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Abstract

Pharmacogenetics (PGx) studies the influence of genetic variation on drug response. Clinically 

actionable associations inform guidelines created by the Clinical Pharmacogenetics 

Implementation Consortium (CPIC), but the broad impact of genetic variation on entire 

populations is not well-understood. We analyzed PGx allele and phenotype frequencies for 

487,409 participants in the U.K. Biobank, the largest PGx study to date. For fourteen CPIC 

pharmacogenes known to influence human drug response, we find that 99.5% of individuals may 

have an atypical response to at least one drug; on average they may have an atypical response to 

10.3 drugs. Nearly 24% of participants have been prescribed a drug for which they are predicted to 

have an atypical response. Non-European populations carry a greater frequency of variants that are 

predicted to be functionally deleterious; many of these are not captured by current PGx allele 

definitions. Strategies for detecting and interpreting rare variation will be critical for enabling 

broad application of pharmacogenetics.
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Introduction

Drug-based interventions play a primary role in medical treatment; more than 72% of visits 

to clinics and hospitals in the United States result in drug therapy1. An individual’s genetics 

can have a profound impact on how they respond to many drugs, with the vast majority of 

individuals carrying at least one pharmacogenetic variant2–4. Therefore, the field of 

pharmacogenetics (PGx), is vital to improving modern medicine and prescribing practices5.

The practical value of PGx testing has increased as the field has discovered and 

characterized high impact haplotypes. These haplotypes are catalogued and named by 

PharmVar (www.pharmvar.org) using a nomenclature system typically based on “star 

alleles”6–8. Generally, the relationship between drug response and pharmacogenes is 

investigated through targeted studies on small groups of human subjects. The findings of 

these studies are aggregated through curation efforts such as PharmGKB 

(www.pharmgkb.org)9. The Clinical Pharmacogenetics Implementation Consortium (CPIC; 

cpicpgx.org) and other organizations assign a clinical function to star alleles based on 

published experimental research and create peer-reviewed and evidence-based clinical 

practice guidelines10,11.

PGx testing is not yet capable of robustly handling rare genetic variation. Rare variants can 

be high impact, but are unlikely to be identified by a genotyping array or included in an 

established haplotype definition12. Most PGx testing in the US currently uses genotyping 

arrays. As a result, test results may be based on partial allele definitions or use proxy 

variants to assign PGx haplotypes, which may not represent the actual haplotype (as would 

be revealed by full and error-free sequencing) in the subject3,13. Developing more robust 

methods for assigning function to PGx haplotypes is an active area of research14. The extent 

to which existing haplotypes definitions capture all important genetic variation within 

pharmacogenes is not well characterized3,13,15.

We used genotype data from nearly 500,000 participants and exome data from 50,000 

participants in UK Biobank to analyze pharmacogenetic variation in fourteen clinically 

important genes at a population scale. To this end, we developed PGxPOP, a PGx matching 

engine that is based on PharmCAT16 and uses its PGx allele definitions to characterize PGx 

allele and phenotype frequencies. PGxPOP extends the capabilities of PharmCAT by 

generating diplotypes from population scale datasets16. This study represents the largest 

study of pharmacogenetic allele and phenotype frequencies to date and investigates both the 

power and limitations of current star allele definitions. Our findings demonstrate the value of 

characterizing allele frequencies in large populations, the importance of using sequencing 

platforms that are capable of capturing rare genetic variation, and highlights the need for 

more PGx research on under-studied populations.

Methods

Data

Participant data from UK Biobank were used in this study. UK Biobank is a prospective 

study of ~500,000 individuals in the United Kingdom for whom lifestyle, clinical, and 
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genetic data was collected17. We used the genotype data imputed from the Axiom Biobank 

Array (version 2), and the exome sequencing data from the SPB pipeline (2/12/2020 

rerelease)17,18. We removed individuals that were outliers for heterozygosity and 

missingness rates in the genetic data, as reported by UK Biobank. We excluded any loci with 

a Hardy-Weinberg equilibrium p-value <1×10−15 or were missing in >10% of individuals 

using VCFtools19. The imputed data was aligned to hg19 and the exome data was aligned to 

GRCh38. All data was phased using Eagle v2.4.120.

