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In this paper we develop an SEIR-type model of COVID-19, with account for two particular aspects: non-
exponential distribution of incubation and recovery periods, as well as age structure of the population.
For the mean-field model, which does not distinguish between different age groups, we demonstrate that
including a more realistic Gamma distribution of incubation and recovery periods may not have an effect
on the total number of deaths and the overall size of an epidemic, but it has a major effect in terms of
increasing the peak numbers of infected and critical care cases, as well as on changing the timescales
of an epidemic, both in terms of time to reach the peak, and the overall duration of an outbreak. In order
to obtain more accurate estimates of disease progression and investigate different strategies for introduc-
ing and lifting the lockdown, we have also considered an age-structured version of the model, which has
allowed us to include more accurate data on age-specific rates of hospitalisation and COVID-19 related
mortality. Applying this model to three comparable neighbouring regions in the UK has delivered some
fascinating insights regarding the effect of lockdown in regions with different population structure. We
have discovered that for a fixed lockdown duration, the timing of its start is very important in the sense
that the second epidemic wave after lifting the lockdown can be significantly smaller or larger depending
on the specific population structure. Also, the later the fixed-duration lockdown is introduced, the smaller
is the resulting final number of deaths at the end of the outbreak. When the lockdown is introduced
simultaneously for all regions, increasing lockdown duration postpones and slightly reduces the epidemic
peak, though without noticeable differences in peak magnitude between different lockdown durations.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

As of 15th November 2020, there are 1;344;356 confirmed
cases of coronavirus disease (COVID-19) and 51;766 COVID-19
associated deaths reported in the UK (coronavirus.data, 2021),
with more than 54 M cases and over 1.3 M deaths globally
(Worldometer coronavirus data, 2021). The virus is reported to
first appeared in Wuhan, China in 2019 (Li et al., 2020), and has
since silently and swiftly spread around the globe infecting popu-
lations in 212 countries and territories. When WHO declared it a
global pandemic on the 11th of March 2020, there were 118; 000
cases in 100 countries. In order to contain and halt the spread of
this deadly disease, countries around the world have taken
extraordinary measures, introducing ‘‘lockdowns” and closing bor-
ders. The majority of cases of COVID-19 are spread via respiratory
routes, especially among large gatherings of people in shopping
malls, carnivals, celebrations etc., but a preliminary study has sug-
gested that it can also spread via extra-respiratory routes, although
the study was relatively small (Cai et al., 2020). Clinically, COVID-
19 is characterised by high temperature, cough and loss of smell
and taste in some people, with cases varying frommild to very sev-
ere with life-threatening implications. The disease can also present
itself with no symptoms at all, whereby someone infected with
COVID-19 experiences no symptoms but is able to spread it to
other people. It is thought that the number of asymptomatic carri-
ers varies from 15 to 75–80%. While testing of the Diamond Prin-
cess Cruise ship has estimated that there were 17.9% of
asymptomatic carriers (Mizumoto et al., 2020), the population-
wide testing of Vó Euganeo located 50 km west of Venice and
closed off by authorities in February indicated that 50–75% of con-
firmed cases were symptomless (Day et al., 2020). This is one of the
most challenging factors, which can have major implications in
terms of managing and stopping the spread of the disease.

Another key epidemiological feature of COVID-19 is its rela-
tively long incubation period, estimated to be about 5 days, where
a person is exposed to the disease but the onset of symptoms
appears some days later (Lauer et al., 2020). Since the exposed
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person can infect others while incubating the disease, this plays a
major role in terms of epidemic control and management. The
mortality rates from COVID-19 tend to be higher for older people,
and children are thought to have either mild or no symptoms at all.
CDC report of 6 April 2020 estimates that infection among people
younger than 18 is 1.7%, 5.7% required hospitalisation compared to
10% for 18–64 age group (disease, 2020), while hospitalisation
rates in adults ages 80+ are estimated to be around 30–70%
(Verity et al., 2020).

