data volume, and segmenta-
tion accuracy are considered comprehensively, it can be said
that the method proposed in this paper is the best. Compared
with other methods, the proposed segmentation technique
has significant advantages in terms of computation speed and
the amount of data required. The method proposed in this
study uses fewer data to obtain a good segmentation effect. It
is well known that it is very difficult to obtain medical data in
practice, thus obtaining a good segmentation effect based on a
small amount of data is conducive to the clinical application
of the algorithm. The computation speed is another important
factor that affects the application of algorithms in clinical prac-
tice, and the algorithm proposed has significant advantages in
terms of computation speed over the other methods.

6. Conclusions

Here, an automatic LV segmentation method based on the
YOLOV3 model for constraint and positioning determina-
tion is proposed. Through the YOLOv3 model, the three
positions of the apex and bottom of the LV and LV area are
positioned, and based on the MRF model, the LV myocar-
dium subimages are binarized; under the limitation of the
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three constraint points of the LV, combined with NLS curve
fitting and B-spline smoothing, the accurate segmentation
and extraction of the LV can be realized. Experiments show
that the method can accurately and automatically identify
and segment the LV in cardiac ultrasound images, and
related indicators such as fps, Dice, MAD, and HD can reach
2.1-2.251ps, 93.57 £ 1.97%, 2.57 + 0.89 mm, and 6.68 + 1.78
mm, respectively. Compared with other methods, the pro-
posed method has a better segmentation accuracy and
robustness. In particular, our method has a high computa-
tional speed, which is very important for real-time evaluation
of cardiac function based on echocardiography. In addition,
our method uses less training data to achieve better segmen-
tation results. In short, our method can accurately segment
LV ultrasound images, which is important for the accurate
acquisition of clinical indicators for cardiac function evalua-
tion, such as the EF, strain, and strain rate of the LV on echo-
cardiography and will play a vital role in assisting doctors in
clinical diagnosis.
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