We created an “integrated call set” by combining coding regions from exome sequencing 

data and non-coding regions from imputed data. Any region within the exome capture array 

was taken from the exome data, any region outside, including 20kb upstream and 

downstream, was taken from the imputed data, discarding the coding region of the imputed 

data21. We used liftOver to map the imputed data to GRCh3822. The newly merged variants 

were phased with Eagle v2.4.120.

We assigned genetic ancestry for individuals using principal component analysis (PCA) of 

their genetic data. We first collapsed individual’s self-reported ethnicity into African, 

European, East Asian, and South Asian, according to a standardized biogeographical 

system23. Then, we calculated the mean and standard deviation of the first three principal 

components from a PCA of the genotype array data for each biogeographical ethnic group, 

computed by UK Biobank24. Any sample whose principal components did not fall within 

three standard deviations of the mean of the genetic ancestry for their self-reported ethnicity 

was referred to as “Other”.

PGxPOP

We developed PGxPOP, a Python program compatible with population scale studies, that 

rapidly calls PGx star alleles on phased multisample VCFs using matrix operations. 

PGxPOP uses the PharmCAT allele definition files (https://github.com/PharmGKB/

PharmCAT)9,10,16. PGxPOP reports exact matches to the allele definitions based on the 

provided phased genotype data. If the defining genetic variation for one star allele is a 

proper subset of those for another star allele, the matching star allele with the greatest 

number of variants is reported. PGxPOP also reports partial matches or novel combinations 

of existing pharmacogenetic alleles (i.e. two distinct haplotypes on the same phased 

chromatid), which would be reported as “not called” by PharmCAT. In cases where there is a 

complete match to multiple haplotype definitions on the same strand, combinations of non-

overlapping haplotypes are reported with “+” notation and overlapping haplotypes are 

reported with “or” notation. For example, if for CYP2D6 both *2 and *9 alleles were found 

on the same strand, PGxPOP would report this as a *2+*9 call, since the alleles for these 

two definitions are mutually exclusive. If instead, variants matching the *35 and *41 alleles, 

which share two positions, were found on the same strand PGxPOP would report 

“*35+hg38:chr22.g.42127803C>T or *41+hg38:chr22.g.42130761C>T”, in order to 

represent all possible combinations of the alleles found at those positions. The identification 

of combination and overlapping haplotypes is a feature specific to PGxPOP and is not found 

in PharmCAT. Haplotypes are then mapped to predicted phenotypes based on published 

guidelines from PharmGKB and CPIC. PGxPOP was validated using the same test cases as 
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PharmCAT, which include 137 genomic samples from Coriell cell lines with genotypes 

characterized by the GeT-RM Program25.

Cross-platform analysis

We analyzed the ability to call pharmacogenetic haplotypes and phenotypes for fourteen 

genes (CFTR, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A5, CYP4F2, DPYD, 

IFNL3, NUDT15, SLCO1B1, TPMT, UGT1A1 and VKORC1) across imputed, exome, and 

integrated call sets. We limited this analysis to 49,702 samples shared across all three 

platforms. We calculated diplotype and phenotype concordance between each platform and 

the integrated call set for each genetic ancestry population and across all populations.

Haplotype and phenotype calling

We generated population specific haplotype, diplotype, and phenotype frequencies for 

fourteen genes among the ethnic populations reported by UK Biobank. We mapped 

diplotypes to phenotypes using CPIC guidelines, except VKORC1 and CYP4F2 diplotypes. 

