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Addressing the COVID‑19 
transmission in inner Brazil 
by a mathematical model
G. B. Almeida1*, T. N. Vilches2,4, C. P. Ferreira3,4 & C. M. C. B. Fortaleza1,4

In 2020, the world experienced its very first pandemic of the globalized era. A novel coronavirus, 
SARS-CoV-2, is the causative agent of severe pneumonia and has rapidly spread through many 
nations, crashing health systems and leading a large number of people to death. In Brazil, the 
emergence of local epidemics in major metropolitan areas has always been a concern. In a vast and 
heterogeneous country, with regional disparities and climate diversity, several factors can modulate 
the dynamics of COVID-19. What should be the scenario for inner Brazil, and what can we do to control 
infection transmission in each of these locations? Here, a mathematical model is proposed to simulate 
disease transmission among individuals in several scenarios, differing by abiotic factors, social-
economic factors, and effectiveness of mitigation strategies. The disease control relies on keeping all 
individuals’ social distancing and detecting, followed by isolating, infected ones. The model reinforces 
social distancing as the most efficient method to control disease transmission. Moreover, it also shows 
that improving the detection and isolation of infected individuals can loosen this mitigation strategy. 
Finally, the effectiveness of control may be different across the country, and understanding it can help 
set up public health strategies.

It has been a year since the first confirmed case of a novel coronavirus pneumonia in Wuhan, China. Now, the 
world experiences its very first pandemic of the globalized era. SARS-CoV-2 has rapidly spread through the 
currently connected continents, and the World Health Organization has declared a health emergency on inter-
national concern, which made many countries taking serious mitigation and suppression strategies1.

These strategies take importance when we look at the epidemic dynamics. The first studies estimated that the 
basic reproductive number of COVID-19 was 2.68 (95% CrI 2,47-2,86)2, which means one infected person can 
spread the virus to almost three people in a totally susceptible community. As there is no treatment or vaccine 
wide available, the best way to control the virus is to diminish social contact. China has shown to the world that 
when people stay at home, the virus circulation can be controlled, and we have more time for preparing health 
systems, producing individual protection equipment, developing research, and minimizing the consequences 
of the epidemic3. However, in Brazil, this kind of mitigation strategy (social distancing) does not work for 
self-employed people and low-income families since their maintenance depends on their own work. Besides, 
the number of people living in the same house can vary from 1.7 to 7.7 in the country. Only 52.5% of Brazilian 
households have basic sanitation and less than two residents per bedroom. Moreover, 6% of the Brazilian popu-
lation lives in slums where access to safe water, basic sanitation, waste management, and hygienic conditions is 
not guaranteed4–7.

In Brazil, the introduction of COVID-19 happened later than in many other locations, and that gave us time 
to analyze all the new scientific evidence and the control measures taken overseas8. However, a country with 
continental dimensions cannot work with a single plan response. In the higher urban hierarchy cities, like São 
Paulo, for example, the disease spread initially from the medium and high levels of social classes to the lower 
ones9. However, what should be the scenario for inner Brazil, and what can we do on infection control in each 
of these locations?

Mathematical modeling has taken significant importance when applied to epidemics10,11. Since the earliest 
population studies on plague or measles, the methods have been refined. Today, with the parameters well estab-
lished and more sensitive parameterization, such as contact patterns matrices, we may estimate how an epidemic 
will behave in a specific population and what should be our immediate response to the problem12.
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Mathematical models may draw best and worst-case scenarios for a COVID-19 epidemic situation in small 
and medium cities in inner Brazil13. Our main objective is to study how the disease might behave in specific 
cities of the country and see what happens when combining two strategies: diminishing social contact plus test-
ing and isolating positive cases. We point out that we are not aiming to characterize the temporal dynamics of 
the COVID-19 transmission in a city, state, or country, but highlight the difference in the disease transmission 
across the country and emphasize that control must be done differently in each one of these regions. Besides, 
we clustered the cities based on a set of characteristics in order to see if these were able to give us any clue about 
the disease dynamics. The consequences of relaxing restrictions are a theme of debate now, and in Brazil, it is 
happening before the epidemic’s peak has occurred, while the number of cases is still growing over the country. 
Mask wearing, mass testing, early detection of imported cases, and monitoring effective reproduction number 
are strategies that have been discussed and adopted around the world14.

Results
The temporal evolution of the effective reproduction number Rt is shown in Fig. 1. It was calculated for each 
municipality using data of daily incidence of cases and the knowledge about the generation interval of COVID-
1915. In red, we plotted the average value, and in gray, the individual values. Mean Rt ’s higher values were pri-
marily observed at the beginning—absolute values from five to ten—which quickly changed to values between 
1.8 and 2.7, after 10 days, since control measures were rapidly adopted across the country. It is crucial to notice 
that the large variability of Rt , and the oscillation, observed at each day when plotting cities together, can be 
associated with the fact that the cities started epidemic at different moments and the delay into report cases on 
weekends. Over time, Rt slowly decreases until June. Although Rt achieved values even lower than one during 
the epidemic’s course, this was not able to control the outbreak in any part of the country.