At the moment, in order to ease the strain on healthcare and
save lives, majority of countries around the globe are practicing
physical distancing/self-isolation measures, which are aimed at
slowing the disease progressing and its intensity. Mathematical
models have been widely used to analyse various scenarios of
COVID-19 disease development, and to predict the best possible
outcomes depending on the severity and length of introduced
physical distancing measures (Hellewell et al., 2020; Prem et al.,
2020; Ferguson et al., 2020; Kissler et al., 2020). A number of these
and other models (Yang et al., 2020; Peng, 2020; Fang et al., 2020)
have used SIR- and SEIR-type epidemic models with an underlying
assumption of exponential distributions of infection and recovery
times.

In this paper we look into three specific aspects of COVID-19
dynamics and its containment. The first concerns an observation
that the incubation period has a distinctly non-exponential distri-
bution (Lauer et al., 2020), and the same applies to infectious per-
iod (Verity et al., 2020). We will include this feature in our model
by means of a gamma distribution that much more accurately
describes the behaviour of these major characteristics of disease
dynamics. As we will show, this has a profound effect on disease
dynamics in terms of its timescales (time to reach the peak and
overall duration), as well as on the disease severity represented
by the maximum number of infected individuals and the maxi-
mum number of critical care cases. The second aspect we will
investigate concerns on observation that the infection, severity
andmortality rates for COVID-19 are significantly different for disf-
ferent age groups (Prem et al., 2020; Ferguson et al., 2020), thus it
is essential to include the specific demographic structure of each
particular region when modelling and assessing potential needs
for healthcare facilities, and, in particular, the number of critical
care beds at different stages of epidemic progression. The third
and final aspect we are interested in is the analysis of the effects
of timing and duration of lockdown on containment of COVID-19
progression for regions with different demographic age structure.

The outline of the paper is as follows. In the next section we
derive and analyse a mean-field model of disease dynamics with
account for non-exponential distributions of incubation and infec-
Fig. 1. Distribution of (a) incubation period, where a is the shape, and h is the scale of Ga
(a), solid line shows the best fit to data from Lauer et al. (2020), the dashed line is the c
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tious periods. In Section 3 we develop an age-structured version of
this model that takes into account age-specific values of parame-
ters and a demographic structure. Interactions between different
age groups are modelled using three different types of age-
specific mixing matrices for the UK population (Mossong et al.,
2008; Klepac et al., 2020; Jarvis et al., 2020), including one
obtained very recently after the lockdown was introduced in the
UK. To illustrate the effects of different mixing patterns and lock-
down, in Section 4 we compare the results for three regions of
the UK, focusing on the role of lockdown timing and duration.
The paper concludes in Section 5 with a discussion of results and
open questions.
2. Mean-field SEIR model

Before deriving a model for the dynamics of COVID-19, we note
that one of the major assumptions behind SIR and SEIR-type mod-
els is an exponential distribution of incubation and recovery peri-
ods. Importantly, the actual distributions of these parameters as
obtained from available epidemiological data rather obey a
Gamma distribution (Lauer et al., 2020; McAloon et al., 2020;
Byrne et al., 2020; Linton et al., 2020), as illustrated in Fig. 1. To
account for this fact in the model, we will represent Gamma distri-
bution by means of models with multiple stages in the exposed
and infected class, in a manner similar to Lloyd (2000). A very
recent work by Boldog et al. (2020) considered an SEIR-type model
of COVID-19 that explicitly includes two stages for exposed indi-
viduals and three stages for the infected class. However, the shape
of distributions of incubation and recovery periods shown in Fig. 1
suggests that those numbers of stages may not be sufficient to
properly represent the distributions of incubation and recovery
periods; more specifically, with just two stages for exposed indi-
viduals, the distribution would be concave for smaller values of
incubation period, while it should be convex according to the data
from Lauer et al. (2020). With these observations in mind, we
model disease dynamics using a modification of the very recent
model in Kissler et al. (2020). Susceptibles (S) get exposed to the
disease, and after acquiring infection at rate b from infected indi-
viduals, they move to the Exposed (E) class. Similarly to the model
of Kissler et al. (2020) and a number of other mathematical models
of COVID-19 (Prem et al., 2020; Kucharski et al., 2020; Aguiar et al.,
2020; Kyrychko et al., 2020), we assume that the incubation period,
i.e. a period of time from acquiring the virus until developing
symptoms, has the same duration as the latent period, which is
the period from acquiring the virus until becoming infectious.
While there is some evidence that individuals may also be
mma distribution, and (b) recovery periods (Lauer et al., 2020; Verity et al., 2020). In
losest fit to Gamma distribution with integer parameters.
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infectious close to the end of pre-symptomatic period (Tindale
et al., 2020; Nishiura et al., 2020), for simplicity we will assume
that the incubation and latency periods coincide, in other words,
the individuals become infectious around the same time as they
start showing symptoms, for those of them who will eventually
be symptomatic. In the model this is represented by individuals
staying in the exposed class for an average incubation/latency per-
iod of 1=m before becoming infectious, either asymptomatically or
symptomatically (See Fig. 2).