VKORC1 and CYP4F2 do exist within the CPIC guideline for warfarin, but there is not an 

explicit phenotype defined by CPIC for these genes, (e.g. Normal Metabolizer). For these 

two genes we determined the phenotype as related to warfarin dosing. For phenotype 

prediction, haplotypes were assigned CPIC-associated function or activity values in cases of 

exact star allele matches. Phenotype was then determined based on the combination of the 

two alleles in the diplotype or activity score. We assigned a phenotype of “not available” for 

alleles identified to contain a combination of variants captured within existing star allele 

definitions. These alleles do not perfectly match any star allele and cannot be mapped to a 

phenotype.

We use star allele definitions when available for these genes with the following 

modifications. (1) We made assumptions about the ultimate phenotype of combination 

alleles and alleles carrying additional variants in order to assess the distribution of likely 

response phenotypes. In these cases, we assume that if one of these alleles is non-functional, 

then the new combination of variants will not recover the function26. For example, if we 

identified a CYP2D6 haplotype combination that includes CYP2D6*4 and CYP2D6*74 on 

the same strand (CYP2D6*4+*74), the assigned function would be “no function” even 

though function of CYP2D6*74 is unknown. This logic is extended to alleles with decreased 

function for SLCO1B1 and UGT1A1.

Additionally, any cystic fibrosis patient carrying a CFTR ivacaftor responsive allele is said to 

be ivacaftor responsive. (2) We modified the SLCO1B1 allele definitions to exclude 

synonymous variants. (3) For all INDELs we performed a search for identical INDELs in the 

sequencing data that may have been aligned differently. This was done by screening 50bp 

upstream and downstream of each INDEL in the definitions.

Structural variants (SVs) were not called for CYP2D6 or any other gene. Thus, we are not 

able to call star alleles with whole gene deletions (CYP2D6*5), duplications (e.g. 

CYP2D6*1×2), CYP2D7–2D6 hybrids (CYP2D6*13) or CYP2D6–2D7 hybrids including 

CYP2D6*36. This limits the assignment of CYP2D6 function and phenotypes since we are 
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not able to determine CYP2D6 increased function alleles and therefore ultrarapid 

metabolizers and potentially miss no function alleles.

We calculated the burden of non-typical response phenotypes for each individual by 

counting the number of diplotypes with predicted non-typical response phenotypes across 

fourteen genes with phenotypes. Gene phenotypes were determined to have a non-typical 

response if any CPIC guidance recommended an alternate dosage or drug for that phenotype 

(Table S1). We determined the CPIC dosage recommendations for each subject for 45 drugs 

with CPIC guidelines related to genes in this study. For each drug, we determined the 

percent of the population that has been prescribed the drug by analyzing the general practice 

prescription data provided by UK Biobank for more than 222,000 subjects. We determined 

the frequency of prescriptions for each CPIC guidance group. We mapped brand name 

products to generic drugs using the PharmGKB curated drug list (https://

www.pharmgkb.org/downloads)9. We used the intersection of participants with genetic data 

in the integrated call set and primary care data to determine guidance prescription 

frequencies (n=28,101).

Deleterious variant analysis

To estimate the burden of deleterious variants in pharmacogenes we identified variants 

predicted to be deleterious in the exome data. We deemed variants with a high IMPACT 

rating (e.g. a frameshift INDEL), as deleterious27 and variants predicted to be deleterious 

based on the ADME-optimized framework for pharmacogenes28. IMPACT classes were 

determined using VEP29, other annotations were generated using Annovar30. We identified 

predicted deleterious variants that were not contained within existing star allele definitions 

and calculated the aggregate deleterious variant allele frequency of all unaccounted-for 

deleterious variants.