Figure 2 shows the municipalities ranked by the cumulative number of cases per 10,000 inhabitants, from 
the least to the most infected one until the 60th day of the epidemic, and also ranked by the proportion of fatal 
cases, i.e., the number of deaths divided by the number of cases. In Fig. 2a, we can see the cumulative cases for 
all infected individuals (the sum takes into account the number of infected individuals in all age class) obtained 
from the mathematical model (in green line), and from the reported data (in blue line). Following the dashed 
grey lines that connect both data, we can compare the simulations with laboratory-confirmed cases of COVID-
19. Figure 2b shows the proportion of fatal cases obtained from reported data and from the mathematical model 
simulations. Pink lines focus measures obtained considering only individuals in age classes older than 50 years. 
Unfortunately, there is no available data regarding this population to be compared. The average distance between 
the cities’ observed ranks and their simulated ranks is 5.59± 6.87 (median = 4) when comparing cases, and 
7.93± 6.64 (median = 6) when comparing deaths, both in all age classes.

Figure 3 shows the results when control measures are brought to the model, i.e., the percentage of reduction 
in the number of cases versus the reduction in contact rate, ( 1− ξ ). The two panels were done for different values 
of ψ , where ψ is the fraction of infected population tested, supposing late detection ( τ = 0.5 ), ν = 0.55 , and the 
other parameters are given in Table 2. In (a) we have ψ = 0.1 and in (b) ψ = 0.3 . We highlighted four different 
cities based on their estimated basic reproductive number denoted, R0 (Table 1); the other cities are displayed in 
grey lines. We can observe a large variation among control efficacy in the group of municipalities under study, 
reflecting the country’s heterogeneity, especially in inner Brazil. Considering only the four cities highlighted, we 
can see that reducing the contact rate by 20% cause a variation from 1 to 55% on reducing the number of cases. 
Moreover, this variation increases when the fraction of the population tested increases.
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Figure 1.   Temporal course of Rt in each municipality involved in the study. In red, the average value, and in 
grey, the individual values. The dashed line shows the threshold of Rt = 1 . Above it, the transmission of the 
disease increases; below it, the disease’s transmission decreases.
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Figure 4 shows the reduction on the number of cases versus the time of starting control, ts , in two scenarios 
that differs by the fraction of tested population, ψ = 0.1 and ψ = 0.3 . The parameters are the same as in Fig. 3 
with (1− ξ) = 0.6 , and the same cities are highlighted. The efficacy of control diminished as the time of con-
trol start is delayed. For some municipalities the reduction in the number of cases is less than 50%. In general, 
increasing the fraction of the population tested, control efficacy is increased.

The partial rank correlation coefficient (PRCC) obtained from a global sensitivity analysis16 is shown in 
Fig. 5. We run 3000 simulations that correspond to different input parameter sets, all of them related to control 

Figure 2.   Simulation results and reported data for each municipality on the 60th day of the epidemic. In (a), 
we have the cumulative number of cases per 10,000 inhabitants versus city’s rank from the least infected to the 
most infected; in (b), the proportion of fatal cases versus city’s rank. The sum was done from day 1 to 60 of the 
epidemic course in each city. The first day was chosen to be the one at which the number of infected cases was 
higher than 10. The dotted grey lines connect the same city in the observed data and in the simulated data to 
highlight similarity on both results.

Figure 3.   Reduction on the number of cases versus reduction on the contact rate, 1− ξ , both in percentage. In 
(a), ψ = 0.1 and in (b), ψ = 0.3 ; where ψ is the fraction of the population tested. Among the 29 municipalities 
involved in the study, we highlight four of them: Itumbiara, Água Branca, Sobral, and Dourados; the other ones 
are shown in grey lines.
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measures; the output is control efficacy. The parameters are (1− ξ) , (1− ν) , ǫ and � , respectively, the reduction 
of daily contacts among individuals, the reduction in the transmission rate of isolated individuals, the rate at 
which infected individuals are detected, and the fraction of infected individuals that are identified. As expected, 
the increase of any control measures promotes the increase of control efficacy, displaying positive values of cor-
relation for any input parameter and the output. Nevertheless, the parameters contribute differently to it as can be 
seen by its absolute values, which rank them from less to more important (from lower to larger absolute value). 
We performed the analysis for all four highlighted cities in previous figures, and the results were the same. Here, 
we display the result for Sobral-CE.

Two different dendrograms were obtained from clustering the municipalities by their similarity, and they 
are shown in Fig. 6. The first one was built using the model’s input data, like the proportion of fatal cases per 
age group, and the age pyramid. In the second one, we included population density, human development index 
(HDI), as well as the value of temperature and humidity in April month. One city might belong to different 
clusters in each dendrogram, and the differences between the dendrograms are highlighted by gray lines con-
necting both. The distance among groups increased when we re-clustered them; in the new dendrogram, the 
groups are more dissimilar among them.

Discussion
Our model shows epidemic dynamics for COVID-19 in various cities in inner Brazil. The epidemic’s dynamic 
features on each municipality were modeled by using local and regional epidemiological data, as the value of 
R0 , the proportion of fatal cases per age group, and sociodemographic data (age pyramid and social contact 
matrices). Mitigation strategies, such as social distancing of all individuals and detection followed by isolation 
of infected ones, were tested and compared. The cities were clustered, taking into account several variables that 
could influence disease transmission among individuals.

At the beginning of the epidemic, a substantial amount of the reported cases are imported cases. The data set 
does not distinguish between imported and local transmission cases, but the method used to evaluate Rt takes 

Table 1.   Municipalities and key factors that may modulate COVID-19 transmission. Each line brings the 
variables value of the city pointed in the first column. In the case of temperature and humidity the values are 
the average one observed in April month in each locality31. The other factors like density, population size, and 
Human Development Index (HDI) come from government’s website13; R0 are estimated from data32.