In terms of virus transmission, an important question concerns
the degree of contribution from truly asymptomatic (as opposed to
pre-symptomatic) individuals, i.e. individuals who never develop
symptoms. This aspect is extremely difficult to assess, because it
relies on sufficient testing of large groups of people regardless of
whether or not they ever exhibit symptoms, and then trying to
track and trace the course of infections in order to identify their
original source. Several studies have looked into this, and, in partic-
ular, they investigated the contribution of asymptomatic individu-
als to disease transmission by measuring their viral load, which
was found to be generally the same in pre-symptomatic, asymp-
tomatic and symptomatic patients (Liu et al., 2020; Furukawa
et al., 2020; Savvides and Siegel, 2020; Walsh et al., 2020; Zou
et al., 2020). This justifies including asymptomatic carriers into
the force of infection with the same contribution as symptomatic
carriers.

At the end of incubation/latency period, individuals become
infectious, and they will remain infectious for an average period
of time of 1=c, and after that they will progress into different
routes. A proportion pA of them will simply recover and move to
the Recovered class (RA), and similarly a proportion pR of individu-
als with mild symptoms will move to their own Recovered class RR.
For this reason, we interpret the infectious period also as a recov-
ery period. There are also people, who will require hospitalisation,
and the model assumes that the time from the onset of symptoms
to hospitalisation is roughly the same as infectious period (Linton
et al., 2020; Davies et al., 2020). Hence, we assume that after the
same period of time of 1=c, a proportion pH of individuals will
move into a class of hospitalised individuals HH , and from there
they will then proceed to the Recovered class RH after an average
Fig. 2. Schematic diagram of the disease transmission model. Each circle represents one
letters above/below arrows represent the rates of those transitions. The pairs ðm;K1Þ an
period, where the first element of each pair is the corresponding rate of transition, which
of each pair describes the number of stages in the gamma distribution of that time peri
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period of 1=dH . Finally, there is a proportion pC of individuals
who will require critical care, hence they will first move into the
hospitalised class HC , from which they proceed to a critical care
class CC at rate dC , and subsequently they either move into the
recovered class RC at rate nC , or die and move to the compartment
D at rate l.

In terms of including the above-mentioned distributions of
incubation and infectious periods in the model, we will assume
that with the same mean incubation period 1=nu, individuals in
the exposed class go through K1 sequential stages of equal dura-
tion, and in the infectious class with the average infectious period
1=c, they go through K2 stages of the same duration. With these
assumptions, the model equations now have the form

_S ¼ �bS
XK2

k¼1

Ik=N; _E1 ¼ bS
XK2

k¼1

Ik=N � K1mE1;

_E2 ¼ K1mE1 � K1mE2; . . . ; _EK1 ¼ K1mEK1�1 � K1mEK1 ;

_I1 ¼ K1mEK1 � K2cI1; . . . ; _IK2 ¼ K2cIK2�1 � K2cIK2 ;

_HH ¼ pHK2cIK2 � dHHH; _HC ¼ pCK2cIK2 � dCHC ;

_CC ¼ dCHC � ðnC þ lÞCC ; _RA ¼ pAK2cIK2 ;
_RR ¼ pRK2cIK2 ;

_RH ¼ dHHH; _RC ¼ nCCC ; _D ¼ lCC ;

ð1Þ
where dot denotes the derivative with respect to time, and the
parameters are

pH ¼ xð1� pAÞð1� rÞ;
pC ¼ rxð1� pAÞ;
pR ¼ ð1� pAÞð1�xÞ;

where x is the rate of hospitalisation, and r is the rate of critical
care admission (Verity et al., 2020; Ferguson et al., 2020).