Results

Platform concordance

We evaluated concordance between the imputed, exome, and an integrated call sets derived 

from the UK Biobank for both diplotype and phenotype calling. We generated diplotype and 

phenotype calls for all three call sets using PGxPOP (Fig. 1). We used diplotype and 

phenotype calls for twelve pharmacogenes for concordance analysis, with calls from the 

integrated set as the basis for comparison (Table 1). Genes with allele definitions consisting 

of a single non-coding variant were excluded, IFNL3 and VKORC1, as exome data would 

miss these genes allele definitions entirely. For five genes where the majority of the variants 

of interest are in exons, we find very high (>96%) correlation between the integrated call set 

and both the imputed and exome call sets when calling both diplotypes and phenotypes 

(CFTR, CYP2C9, TPMT, CYP4F2, and DPYD). We observe a variety of concordance 

patterns for the other seven genes. CYP2C19, which has a common non-coding variant 

upstream, the exome data is highly discordant with the integrated call set. Several genes 

have a mix of coding and non-coding variants, have low concordance with the integrated call 

set for both platforms (UGT1A1, CYP2D6, SLCO1B1). For three genes, the exome data 

performs well, and the imputed data has lower concordance (CYP2B6, CYP3A5, and 
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NUDT15). The imputed data for NUDT15 has extremely low concordance with the 

integrated data; a variant that is rare in the population (rs746071566) was imputed for nearly 

all samples. We provide alluvial diagrams showing the change in haplotypes and phenotypes 

between the imputed and integrated call sets (Figure S1).

We evaluated population-specific accuracy of imputation by calculating population-aware 

diplotype concordance between imputed data and integrated data, for the 49,790 individuals 

who had both exome and imputed data. The method for population assignment is outlined in 

the Methods (Table S2, Figure S2). In some genetic populations, we found a substantial 

decrease in imputation accuracy for several genes (Fig. 2). This gap is most extreme in 

CYP3A5, where subjects with European genetic ancestry have a diplotype concordance of 

86.8%, and subjects with African genetic ancestry have a diplotype concordance of 14.7%. 

In total, four genes have a decrease of 10% diplotype concordance or more.

Haplotype and phenotype calling

We analyzed haplotype and phenotype allele frequencies in fourteen clinically important 

pharmacogenes among participants belonging to four global populations in UK Biobank. 

This included 486,518 participants with imputed data from genotyping arrays, 49,790 with 

exome sequencing, and 49,790 participants with an integrated call set. Haplotype and 

phenotype frequencies from the exome and integrated call sets for six cytochrome P450 

genes included in our analysis are shown in Figure 3, and eight non-cytochrome genes in 

Figure 4. We provide a full list of all haplotype, diplotype, and phenotype frequencies for 

each call set in File S1.

We find that participants carry on average 3.7 non-typical response diplotypes for the 

fourteen pharmacogenes analyzed in the integrated call set, with 99.5% of participants 

carrying at least one non-typical drug response diplotype (Fig. 5a). Participants, on average, 

carry pharmacogene alleles that lead to atypical dosage guidance by CPIC for 10.3 drugs. 

For several frequently used drugs, we find a high number of people receive atypical dosage 

guidance (Fig 5b). For example, simvastatin has been prescribed to 25% of the population, 

and 22.9 percent of all subjects carry either rs4149056 or SLCO1B1 star alleles assigned 

possible decreased function (*6, *9, *23, *31), which indicates that a lower dose might be 

recommended due to increased risk of muscle toxicity31. Within the available prescription 

records, we see that 23.3% of participants who have been prescribed simvastatin are 

rs4149056 carriers and may need a reduced dose. Overall, 24% of participants have been 

prescribed a drug for which they may have an atypical response according to CPIC 

guidelines.

Star alleles with unknown or uncertain function, leading to an indeterminate phenotype, 

were found in nine genes. These are diplotypes where both haplotypes exactly match an 

existing star allele definition, but at least one of those haplotypes has unknown function. We 

find that 5.0% of subjects carry unknown or uncertain function star alleles in SLCO1B1, 

4.2% in CYP2B6, and 1.7% in CYP2D6.