Municipality Temperature Humidity (%) Density (inhab/km2)
Population size 
inhabitants R0 (estimated) HDI

Água Branca-AL 23.9 83.3 42.6 19,377 0.80 0.549

Altamira-PA 26.3 85.6 0.6 99,075 4.64 0.665

Avaré-SP 21.3 75.6 68.4 82,934 1.05 0.862

Bagé-RS 18.1 73.4 28.5 116,794 0.46 0.740

Bom Jesus-PI 26.2 61.9 4.1 22,629 1.50 0.668

Botucatu-SP 19.3 67.0 85.9 127,328 1.14 0.800

Cáceres-MT 19.3 75.0 85.9 87,942 1.69 0.708

Caracaraí-RR 27.2 80.1 0.4 18,398 1.22 0.624

Chapecó-SC 19.3 76.0 293.1 183,530 1.89 0.790

Colatina-ES 25.0 77.5 78.9 111,788 0.99 0.746

Cruzeiro do Sul-AC 25.7 84.5 8.9 78,507 2.71 0.510

Dourados-MS 22.3 77.6 48.0 196,035 1.67 0.747

Feira de Santana-BA 25.2 82.2 416.0 556,642 1.31 0.712

Imperatriz-MA 26.6 80.2 180.8 247,505 2.69 0.731

Itaperuna-RJ 23.3 76.6 86.7 95,841 2.53 0.730

Itumbiara-GO 24.3 72.7 37.7 92,883 6.65 0.752

Lages-SC 16.6 81.1 56.6 156,727 3.44 0.770

Marabá-PA 27.0 83.3 15.4 233,669 2.44 0.668

Maringá-PR 22.9 70.4 733.1 357,077 1.06 0.808

Mossoró-RN 27.7 81.4 123.8 259,815 1.16 0.720

Parintins-AM 27.0 86.3 123.8 102,033 4.67 0.658

Patos-PB 27.2 70.1 212.8 100,674 3.76 0.701

Petrolina-PE 25.4 60.1 64.4 293,962 2.95 0.702

Presidente Prudente-SP 24.0 66.3 368.9 207,610 2.25 0.806

Quixeramobim-CE 26.4 73.3 22.0 71,887 3.03 0.642

Remanso-BA 26.7 68.6 8.3 38,957 1.12 0.579

Santa Maria-RS 19.4 81.3 146.0 261,031 1.03 0.784

Sobral-CE 26.0 85.9 88.7 188,233 3.54 0.714

Uberlândia-MG 22.8 73.9 146.8 604,013 1.33 0.789
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into account the rising of infections coming from a local transmission already in course on the population. This 
can explain the high values seeing at the epidemic’s early stages (Fig. 1 and Table 1). Moreover, the available data 
displays the date of case report. Ideally, the calculation of the Rt should be performed using the date of symptoms 
onset. Therefore, the limitation regarding the delay between symptoms onset and reporting must be considered. 
If we consider that the delay is somehow homogeneous across the country, the Rt calculation is shifted in time. 
Besides mitigation strategies to halt or diminish disease transmission, deceleration in the initial epidemic’s growth 
rate can be driven by many factors like heterogeneity in population structure, behavior change of individuals, 
and increased herd immunity17.

Ranking the cities by the number of cumulative cases (Fig. 2a), we can see that, in general, the model provide 
a good prediction for disease behavior (as can be seen in Maringá, Altamira, and Cáceres), being the average 
distance between the rank of reported data and rank of simulated data of 5.59± 6.87 . It is important to highlight 
that those simulations were made considering no control measures. However, several cities in Brazil had enough 
time to implement social distancing and preventive measures after the arrival of the first case in São Paulo city, by 
February 2020. Adherence to social distancing, mask use, and self-isolation has been different across the country, 
but measure it is yet a challenge. Recently, several works have been trying to connect the transmission rate with 
mobility index, but a good model that link both measures is still missing18. This could explain the differences 
between the model’s prediction and the data collected. Among the cities that are in the top, six have a medium 
Human Development Index (HDI) and more than 85% of the population on the age classes until 50 years old. 
At least, regarding to simulations results, the rank follows with a good accuracy the one seen for the R0 value. 

Figure 4.   Reduction on the number of cases versus time of starting control. In (a), ψ = 0.1 and in (b), ψ = 0.3 ; 
where ψ is the fraction of the population tested. Among the 29 municipalities involved in the study we highlight 
four of them: Itumbiara, Água Branca, Sobral, and Dourados; the other ones are shown in grey lines.

Figure 5.   Sensitivity analysis using control efficacy as the output. A negative-control (dummy-parameter) was 
used to assign a zero value for a sensitivity index. Parameters values below the dummy are considered as not 
contributing to the model output. The result corresponds to the city of Sobral-CE, but the rank is obtained for 
the other cities.
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Further, as it was told, the available data refers to the date of case report. Once we are ranking the cities, if the 
delay in confirmation is homogeneous across the country, the results related to the cities’ rank must not change.

Regarding the proportion of fatal cases (Fig. 2b), since there is no available age-specific data for each city, 
our simulations use the reported lethality of COVID-19 at state level, which showed to be a good approach for 
most cities, such as Maringá and Chapecó. However, cities such as Bagé, Lages and Á gua Branca would have 
their mortality overestimated since they did not report any death until their 60th day of the epidemic. Here, the 
average distance between the rank of reported data and simulated data rank is 7.93± 6.64 . Interesting to note 
that among the cities that are in the top, five of them have very high HDI, and more than 16% of the population 
on the age classes older than 50 years old. In general, both results (Fig. 2) are in agreement with what is expected, 
medium HDI and youngest population explain the higher number of cases, while low HDI and older population 
are associated with higher fatality cases.