Fig. 3 shows a comparison of time dynamics of the epidemics
with baseline values of parameters from Table 1 and different
numbers of stages of incubation and recovery. This figure shows
that the overall dynamics changes drastically when the numbers
of stages are varied, and the situation for K1 ¼ K2 ¼ 1, which corre-
sponds to the standard SEIR model, is significantly different from
of model compartments, arrows represent transitions between compartments, and
d ðc;K2Þ describe, respectively, incubation/latency period and infectious/recovery
is equal to the inverse of the average corresponding period, and the second element
od.



Fig. 3. Dynamics of the total infected I, critical cases CC , total deaths D, and the susceptibles S in model (1) for different numbers of incubation and recovery stages, with
N ¼ 1;000;000, and 5 individuals initially exposed to infection.

Table 1
Parameter definitions and their baseline values from Kissler et al., 2020, except for c
from Verity et al., 2020 and b adjusted to have R0 ¼ 2:5.

Parameter Value Meaning

b 0:15 disease transmission/infection rate
K 1� 6 number of exposed stages
1=m 5 days incubation time
1=c 16:6 days infectious period/time to hospitalisation

(both non-critical and critical care)
pA 0:5 (assumed) proportion of asymptomatic infections
pR 0:456 (varies) proportion of symptomatic infections without

the hospital/critical care requirements
pH 0:0308 (varies) proportion of symptomatic infections

requiring hospitalisation, but not critical care
pC 0:0132 (varies) proportion of symptomatic infections

requiring critical care
1=dH 8 days recovery rate for non-critical hospital cases
1=dC 8 days average duration from hospital admission to

requiring critical care
1=nC 10 days recovery rate for admissions requiring critical

care
l 0:1 (varies) death rate for admissions requiring critical

care
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the situation with K1 ¼ K2 ¼ 6, which provides a much more real-
istic representation of incubation and recovery periods illustrated
in Fig. 1. We observe that for the same mean incubation and recov-
ery periods, increasing the number of stages in the incubation per-
iod results in slightly bringing forward the peak of the epidemic
and its overall completion, while increasing the number of stages
in the recovery period significantly increases the maximum total
numbers of infected and the number of critical cases. (see Fig. 4,
Table 2).

3. Age-structured model with latency and gamma distribution
of incubation and recovery periods

Due to a significant variation in disease progression, and more
specifically, in the probability of requiring hospitalisation, the pro-
4

portions of severe/critical cases, and mortality, as well as a strongly
inhomogeneous population structure, it is essential to include age
distribution in the epidemic model. To achieve this, we subdivide
each of the compartments in model (1) into 18 age classes repre-
senting age groups 0–4, 5–9, . . ., 85+, and then consider disease
transmission through interactions between individuals in different
age groups, as represented by a certain mixing matrix. An equiva-
lent model has the form

_Si ¼ �bSi
X18

j¼1

XK2

k¼1

CijI
j
k=N

j; _Ei
1 ¼ bSi

X18

j¼1

XK2

k¼1

CijI
j
k=N

j � K1mEi
1;

_Ei
2 ¼ K1mEi

1 � K1mEi
2; . . . ; _Ei

K1
¼ K1mEi

K1�1 � K1mEi
K1
;

_Ii1 ¼ K1mEi
K1

� K2cIi1; . . . ; _IiK2
¼ K2cIiK2�1 � K2cIiK2

;

_Hi
H ¼ pi

HK2cIiK2
� dHH

i
H;

_Hi
C ¼ pi

CK2cIiK2
� dCH

i
C ;

_Ci
C ¼ dCH

i
C � ðnC þ liÞCi

C ;

_Ri
A ¼ pi

AK2cIiK2
; _Ri

R ¼ pi
RK2cIiK2

; _Ri
C ¼ nCC

i
C ;

_Ri
H ¼ dHH

i
H;

_Di ¼ liCi
C ;

ð2Þ

where i ¼ 1::18 are different age groups, K1 is the number of incu-
bation stages and K2 is the number of recovery stages, Cij is the mix-
ing matrix. For simulations, it was assumed that a small proportion
in each age group was initially exposed. Age-specific values of
parameters x;r and l used for simulations are given in Table 3
and are based on Ferguson et al. (2020).