We find that for some genes, many novel combinations of alleles and allelic variants from 

existing allele definitions occur on a single haplotype in the integrated call set. These allele 
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combinations can be a complete star allele or haplotype definition along with any number of 

additional variants from another previously defined allele. For example, 29.0% of the study 

population carries haplotypes that contain both the CYP4F2*2 and CYP4F2*3 variants on a 

single strand. Large numbers of novel allele combinations are also found in CYP2D6 (159 

unique combinations in 6.1% of subjects), SLCO1B1 (34 in 2.9%), and CYP2B6 (37 in 

0.9%). At least one such allele combination was identified in twelve genes, the median 

number of allele combinations was eight, 288 were identified in total. DPYD and CFTR 
variation are represented by individual variants rather than star alleles, but combinations of 

variants were identified on a single strand for both genes. Full details of the assumptions we 

used to make function assignments in cases of combinations are described in the “Haplotype 

and phenotype calling” section of the Methods. Those assumptions allow us to assign 

haplotype functions to 102 of the 288 observed variant combinations. The remaining 186 

allele combinations cannot reliably be mapped to a function and are designated as ‘not 

available’ phenotype.

Genes with the most ‘not available’ phenotypes are UGT1A1 (49.9% of subjects) CYP4F2 
(30.2%), SLCO1B1 (12.2%), CYP2B6 (5.1%), and CYP2D6 (3.4%). These counts exclude 

combination alleles for which we estimated function based on the rules defined in the 

Methods.

We modified the SLCO1B1 star allele definitions to exclude the three synonymous coding 

variants (chr12.g.21176827G>A, chr12.g.21178665T>C, and chr12.g.21178691C>T). These 

three variants appear in many combinations with the other core star allele variants and the 

star alleles that include these variants *18, *19, *20, *21 are assigned uncertain function. 

Including these three synonymous variants, 315 unique haplotypes were identified. The 

number of haplotypes decreased to 55 when those variants were removed. We find that when 

synonymous variants are included in the allele definition 77.9% of SLCO1B1 haplotypes do 

not perfectly match one of the defined alleles and contain some combination of star allele 

variants and one or more variants from other definitions. This value drops to 2.9% when 

synonymous variants are excluded from the SLCO1B1 definitions.

Deleterious variant analysis

We estimated the burden of deleterious variants that are not currently included in allele 

definitions for eight of the fourteen genes in our study, CYP2B6, CYP2C9, CYP2C19, 
CYP2D6, CYP3A5, NUDT15, SLCO1B1, and TPMT. We predicted the deleteriousness of 

each variant found in the exome data and filtered out variants that were included in any 

existing allele definition, resulting in 478 deleterious variants across all eight genes (Fig. 6). 

Of the 478 deleterious variants identified, 244 have not been previously observed in 

gnomAD (Fig. 6c). All identified deleterious variants are rare (minor allele frequency < 1%). 

However, we find that 6.1% of all subjects carry at least one unaccounted for deleterious 

variant in one of these eight genes studied. To identify which populations are most 

underserved by current definitions we calculated the total frequency of all out-of-definitions 

deleterious variants in a population-specific manner (Fig. 6b). We find that across most 

genes, non-European populations carry the highest level of out-of-definition deleterious 
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variants. For example, out-of-definition deleterious variants in CYP2B6 have an allele 

frequency of 0.023 in the East Asian population.

Drug Usage Statistics

We determined how many UK Biobank participants have been prescribed drugs for which 

they are predicted to have a non-typical response using prescription records in UK Biobank. 

We find that 23.7% of participants have been prescribed a drug for which they may have a 

non-typical response according to CPIC guidelines; 9.8% of participants have been 

prescribed a drug where the guidelines suggest an alternate drug (Table S3).

Discussion

We present a pharmacogenetic analysis of 487,409 participants in UK Biobank. Quantifying 

haplotype and phenotype frequencies at this scale enables a better understanding of the 

coverage and accuracy of different genetic platforms, limitations of current pharmacogenetic 

allele definitions, and the potential impact of broader PGx testing.