Overall, the fact that the model performs better for some localities compared to the other also reflects degrees 
of heterogeneity of COVID-19 test across the country19. Moreover, several local social and economic features can 
modulate the chance of death, not to forget access to health services and hospitals might be an important issue 
in each region of Brazil. Comparing the average distance between the rank of reported data (all age classes) with 
the rank of simulated data (only age classes older than 50 years old), we get 6.69± 6.29 for fatal cases, which 
is a better result when compared to the previous one. We hypothesize that as the disease impacts the older age 
classes strongly, they are the responsible for most of the death and, therefore, the mortality rate might be con-
sistent within the state.

It is expected that any kind of control on disease transmission will affect the epidemic’s course by delaying 
and reducing its peak. The gain on smaller numbers of infected individuals during the course of the epidemic 
is obtained by increasing its duration. Since there is no broad available vaccine, mitigation strategies rely on 
social distancing, isolation of infected individuals, self-isolation when you are a suspected case, mandatory 
quarantine applied to all populations, and travel restrictions20,21. So, we drew scenarios with different strategies 
and interventions. We can clearly see that we have an optimal control measure for each city, depending on the 
target. Hypothetically, let us consider that a reduction of 60% on the number of cases is needed to avoid the 
epidemic’s critical outcomes, such as health-system collapse. As we can see in Fig. 3, Itumbiara would not reach 
the needed reduction, probably because it has a high R0 (= 6.65) . In that case, it would be necessary to increase 
even more the control efforts. For Sobral and Dourados, both cities would reach the reduction on the number 
of infections, but with different control intensity, around 22% for Sobral and 63% for Dourados. This happens 
because Dourados has a lower R0 than Sobral, 1.67 and 3.54 respectively. Água Branca is one particular case in 
which R0 < 1 , and this explains why control measures seem to be less useful. The variability of control efficacy 

Figure 6.   The municipalities are clustered in two ways, from left to right: (1) the proportion of fatal cases per 
age group and the age pyramid; (2) the same variables plus Human Development Index, population density, 
temperature, and humidity. The municipalities that changed group because of re-clustering are connected by 
gray line, while the ones that were kept together are connected through RGB color system.
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is associated to country’s heterogeneity that may be quantified by its mean temperature (from 12◦ to 27◦ along 
the country), its population density (from 2.66 to 67.77 inhab/km2 ), its human development index (from 0.450 
to 1), and many other factors22. Eilersen and Sneppen discussed the cost-benefit of limited isolation and testing 
in COVID-19 mitigation23. Using an agent-based epidemiological model, they could compare several scenarios 
related to mitigation strategies such as testing and quarantining and concluded that this is much cheaper in 
terms of lost workdays than an extended lockdown. Also, the effect of quarantine on disease dynamics increases 
when testing is more widespread.

The effect of delaying the start of control measures was modeled as well (see Fig. 4). Again, the result shows 
a specific pattern at each municipality, but they all have in common one fact: the earlier cities start control, the 
greater is the reduction in the number of cases. Testing more people in the first 30 days is undoubtedly the best 
choice, and testing more people may also allow delaying social distance. Since the introduction of SARS-CoV-2 in 
Brazil, public laboratory certification for the molecular diagnosis of COVID-19 ranged from four laboratories to 
twenty-six in eight weeks. One can notice laboratories capacity is also increasing on time. This decrease the time 
of virus detection over the country, but in a heterogeneous way since there is a geographic concentration of labo-
ratories in São Paulo state19. Amaku et al24 implemented a modified version of the classical SEIR compartmental 
model to compare two different test-trace-and-quarantine strategies to control the COVID-19 outbreak in the 
State of São Paulo, Brazil: indiscriminately testing the entire population of the State, and testing only symptomatic 
cases and their immediate contacts. They concluded that the second one is the most cost-effective strategy, and 
it can be applied especially in situations where social distancing is challenging to implement. Moreover, if the 
State of São Paulo had decided to adopt this strategy early, on April the 1st, it would have been possible to reduce 
the total number of cases by 90%.

The sensitivity analysis ranks the importance of parameters on control efficacy, which is (decreasing order): 
the reduction in the contact rate of the entire population due to control measures ( 1− ξ ), the reduction in the 
contact rate of isolated individuals ( 1− ν ), the fraction of infected individuals that are identified ( ψ ) and the 
rate of testing ( ǫ ), highlighting the importance of mandatory isolation and testing individuals for COVID-19 
(see Fig. 5). Combining isolation of detected COVID-19 positive cases with social distancing can provide an 
efficient way of halting or diminishing disease incidence on population, but the control effectiveness will depend 
on each municipality’s characteristic. In Brazil (and other low-to-medium income countries), the expected 
peak of the disease was never observed; instead, it achieved a plateau sustained by a pattern of dispersion from 
major metropolitan areas to the interior22. Each state decides how to deal with a non controlled disease and an 
economy that may not support non-pharmacological control measures anymore. In São Paulo’s case, the terri-
tory is divided into seventeen health departments (DRS, in Portuguese) with respect to epidemiological control. 
Since the beginning of June, the state decided to adopt a reopening plan - that brings back people mobility and 
non-essential services - which can be more restrictive or more flexible, considering the growth rate of COVID-19 
cases and deaths, and bed occupancy rates in each DRS. The same restrictive measures rule all cities belonging 
to a DRS, that can be adapted in response to the temporal-spatial behavior of the epidemic25.