3.1. Mixing matrices

To model the effects of different levels of interaction between
individuals in the population, we will consider three different mix-
ing matrices. The first one, known as POLYMOD, comes from a
major UK study in 2008 (Mossong et al., 2008) and has been sub-
sequently used to model the infectious disease dynamics in a vari-
ety of contexts. The second mixing matrix was produced as a result



Table 2
Variables of the model.

Variable Meaning

S Susceptibles
N Total population size
Ei; i ¼ 1; . . . ;K1 Exposed individuals in different stages after the exposure to

the disease
Ii; i ¼ 1; . . . ;K2 Infectious individuals in different stages
HH Hospitalised individuals not requiring critical care
HC Hospitalised individuals requiring critical care
CC Individuals in critical care
RA Recovered asymptomatic individuals
RR Recovered individuals without hospitalisation
RH Recovered individuals after hospital (without critical care)

admission
RC Recovered individuals after critical care
D Those who died in critical care

Table 3
Age-specific parameter values from Ferguson et al. (2020).

Age-group % symptomatic cases % hospitalised cases infection
fatality

(years) requiring
hospitalisation, x

requiring critical
care, r

ratio, l

0–9 0.1% 5% 0.002%
10–19 0.3% 5% 0.006%
20–29 1.2% 5% 0.03%
30–39 3.2% 5% 0.08%
40–49 4.9% 6.3% 0.15%
50–59 10.2% 12.2% 0.6%
60–69 16.6% 27.4% 2.2%
70–79 24.3% 43.2% 5.1%
80+ 27.3% 70.9% 9.3%

Fig. 4. Age distribution in West Sussex, Brighton and Hove, and East Sussex (Office for National Statistics, 2019).
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of UK’s nationwide social experiment on online tracking of an
influenza epidemic for a BBC programme ‘‘Contagion!” in 2018
(Klepac et al., 2020; Klepac et al., 2018). The BBC mixing matrices
(all and physical only) were padded with POLYMOD data for the
missing block describing interactions in the lowest age groups,
which were scaled to ensure that the leading eigenvalue of the
BBC matrices did not change. The resulting mixing matrices are lar-
gely similar to the POLYMOD matrices, with the only main differ-
ence being a change in the structure of interactions between
teenagers and other age groups. This change was largely attributed
to a significant level of using smartphones and other gadgets by
teenagers, which resulted in the reduction of direct social interac-
tions for this age group. The third matrix we will use comes from
the so-called CoMix survey (Jarvis et al., 2020), an online survey
conducted in March 2020 by Ipsos that looked into levels of social
mixing in the UK following the introduction of a lockdown.
5

Since the POLYMOD and BBC matrices describe regular interac-
tions between different age groups in the absence of any interven-
tion, they were scaled with their respective leading eigenvalue to
maintain the same basic reproduction number for the same trans-
mission rate b. When analysing the effects of lockdown, we will use
BBC-all mixing matrix as a baseline, with CoMix-all describing con-
tacts during the lockdown, and for the same transmission rate, the
CoMix matrix is rescaled by a leading eigenvalue of the BBC-all
matrix to reflect a reduction in the number of contacts between
these two matrices. As discussed in Jarvis et al. (2020), for a base-
line value of the basic reproduction number of R0 ¼ 2:6, under
CoMix mixing, this value was reduced to 0.62 for the case of all
contacts, and to 0.37 for physical contacts only.

3.2. Age-specific regional information

To explore the dynamics of COVID-19 epidemics and its control
using lockdown in regions with difference social structure, we will
consider three neighbouring coastal UK regions, namely, West Sus-
sex, Brighton and Hove, and East Sussex. These regions have
respective total populations of 858,700, 290,500 and 554,800,
median ages 41.1, 35.6 and 42.7 (Office for National Statistics,
2019), and their age distributions are illustrated in Fig. 5.