This analysis includes nearly 50,000 subjects with both genotype array and exome data, 

providing an opportunity to assess the accuracy of each platform at a large scale. We find 

that for most genes there is high concordance between imputed genotype data and 

sequencing data, for both PGx haplotype and phenotype calls. However for some genes we 

find extremely low concordance. We observe low concordance in highly polymorphic genes 

such as CYP2D6 where data imputed from genotyping arrays likely does not fully capture 

the true variation. We show the creation of an integrated call set leads to greater ability to 

identify haplotypes in genes that have functionally important non-coding variants (e.g. 

CYP2C19). There are known limitations of exome data for calling PGx alleles32, which are 

addressed by adding non-coding variation from genotyping arrays.

We find that several very important pharmacogenes are highly discordant between the 

imputed, exome, and integrated call sets, and some genes have differences in imputation 

accuracy between populations--highlighting the importance of considering both gene and 

population of interest when choosing a platform for pharmacogenetic analysis. For genes 

with splicing and other non-coding variants, exome data may not be sufficient (e.g. 

CYP2C19). While for highly polymorphic genes, imputed data may not be sufficient (e.g. 

CYP2D6). This highlights the potential clinical importance of having data from genome 

sequencing or a targeted capture array that includes coding and non-coding regions, such as 

PGRNseq33. The addition of genome sequencing data would allow for analysis of SVs, 

which were not captured by this study. For CYP2D6 analysis, copy number variants (CNVs) 

and other SVs are common and must be considered to make an accurate assessment of 

phenotype. Lack of SV analysis is a major limitation of this study’s ability to determine 

population level phenotype predictions of CYP2D6. However, we believe establishing star 

allele frequencies for star alleles identified from the variant data is useful.

Across all genes with haplotypes described by a star allele nomenclature, we find that there 

are haplotypes which are combinations of star allele variants that are currently not found 

together in any existing star allele definition. We also found combinations of individual 
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variants in DPYD and CFTR on the same chromosome. Using array data can lead to the 

detection of only one of these alleles or variants, or the assumption that they are on different 

chromosomes. Either case can lead to mistakes in diplotype and phenotype assignment, 

potentially resulting in an incorrect prescribing recommendation. We provide the frequency 

of these star allele and variant combinations in the supplemental material.

Many deleterious variants do not contribute to current allele definitions because they have 

not yet been submitted to PharmVar6,7, a resource devoted to cataloguing pharmacogene 

allele variation. None of the variants have a minor allele frequency greater than 1%, but 

when observations are aggregated among the eight genes analyzed as part of the deleterious 

variant analysis, 6.1% of the population carries at least one uncatalogued deleterious variant. 

Deleterious variants within pharmacogenes are likely to have a strong effect on an 

individual’s PGx phenotype, indicating that 6.1% of the study population could benefit from 

a PGx guideline, if one were to exist for their variant15. We observed that non-European 

populations in this cohort carry uncatalogued rare variation at disproportionately high rates. 

This indicates a need to broaden the diversity of pharmacogenetic research to ensure 

equitable impact of PGx research.

To date, SLCO1B1 has not been included in PharmVar. Instead, SLCO1B1 alleles *1a-*36 

have been defined in 5 publications31,34–37. We find that the 37 star alleles for SLCO1B1 are 

not commonly found as the only allelic variation for that gene. Only 22.1% SLCO1B1 
alleles in the study population exactly match the star allele definitions from these 

publications. Three synonymous coding variants (chr12.g.21176827G>A, 

chr12.g.21178665T>C, and chr12.g.21178691C>T) were the most commonly found with 

other star allele variants and removing them from the star allele definitions increased the 

allele matches to 97.1%. Studies of the SLCO1B1 haplotypes in other populations would 

help inform decisions with regards to the inclusion of these three variants in the current star 

allele definitions.