We sustain the hypothesis that each city must be individually studied. However, it is possible to cluster cities 
(as it has been done in São Paulo state), considering similar characteristics, which ends up showing patterns 
of epidemic dynamics. In vast and heterogeneous countries like Brazil, we expect that many factors, such as 
population density, temperature, and mobility, modulate disease transmission. Quantifying and identifying 
such contributions can help governments to make decisions about mitigation strategies. The knowledge about 
other respiratory infection diseases that assault the population in different parts of Brazil, such as Influenza, can 
provide a pool of important information useful to forecasting COVID-19 in many municipalities.

Following this idea, in Fig.  6, the municipalities are clustered in two different ways. In the dendrogram on the 
left, we clustered cities by similar characteristics included in the model: the proportion of fatal cases by age group 
and age pyramid. Following the dendrogram we can identify three big groups: (I) Mossoró, Cárceres, Botucatu, 
Avaré, Presidente Prudente, Itumbiara, Colatina, Maringá, Santa Maria, Bagé, Lages, Itaperuna, Patos, Feira 
de Santana, Chapecó, Uberlândia, Dourados; (II) Caracaraí, Água Branca, Parintins, Cruzeiro do Sul, Sobral, 
Imperatriz, Bom Jesus, Marabá, Altamira, Remanso, Quixeramobim; (III) Petrolina. In each group, the average 
age and the average morality rate are, respectively, 32.7± 1.5 and 0.019± 0.012 , 27.7± 1.8 and 0.033± 0.015 , 
28 and 0.030. Observe that groups II and III are very similar (when we compared them by the average values of 
age and mortality rate). The dendrogram on the right was generated including the cited characteristics plus new 
ones: temperature, humidity, population density, and HDI. This was done as an exercise to illustrate that we can 
add or remove characteristics from the clusters in order to find patterns, but it is essential to know which one of 
these characteristics is important on disease dynamic. For instance, comparing both dendrogram and Fig. 2, the 
re-clustering added Petrolina to the group of Cáceres and Mossoró, that display a similar number of cases and 
proportion of deaths; and Água Branca is set together with Quixeramobim and Remanso, being its number of 
cases between the number of cases of these two cities. Since the first clustering, Itumbiara, Água Branca, Sobral, 
and Dourados belong to different sub-groups and, therefore, have quite a different epidemic behavior. But, in 
the second clustering, the distance between Itumbiara and Dourados increases, while the distance between Água 
Branca and Sobral did not change too much, in accordance with Fig. 2. Moreover, Botucatu and Avaré belong 
to the same cluster and follow a similar epidemic evolution pattern. In summary, the two main groups that are 
identified can be distinguish by the HDI of their cities and average age of citizens. This emphasizes the statement 
that models that include, in some way, temperature, humidity, HDI and population density may better reflect the 
reality. This can spotlight groups of cities where it is expected that the control efficacy and the disease growth are 
similar. The results are sustained by Costa et al.26 that used a stochastic metapopulation model, inter-municipality 
mobility, and hypothetical mitigation scenarios, and showed that the diversity of outcomes related to the disease 
transmission in Brazil is observed in several geographical scales.
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Like any other model, the approach developed here has its limitations. The fact that control measures may 
change the disease dynamic by decreasing or increasing its velocity of spreading may jeopardize model predic-
tion. Also, spatial heterogeneity and social inequalities were not considered in the model, but it is known that 
in cities belonging to the higher urban hierarchy, COVID-19 spread first among the medium and high level of 
social classes, and afterward, it achieves the low social classes. Mitigation strategies, such as social distance and 
shelter-in, do not work for self-employed and low-incoming families, and to consider it would bring more com-
plexity to the model. Moreover, the available data has two relevant limitations: testing is limited to symptomatic 
cases who seek health services, and the only date available in the data set is the date of the case report. No other 
relevant dates - i.e., exposure, onset, or laboratory confirmation - are available. These data limitations impact 
results diminished if we consider that the bias is homogeneous across the country. The bias generated by the 
under-reported data impacts our model’s parameter estimation, since the diagnosis capacity, compared to the 
number of cases in the population, changes over time. Recent works have demonstrated and have argued that 
the delay into case reports and the mitigation strategies may directly impact the Rt estimation27,28. With more 
information about the available data and complex models, fitting the model parameters to the epidemic curve 
would be an interesting approach worthy of study.

However, here we were able to show that different control measures should be taken for different cities and, 
most importantly, each city may have an optimal combination of social distance with testing and isolating positive 
cases that control the epidemic’s curve and permit the health systems to be prepared for the peak of the number 
of cases. Cities in inner Brazil, such as Cruzeiro do Sul-AC, Imperatriz-MA, Altamira-PA, Bom Jesus-PI, and 
Parintins-AM that are clustered together, are susceptible to a delay in the arrival of the infections, and epidemic, 
which may decrease people’s risk perception and enhance the disease spreading29. As a consequence, those cities 
display a larger number of cases per number of inhabitants. We suggest the authorities to give special attention 
to those cities and perform an extensive educational campaign in order to control the infection. Our results also 
showed that testing and isolating people could perform a massive difference in controlling the epidemic. Due to 
a limited number of tests in Brazil, they have been mostly performed to confirm symptomatic cases, without a 
strategy of contact tracing. This plan should be revised, in accordance with other works30.