4. Results

For all numerical simulations in this section, we have used the
values of parameters as given in Tables 1 and 3, with
K1 ¼ K2 ¼ 6, and the resulting model (2) was solved numerically
using a Runge–Kutta-Fehlberg method. As an initial condition we
took 100 people incubating the disease, distributed among age
classes with proportions being the proportions in each age class,
as determined by the actual age distribution for each specific
region.

4.1. Effects of mixing matrices and age structure

To investigate the role of interactions between different age
groups in the dynamics of COVID-19, we have solved the model
(2) numerically using each of the three mixing matrices, assuming
that they characterise interactions between individuals from the
very start of an epidemic until its end. Fig. 5 shows the results of
such simulations for the cases, where all types of contacts were
included, and the corresponding age distribution of deaths at the
end of the epidemic is illustrated in Fig. 6. We observe that for
the more recently obtained BBC-all mixing matrix, the numbers
of infected and critical cases are very slightly greater than for the
POLYMOD mixing, though the differences are negligibly small. In



Fig. 5. Temporal dynamics of the model (2) with all interactions between individuals for West Sussex, Brighton and Hove, and East Sussex. ‘‘Infected” denotes the total
number of infected individuals, including asymptomatic, symptomatic, and all who require hospitalisation.

Fig. 6. Age distribution of death cases at the end of an epidemic with all interactions between individuals for West Sussex, Brighton and Hove, and East Sussex.
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contrast, for the CoMix mixing, all these numbers are two orders of
magnitude smaller, supporting the underlying idea that the CoMix
mixing matrix describes a substantially reduced level of interac-
tions between individuals during a lockdown. When one looks only
at physical interactions between individuals, as shown in Fig. 7, the
differences between POLYMOD-all and BBC-all mixing become
6

more pronounced, with the numbers of infected and critical cases
being higher for the BBC mixing compared to the POLYMOD mix-
ing, though for the total deaths the differences are still very small.
The age structure of deaths at the end of an epidemic is qualita-
tively the same for both all and physical contacts: the numbers
of deaths are very small up until around 60 years of age, and after
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that they are growing, with the highest numbers of deaths
observed in the eldest people, as consistent with current data.
The underlying reason for this is that, as indicated in Table 3, the
rates of hospitalisation, critical care, and fatality all increase with
age and are highest for the age groups of 60+. We have explored
how the dynamics would change if the initial conditions were to
be modified, and the conclusion is that all results would remain
Fig. 7. Temporal dynamics of the model (2) with account only for direct physical interactions between individuals for West Sussex, Brighton and Hove, and East Sussex.
‘‘Infected” denotes the total number of infected individuals, including asymptomatic, symptomatic, and all who require hospitalisation.
effectively the same, with minor changes in terms of shifts in time
and in magnitude (See Fig. 8).

4.2. Effects of timing and duration of lockdown

As a next step, we have looked into the effect of introducing
lockdown on disease dynamics. Simulations shown in the previous
section describe what would happen if the lockdown were intro-
duced from the very beginning of the epidemic and stayed in force
for the entire duration of the outbreak. In reality, however, lock-
down is normally introduced some time after the start of an out-
break and lifted after a certain period of time, with the
conflicting requirements of trying to minimise the number of crit-
ical cases and deaths, while also trying to minimise the duration of
the lockdown. To model this scenario, we have chosen BBC-all as
the underlying matrix describing interactions in the absence of
lockdown, and CoMix describing interactions during lockdown.
Fig. 9 shows how the disease dynamics changes depending on
when the lockdown is introduced relative to the start of an epi-
demic outbreak, assuming that in all cases the lockdown remains
in force for 8 weeks, after which point it is lifted. Although in each
case there will be a second epidemic peak after the lockdown is
lifted, interestingly and quite counter-intuitively, the later the
lockdown is introduced, the smaller will be the maximum of the
two peaks, and this reduction becomes quite substantial for lock-
downs introduced at a later stage. One possible explanation of this
is that if the lockdown is introduced very early on into the out-
break, the number of people who actually have the disease is still
relatively small, and as the epidemic goes through its course, if
7