Our observation of individuals carrying combinations of PGx haplotypes and the observed 

rate of deleterious variants indicates that PGx allele definitions would benefit from 

additional population-scale studies. Novel variation could be incorporated into existing or 

new PGx allele definitions, increasing their coverage. However, our analysis demonstrates 

the limitations of the current definition based system; to increase the robustness of allele 

definitions it is important that the community works to identify causal variants, to enable a 

reduction in the reliance on linkage disequilibrium structure— this is of particular 

importance for admixed populations, which are a source of vast haplotype diversity. Recent 

work on the development of data-driven PGx phenotyping methods indicates that given 

enough data, it might be possible to move away from variant level rule-based systems and 

towards data-driven machine-learning models capable of robustly handling unobserved 

genetic variation14,38,39. The challenges posed by rare variation is likely to be a consistent 

issue for the current PGx system and will likely grow over time as genotyping gives way to 

genome sequencing and more populations are studied in detail revealing rarer mutations.

One major limitation is that we do not consider the effects of SVs. SVs are relatively 

frequent and known to be functionally important in CYP2D6. There are tools available for 
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calling CNVs from exomes, but they have not been validated for SVs in CYP2D6 which can 

include hybridizations with CYP2D7. Without a validated method copy number analysis 

may not lead to useful results. Other studies have called CNVs in CYP2D6 from genotyping 

arrays, but the observed frequencies of CNVs from array data are significantly different from 

those observed in genome sequencing data, calling the accuracy of these methods into 

question.

Overall, our findings demonstrate the potential impact of pharmacogenetics, with almost all 

subjects carrying at least one PGx allele that alters drug guidance, reaffirming previous 

research2,3. We additionally show that on average people carry 3.7 pharmacogenetic variants 

that may lead to a non-typical drug response, affecting response to 10.3 drugs. Our analysis 

of individual samples with data from multiple genotyping modalities demonstrates the need 

for consideration of the variants relevant to the pharmacogene of interest and the ancestral 

background of the patient when selecting a genotyping modality. Our investigation of the 

different ancestral groups within UK Biobank shows disproportionate rates of uncatalogued 

deleterious variants, highlighting the need for large scale PGx studies of diverse populations. 

We believe the observed rate of uncatalogued pharmacogenetic variation demonstrates a 

need for further development of the current haplotype definition based approach to PGx.
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Refer to Web version on PubMed Central for supplementary material.
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Study Highlights

• What is the current knowledge on the topic?

Most individuals carry actionable pharmacogenetic variants that lead to a change in drug 

response. Biobanks are collecting data on large numbers of participants enabling 

population studies.

• What question did this study address?

We sought to determine pharmacogenetic allele frequencies in fourteen genes among 

500,000 participants in the UK Biobank.

• What does this study add to our knowledge?

We find that 99.5% of participants have at least one actionable pharmacogenetic variant, 

with an average of 3.7 actionable pharmacogenetic variants. Leading to an average of 

12.2 drugs that require an alternate drug or dosage according to CPIC guidelines.

• How might this change clinical pharmacology or translational science?

These data highlight the widespread nature of actionable pharmacogenetic alleles among 

commonly used drugs and may motivate increased adoption of clinical 

pharmacogenetics.
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Figure 1. 
Analysis workflow. Our analysis comprises three data types, data imputed from genotype 

arrays, exome sequencing data, and an integrated call set that combines both. We phase all 

datasets using statistical phasing with Eagle2. We then generate pharmacogenetic alleles for 

all samples using PGxPOP and generate a report of the matching star allele, the variants 

contributing to that call, and the resulting phenotype.
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Figure 2. 
Concordance between diplotypes called from imputed data and integrated call sets reveal 

inefficiencies in data imputed from genotypes. The concordance is the proportion of 

diplotypes that exactly matched between the two call sets. We calculated population-specific 

concordance between the imputed data and integrated call sets. This comparison highlights 

the differences in the coding regions only, as the non-coding regions in the integrated call set 

are derived from the imputed data. Difference colors represent different global populations.
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Figure 3. 
Star allele and phenotype frequencies for cytochrome P450 genes. Frequencies shown here 

are generated from the integrated call set which comprises nearly 50,000 subjects. The star 

allele frequency plots show all star alleles occurring with a frequency of 3% or greater. Any 

haplotypes with under 3% allele frequency in all populations are grouped into “Other”. 