By a mathematical model and clustering cities, we suggest patterns of the evolution of the number of cases 
and control strategies for COVID-19 epidemic. As testing is a major issue for many nations at this moment of 
the pandemic, social distance in different degrees should be established.

Methods
Municipalities.  We aimed at a study capable of representing most small and medium cities of Brazil. There-
fore, we decided to choose representative municipalities, with regional importance, from different states and 
regions, with varied population density, temperature, humidity, human development index (HDI), as well as 
age structure. From the North region we have: Altamira-PA, Marabá-PA, Cruzeiro do Sul-AC, Parintins-AM, 
Caracaraí-RR; from the Northeast region: Água Branca-AL, Sobral-CE, Quixeramobim-CE, Bom Jesus-PI, 
Imperatriz-MA, Mossoró-RN, Patos-PB, Petrolina-PE, Feira de Santana-BA, Remanso-BA; from the Central-
West region: Dourados-MT, Cáceres-MT, Itumbiara-GO; from the South region: Santa Maria-RS, Bagé-RS, 
Lages-SC, Chapecó-SC, Maringá-PR; and from the Southeast region: Uberlândia-MG, Avaré-SP, Botucatu-SP, 
Colatina-ES, Itaperuna-RJ, Presidente Prudente-SP. Figure 7 shows each one’s geographic location on a Brazil 
map, with a heatmap showing the interpolation result (distance weighted interpolation) of the total number of 
cases per 100,000 inhabitants in those cities recorded on 28th July 2020. Table 1 summarizes some information 
about the cities listed in the present study. In particular, temperature and humidity correspond to the average 
values in April month31.

Effective reproduction number.  We calculated the effective reproduction number ( Rt ) for all chosen 
cities using the method proposed by Wallinga et al.15 and data of daily incidence of cases (b(t)), obtained from 

Figure 7.   In (a), temporal evolution of the cumulative number of reported cases in each municipality; in (b), 
the boxplot of the proportion of reported fatal cases for different age groups in twenty Brazilian states enrolled 
in the study through their municipalities.
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epidemic reports from each municipality32. We considered a simple susceptible-exposed-infected-recovered 
model with an average latent period ( η−1 ) of 3.0 days and an infectious period ( τ−1 ) of 6.4 days, as well as the 
COVID-19’s mortality rate reported for each state ( σ ). The rates of leaving the exposed and infectious classes 
are denoted by s1 = η + µ and s2 = τ + µ+ σ , where µ−1 denote the life expectancy for Brazil. Therefore, the 
generation interval distribution (g(t)) is the combination of two exponential distributions s1e−s1t and s2e−s2t 
given by33

The duration of a generation interval is thereby implicitly specified as an exponential distribution with mean 
Tc = 1/s1 + 1/s2 . The expression above is valid when the infection force, � , satisfies the following inequality 
� > min(−s1,−s2) . Also, as we are dealing with a distribution, we need to normalize g(t). Using this equation 
we can evaluate Rt as

The R0 of each city was considered to be the average value of Rt in the second week of the epidemic in the city. 
The first day was considered to be the one in which the cumulative incidence of infections reached ten cases. 
This choice was taken to guarantee that a local transmission was established in the city. We performed a spline 
interpolation and 7-day moving average on the data before used it to estimate Rt . The average value of Rt at each 
calendar day from April to August can be seen in Fig. 1. It also displays the value obtained for each municipality 
(in grey points). Outliers were omitted from this plot.

Clustering.  After listing the cities, we clustered them in order to search for patterns. By taking each city as a 
model, studying the main characteristics, and crossing into a cluster study, we believe it is possible to extrapolate 
this study’s results to other cities that are not plotted here. We first grouped cities by their proportion of fatal 
cases per age group and age pyramid. Afterward, we added population density, temperature, humidity, HDI 
index and clustered them again. We used a hierarchical agglomerative clustering method, combining cluster 
threw the complete linkage criterion and Manhattan distance as a metric to measure dissimilarity between the 
observation sets34. The result is shown in Fig. 6.

Data availability.  Time series of the number of cases for each municipality in Brazil is not reported on any 
official government’s website. The Federal government does not provide it for open use. Therefore, we used daily 
cases reported on open sources in Brazil provided by a task force of volunteers (researchers and reporters) that 
compile the daily epidemiological reports of each state32. We used confirmed COVID-19 cases in the analysis, 
whose data refers to the date of case report and only mild and severe cases appear in this database (hospitalized 
cases and people seeking for medical assistance and health services).

Moreover, other issues may influence as well, such as the turnaround time of the performed tests and the fact 
that the data set does not distinguish between imported and autochthonous cases. To avoid the delay in report-
ing, we removed the last two weeks of data at the moment of the analysis. However, sub-notification is an issue 
that is difficult to be handle. Supposing that those issues occur in a homogeneous way throughout the country, 
we expected that the results would be impacted only by a scale factor, but keeping the conclusions regarding 
the temporal pattern of COVID-19 cases in each city. The age-dependent mortality is available separately in the 
epidemic’s reports from each state, but not for each city. In this work, we used data from 20 different states from 
Brazil to simulate 29 different cities. For each city, the reported time series of cases per 100 thousand inhabitants 
are shown in Fig. 8a, while the proportion of fatal cases in each age group is shown in Fig. 8b.