the lockdown is lifted closer to the peak of the epidemic, there will
be a large number of infected people in the population, and lifting
the lockdown will release a pool of additional susceptibles who can
get a disease. In contrast, if the lockdown is introduced later, so
that it is lifted after the ‘‘natural” peak of the epidemic, the num-
bers of infected people will already be significantly reduced, so
the second peak will be much smaller.
Another interesting observation is that for the same lockdown
duration, the timing may also be important in determining which
of the two epidemic peaks will be larger, and this is different for
different regions. The reason for the difference between regions
is that since the main driving force behind any disease transmis-
sion is interactions between individuals, and even for the same
mixing matrix these are very strongly determined by the underly-
ing population structure. Fig. 9 indicates that for a fixed-duration
lockdown introduced relatively early, i.e. 6 or 8 weeks after the
start of an epidemic, in all three regions we have considered the
first epidemic peak will be much smaller than the second peak.
For a lockdown that is introduced after 10 weeks, the same conclu-
sion still holds for West Sussex and East Sussex, which are both
characterised by a significantly older population. In contrast, in
Brighton and Hove the second peak is significantly smaller than
the first, and this can be attributed to the fact that younger people
have a chance to go through the cycle of disease earlier on in the
epidemic, and since they are the biggest contributors to disease
transmission due to a higher number of their contacts, when the
lockdown is lifted, there will be fewer of them capable of transmit-
ting the disease to the rest of the population. At the same time, a
reduction in the total number of deaths by the end of en epidemic
is much more strongly reduced for lockdowns that are introduced
later: it is 7.1–19.5% for an 8-week lockdown introduced after
10 weeks, compared to only 1–3% for a lockdown introduced after
6 weeks). A major implication of this result is that the timing of
optimal introduction of a fixed-duration lockdown should be
adjusted for each individual region to make it most effective in
terms of reducing the number of infections and critical care cases,



Fig. 9. Effects of the time of introduction of lockdown on disease dynamics with BBC-all mixing matrix as baseline (black), and lockdown introduced for 8 weeks starting after
6 weeks (blue), 8 weeks (red), or 10 weeks (green).

Fig. 8. Age distribution of death cases at the end of an epidemic with only physical interactions between individuals for West Sussex, Brighton and Hove, and East Sussex.
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and to avoid exacerbating the outbreak after the lockdown is lifted.
Alternatively, lockdown duration should be sufficiently large, so
that it would substantially exceed the time required to reach a nat-
ural peak of an epidemic, so that a subsequent lifting of the lock-
down would not result in a major resurgence of infections and
critical care cases.

Another question of major research and practical importance is
when is most appropriate time to lift lockdown restrictions and to
allow people to resume their work and social contacts. To investi-
gate this, we have considered the following scenario: an epidemic
8

starts in a population, whose interactions are described by the
BBC-all mixing matrix, then after 8 weeks a lockdown is intro-
duced, which is modelled by the CoMix-all matrix, and the lock-
down stays in force for 8, 12, or 16 weeks. At this point the
lockdown is lifted, and the population mixing returns to its original
state described by the BBC-all mixing matrix. Fig. 10 illustrates the
resulting time dynamics of the epidemic, and it shows that in all
cases when the lockdown is introduced, the curve is ‘‘flattened”,
with the peak in the number of infected and deaths being smaller
for longer lockdown duration. Since in all three simulated scenar-



Fig. 10. Effects of the duration of lockdown on disease dynamics with BBC-all mixing matrix as baseline (black), and lockdown introduced after 8 weeks for 8 weeks (blue),
12 weeks (red), or 16 weeks (green).
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ios the lockdown is introduced relatively soon into the outbreak,
the second epidemic peak is much higher than the first regardless
of how long the lockdown lasts. Also, quite surprisingly, the reduc-
tion in the magnitude of the peak in the numbers of infected and
critical care cases between an 8-week lockdown and a 16-week
lockdown is quite small (5.4–7.4% for infected, and 5–8% for critical
care cases), raising the question about practical justification of the
longer lockdown. Another observation is that since the lockdown is
introduced relatively early on, the difference between different
regions becomes less pronounced, though similarly to the above
analysis of the timing of the lockdown, we notice that a longer
lockdown in Brighton and Hove makes the difference between
two epidemic peaks much smaller, while both in West Sussex
and East Sussex, the second peak remains significantly larger than
the first for any lockdown duration. Interestingly, there are also
almost no differences between the total numbers of deaths for dif-
ferent lockdown durations, though an overall reduction compared
to a situation without lockdown is notably different for different
regions: it is only 2.8–3.7% for West Sussex and 4.2–5.5% East Sus-
sex, compared to 8–11% for Brighton and Hove.