Combination alleles, alleles that contain either partial or full matches of more than one star 

allele on the same strand occurring with less than 3% allele frequency are grouped in “Other 

combos”. The number of alleles in “Other” and “Other combos” is shown in the legend for 

each gene. Note that allele and phenotype frequencies for CYP2D6 do not include structural 

variants.
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Figure 4. 
Star allele and phenotype frequencies for non-cytochrome P450 genes. Frequencies shown 

here are generated from the integrated call set which comprises nearly 50,000 subjects. The 

star allele frequency plots show all star alleles occurring with a frequency of 3% or greater. 

Any haplotypes with under 3% allele frequency in all populations are grouped into “Other”. 

Combination alleles, alleles that contain either partial or full matches of more than one star 

allele on the same strand occurring with less than 3% allele frequency are grouped in “Other 

McInnes et al. Page 17

Clin Pharmacol Ther. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



combos”. The number of alleles in “Other” and “Other combos” is shown in the legend for 

each gene. SLCO1B1 star alleles are determined excluding synonymous variants.
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Figure 5. 
Frequency of pharmacogenes with a predicted non-typical response across the study 

population derived from the integrated call set and CPIC guideline recommendations for 45 

drugs. a) The distribution of non-typical response alleles across each of the populations 

included in this study. Frequency of non-typical response pharmacogene alleles per subject 

range from 0 to 10, with a mean of 3.7. b) CPIC dosage guidance for 45 drugs that include 

recommendations based on any of the fourteen genes included in this study. We show the 

percent of the population that has ever been prescribed the drug, the drug name, the genes 

McInnes et al. Page 19

Clin Pharmacol Ther. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from this study that contribute to the recommendation, and the distribution of CPIC 

recommendations.
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Figure 6. 
Analysis of deleterious variants not contained within existing star allele definitions. We 

identified presumptive deleterious variants in the exome sequencing data for eight genes by 

identifying probable loss of function variants as well as predicted deleterious missense 

variants. (a) shows the allele frequency of each probable deleterious variant in gnoMAD. 

Variants with an allele frequency of 0 were not identified in gnoMAD. (b) shows the number 

of deleterious variants identified as well as the frequency of each type of variant. (c) shows 

the total frequency of any deleterious variant in each population in the exome data. 
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Concretely, the frequency represents the sum of allele frequencies for all deleterious variants 

not found within existing star allele definitions for each population.
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Table 1.

Platform concordance with integrated data is variable. We calculated the diplotype and phenotype concordance 

between the integrated call set and both contributing call sets, exome and imputed. For each gene we show the 

percent concordance (the percent of diplotypes or phenotypes that exactly match). Haplotypes for IFNL3 and 

VKORC1 contain only single variants that are in the non-coding regions, so the concordance is not listed for 

the exome data. SLCO1B1 star alleles are determined excluding synonymous variants.

Diplotype concordance w/ Integrated Phenotype concordance w/ Integrated

Gene Imputed Exome Imputed Exome

NUDT15 0.01% 99.63% 0.04% 99.67%

UGT1A1 9.32% 29.26% 77.14% 48.92%

CYP2D6 34.23% 84.50% 64.86% 86.64%

CYP2B6 43.23% 99.83% 95.16% 99.89%

SLCO1B1 68.41% 89.73% 76.64% 92.64%

CYP3A5 85.48% 100.00% 85.69% 100.00%

CFTR 96.43% 99.95% 96.47% 99.95%

TPMT 97.76% 99.93% 99.17% 99.93%

CYP2C19 97.85% 61.77% 99.44% 68.64%

CYP2C9 98.23% 99.85% 98.36% 99.86%

CYP4F2 99.44% 99.91% 99.49% 99.91%

DPYD 99.60% 95.67% 99.61% 95.68%

IFNL3 1.00 - 1.00 -

VKORC1 1.00 - 1.00 -
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