Mathematical model.  The proposed model is an age-structured one that divides the human population 
into fifteen age groups: 0 to 4 years, five years interval from 5 to 70 years, and greater than 70 years35. The vari-
ables of the model are t, Si := Si(t),Ei := Ei(t), Ii := Ii(t),Qi := Qi(t),Ri := Ri(t) ; respectively, time, suscepti-
ble, exposed, infected, detected and isolated infected individuals, and recovered one. The index i is the age class. 
The natural mortality rate µ appears in all age classes, and from 1 to 15, the parameter αi takes into account the 
transition among them. Individuals are born susceptible, and they become exposed, when contacting infected 
or isolated individuals at rate β1 and β2 = νβ1 ( ν ∈ [0, 1] ), respectively. The parameter ci,j represents the fraction 
of daily contacts that age group i has with age group j36. Target control can be done by varying ξi ∈ [0, 1] , being 
ξi = 0 complete protection of class i and ξi = 1 no protection of class i against the infection. After a period of 
time η−1 exposed individuals becomes infectious. At rate ǫ , a fraction ψ ∈ [0, 1] of infected individuals are iden-
tified and isolated. Additional mortality related to the disease is considered in the compartments of infected and 
isolated individuals, σi . Finally, these individuals become recovered at rates γ and τ . The ODE model is given by

g(t) =

2
∑

i=1

s1s2e
sit

2
∏

j=1,j �=1

(sj − si)

with t ≥ 0.

Rt =
b(t)

∫∞

0 b(t − a)g(a)da
with

∫ ∞

0
g(t)dt = 1.
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with i = 0, ..., 14, α0 = α15 = 0 ,  α1 = ... = α14 = α ,  δ1,1 = 1 ,  and δj,1 = 0 with j  = 1 .  Besides, 
nj = Sj + Ej + Ij + Qj + Rj , and N =

∑15
i=1 nj at t = 0 . Table 2 summarizes model parameters, their descrip-

tion, range of values and units37,38. Figure 9 shows the diagram of the compartmental model.
Defining S̄ = S/N we can rewrite (1) as

(1)

dSi+1

dt
= µN δi+1,1 + αiSi −



β1

15
�

j=1

ci+1,j
Ij

nj
+ β2

15
�

j=1

ci+1,j
Qj

nj



ξi+1Si+1 − (µ+ αi+1)Si+1

dEi+1

dt
= αiEi +



β1

15
�

j=1

ci+1,j
Ij

nj
+ β2

15
�

j=1

ci+1,j
Qj

nj



ξi+1Si+1 − (µ+ αi+1 + η)Ei+1

dIi+1

dt
= αiIi + ηEi+1 − (σi + µ+ αi+1 + γ + εψ)Ii+1

dQi+1

dt
= αiQi + εψIi+1 − (σi + µ+ αi+1 + τ)Qi+1

dRi+1

dt
= αiRi + τQi+1 + γ Ii+1 − (µ+ αi+1)Ri+1

Figure 8.   The geographic location of the municipalities enlisted in the study. The heatmap shows the 
interpolation result of the total number of cases per 100 thousand inhabitants in those cities recorded on July 
28th. Cool colors mean less infected individuals while warm colors more infected individuals, and the scale 
goes from 153.6 (blue) to 4617.7 (red) cases per 100 thousand inhabitants. The cities were geocoded using 
the software Qgis (v3.10), and the interpolation was performed using the software’s tool for Inverse Distance 
Weighted Interpolation (https://​www.​qgis.​org/​en/​site/).

https://www.qgis.org/en/site/
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with n̄j = S̄j + Ēj + Īj + Q̄j + R̄j . The disease free equilibrium is given by

where

In order to obtain the next generation matrix39,40, we used the reduced system given, in its vectorial form, by

(2)

dS̄i+1

dt
= µ δi+1,1 + αi S̄i −



β1

15
�

j=1

ci+1,j
Īj

n̄j
+ β2

15
�

j=1

ci+1,j
Q̄j

n̄j



ξi+1S̄i+1 − (µ+ αi+1)S̄i+1

dĒi+1

dt
= αiĒi +



β1

15
�

j=1

ci+1,j
Īj

n̄j
+ β2

15
�

j=1

ci+1,j
Q̄j

n̄j



ξi+1S̄i+1 − (µ+ αi+1 + η)Ēi+1

dĪi+1

dt
= αi Īi + ηĒi+1 − (σi + µ+ αi+1 + γ + εψ)Īi+1

dQ̄i+1

dt
= αiQ̄i + εψ Īi+1 − (σi + µ+ αi+1 + τ)Q̄i+1

dR̄i+1

dt
= αiR̄i + τ Q̄i+1 + γ Īi+1 − (µ+ αi+1)R̄i+1

P0 =
(

S∗1 , 0, 0, 0, 0, ..., S
∗
15, 0, 0, 0, 0

)

S∗1 =
µ

µ+ α1
, S∗i =

αi

µ+ αi
with i ∈ 2, ..., 15.

Table 2.   Parameters of the model, their values (or range of values) and units37,38.