5. Discussion

In this paper we have considered the effects of non-exponential
distributions of incubation and recovery periods which are sug-
gested by available data, as well as age structure, on dynamics of
COVID-19 and its possible containment using lockdown. Numerical
simulations of the mean-field model that does not include age-
specific differences in disease parameters and contacts has shown
that for the same mean incubation and recovery periods, increas-
ing the number of stages of incubation period makes the epidemic
reach its peak and die down faster, while increasing the number of
stages in the recovery period leads to a significant increase in the
maximum total numbers of infected and critical care cases.

Age structure has a major effects on how effective the lockdown
is in ‘‘flattening the curve”, i.e. in reducing the number of hospi-
9

talised and critical care cases. In terms of optimal lockdown timing,
if it is introduced for only 8 weeks, introducing it sooner will have a
smaller effect on reducing the second peak of infection. In fact, it
may even be possible that the second peak will be smaller than
the first, but we only observed this for lockdowns that were intro-
duced later in the epidemic. In terms of critical care cases, there is
also a notable variation between different regions in terms of
whether the second peak is smaller than the first, and by how
much it is reduced compared to the case with no lockdown,
depending on when a fixed-duration lockdown is introduced.
Effectively, this suggests that if the lockdown is introduced for
some fixed duration, the timing of its introduction should be
adjusted for each particular region to achieve maximum effect, or
it should be kept for a sufficiently long time. We have also investi-
gated the potential impact of lockdown duration when it is intro-
duced simultaneously in different regions 8 weeks after the start
of an epidemic. The results suggest that changing the lockdown
duration from 8 to 12 or 16 weeks does shift the timing of the sec-
ond peak, but has very little effect on the magnitude of this second
peak in terms of either the total number of infected, the number of
critical care cases, or deaths. The biggest percentage reduction in
these numbers was observed for Brighton and Hove, the region
with the youngest population among the three regions we
considered.

The model presented in this paper can be made more realistic
by including some additional features of disease dynamics, and
further details of its progression. One of these includes relaxing
the assumption about equality of latency (time from infection to
becoming infectious) and incubation (time from infection to dis-
playing symptoms) periods and considering them as two indepen-
dent parameters. This can be done by means of a more accurate
splitting of exposed and infections compartments, clearly separat-
ing a latent stage, followed by the pre-asymptomatic infectious
stage, followed by the infectious stage, in a manner similar to
Davies et al. (2020), Giordano et al. (2020), Tsay et al. (2020). Some
other relevant aspects that can be investigated are the inclusion of
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additional compartments, such as deaths outside hospitals, and
analysis of some specific settings in which disease is transmitted,
such as care homes, with their particular age-specific contacts. In
the end of May/beginning of June 2020, the lockdown in the UK
was partially lifted, with some schools being opened, and some
groups of people returning to work, while trying to maintain social
distance. With children returning to schools, and universities
opening, the UK has subsequently experienced another substantial
growth in cases of COVID-19, similarly to most other European
countries. By November 2020 the numbers of daily confirmed
cases have far exceeded numbers seen during the first epidemic
wave in April-May 2020 (Worldometer Coronavirus Data, 2021),
which necessitated the introduction of another lockdown from 5
November until 2 December 2020. Recent data suggest that by
November 2020 only around 4.4% of the UK population have anti-
body positivity to SARS-CoV-2 (Ward et al., 2020), which means
that once the lockdown is lifted in December 2020, there is a
potential for another growth in the number of infections, though
its magnitude is likely to differ in different parts of the country.
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