Parameter Description Value

µ Mortality rate 1/75 years−1

σ Additional mortality rate [0.0, 0.20]

α Transition rate among age classes 1/5 years−1

η−1 Latent period 3 days

γ−1 Infectious period 6.4 days

τ−1 Isolation period {1, 2, 5, 6} days

ǫ Detection and isolation rate 1/3 days−1

ψ Fraction of infected that are detected [0, 1]

ξ , ν Reduction on the infection transmission [0, 1]

β1 Transmission rate [0.4397, 0.4782] days−1

β2 Transmission rate [0.241835, 0.26301] days−1

S E I

Q

R

µ

µ

µ

η
τ

λ

(µ+σ) γ

(µ+σ)
ψε

µN

Figure 9.   The variables of the model are susceptible (S), exposed (E), infected(I), isolated (Q) and recovered 
individuals (R). The continuous line indicates transitions between compartments and the dashed line indicates 
interactions between compartments that contributes to the infection force, � . The model’s parameters are 
described at Table 2.
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Bold symbols represent vectors as x = [x1, ..., x15]
T and diag(x) represent diagonal matrices, M = [mij] , in which 

mii = xi . C is the contact-distribution matrix among the age groups41, and

The matrix of infection terms, F  , and the matrix of transition terms, V , are given, respectively, by

and

in which S̄∗ = µ
[

diag (µ+ α)−A
]−1

δ , with δ = [1, 0, ..., 0]T , is the disease-free equilibrium of (2). The basic 
reproductive number denoted by R0 is given by the spectral radius of the next generator operator matrix given by 
FV

−1 (i.e. its dominant eigenvalue). The disease-free equilibrium S̄∗ is locally asymptotically stable if R0 < 1 , 
and unstable if R0 > 1 . R0 is the mean number of secondary cases that a primary case generates in a whole sus-
ceptible population, which implies before control measures. A simple and direct way to calculate the effort to 
be done to control an epidemic is given by Pc = 1− 1/R0 , where Pc is the fraction of population that likely to 
be infected without mitigation. This represents the worst scenario since the deterministic approach has several 
assumptions like large population, well-mixed individuals, and no spatial structure.

Simulations.  In all simulations, the parameter β1 was calibrated, for a given R0 (Table 1), using the next-
generation matrix, under no control measure. The addition mortality rates (days−1 ) are calculated through the 
expression

where pi is the probability that an individual at age group i dies during their infectious period. For each city, we 
used data reported from their states to estimate pi (see Fig. 8b).

The simulations start with ten infected individuals (in the age class of 25 to 50 years) introduced in a wholly 
susceptible population. Control started later, after one month since the introduction of infected individuals. 
Control was explored by reducing contact rate among age classes (using the parameter ξ ), decreasing the time of 
detection of infected individuals ( ε−1 ), increasing the fraction of individuals that are detected and isolated ( ψ ), 
and decreasing the contribution of detected and isolated individuals to the disease transmission ( ν).

Two different scenarios were analyzed. The first one deals with a situation where the detection and isolation of 
infected individuals occur quickly. Therefore, we set up ε−1 to 1 and 2 days and τ−1 = 6 (≈ γ−1) days. The second 
one suppose that detection takes longer time, then ǫ−1 (≈ γ−1) was set up to 5 and 6 days and τ−1 = 2 days. The 
other parameters are β2 = 0.55β1 days−1 , η−1 = 3 days, γ−1 = 6.4 days, and µ = 3.65× 10−5 days. In general, 
figures were done with the set of parameters that represent the late detection.

Since the time of starting control impacts the evolution of disease transmission, the efficacy of control was 
measured varying this parameter in the simulation. For this, we measure the reduction (in percentage) on the 
number of infected individuals with and without control. Target and no target control over higher age classes was 
explored by ranking and comparing the municipalities by the cumulative number of infected individuals, and by 
the proportion of lethal cases. Finally, a sensitivity analysis based on partial rank correlation coefficient (PRCC) 
was done to discuss the contribution of each model control parameter to the control efficacy, measured as the 
percentage of infected cases that are avoided. The PRCC measures the monotonic relationship between an input 
parameter and the output variable when the linear effects of other independent variables are discounted16. The 
input parameters were ǫ, ξ , ν, and ψ ; and they were sampled using the Latin Hypercube Sampling method. The 
first one took from a uniform distribution from 0.166 to 0.2 (late detection) and from 0.5 to 1 (early detection), 
and the others one from an uniform distribution in the range of 0 to 1. A PRCC close to one means that the input 
parameter and the output are strong and positively related, while negative values stand for negative correlation.

(3)

dĒ

dt
= A Ē + diag (β1ξ) diag (S̄) C diag−1(n̄)Ī+ diag (β2ξ) diag (S̄) C diag−1(n̄)Q̄− diag (µ+ α + η)Ē

dĪ

dt
= A Ī+ diag (η)Ē − diag (σ + µ+ γ + εψ + α)Ī

dQ̄

dt
= A Q̄+ diag (εψ)Ī− diag (σ + µ+ α + τ )Q̄.

A =





















0 0 0 . . . 0 0
α1 0 0 . . . 0 0
0 α2 0 . . . 0 0

0 0 α3
. . . 0 0

...
...

. . .
. . .

...
...

0 0 0 . . . α14 0





















.

F =





015×15 diag (β1ξ) diag (S̄
∗) C diag−1(n̄) diag (β2ξ) diag (S̄

∗) C diag−1(n̄)
015×15 015×15 015×15

015×15 015×15 015×15





V =

(

diag (µ+ α + η)−A 015×15 015×15

− diag (η) diag (σ + µ+ γ + α + ǫψ)−A 015×15

015×15 − diag (ǫψ) diag (σ + µ+ α + τ )−A

)

,

σi = −γ ln(1− pi), i = {1, ..., 15}
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