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Abstract

The last two decades have witnessed a surge in investigations proposing stem cells as a promising strategy to treat
stroke. Since growth factor release is considered as one of the most important aspects of cell-based therapy, stem
cells over-expressing growth factors are hypothesized to yield higher levels of therapeutic efficiency. In pre-clinical
studies of the last 15 years that were investigating the efficiency of stem cell therapy for stroke, a variety of stem
cell types were genectically modified to over-express various factors. In this review we summarize the current
knowledge on the therapeutic efficiency of stem cell-derived growth factors, encompassing techniques employed
and time points to evaluate. In addition, we discuss several types of stem cells, including the recently developed
model of epidermal neural crest stem cells, and genetically modified stem cells over-expressing specific factors,
which could elevate the restorative potential of naive stem cells. The restorative potential is based on enhanced
survival/differentiation potential of transplanted cells, apoptosis inhibition, infarct volume reduction, neovasculariza-
tion or functional improvement. Since the majority of studies have focused on the short-term curative effects of
genetically engineered stem cells, we emphasize the need to address their long-term impact.
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Introduction

Stroke is considered as one of the main causes of dis-
ability and death all around the world [1, 2].
Reperfusion modalities, such as mechanical
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cation, such as development of hemorrhagic transforma-
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neuroprotective, anti-inflammatory and anti-apoptotic ef-
fects [4, 5]. Nevertheless, endogenous growth factors
are insufficient to induce cell survival, neurogenesis
and angiogenesis. Hence, it has been suggested that
the increment of growth factors by protein or gene ther-
apy could be a potential strategy for stroke. Although,
the restorative effects of various growth factors have
been investigated for stroke treatment [4], their short
half-life has limited their direct application.

The last two decades have witnessed a surge in in-
vestigations proposing stem cells as a promising strate-
gy to treat stroke (Fig. 1). Stem cells, due to their
multipotency property, might be able to replace
apoptotic/necrotic cells and/or stimulate intrinsic repair
mechanisms and protective pathways. Stem cell therapy
following stroke has the potential to improve
neuroplasticity by regulating angiogenesis as well as
neurogenesis, ameliorate cognitive dysfunction, and en-
hance functional recovery. Because of several advan-
tages, such as possible autologous transplantation, re-
duced risk of tumorigenicity and not having ethical con-
cerns, adult stem cells are widely used in pre-clinical
and clinical trials to treat various neurological disorders
including cerebral ischemia [6, 7].

In biomedical research in general, and the field of
stroke in particular, mesenchymal stem cells (MSCs)
are considered as the most commonly employed stem
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Fig. 1 Number of published manuscripts per year listed in PubMed from
1999 to 2019 based on “Stem cell” and “Stroke” MeSH terms

cell that can be isolated from different sources, such
as bone marrow, placenta, umbilical cord, dental, mus-
cle, fat, and skin [8]. MSCs are characterized by low
cell turnover, multipotency, immunomodulation, and
paracrine actions. MSCs are able to differentiate into
mesenchymal-, as well as nonmesenchymal cell line-
ages, such as hepatocytes, fibroblasts, adipocytes,
chondrocytes, osteoblasts, cardiomyocytes, glia, and
neurons in microenvironmental dependent manners [9].
These stem cells are able to modulate immune re-
sponses, by suppressing inflammatory cytokine secretion
and stimulating lymphocytes. Also, they exert paracrine
actions by secreting a variety of trophic factors, like
insulin growth factor-1, basic fibroblast growth factor,
vascular endothelial growth factor, brain derived neuro-
trophic factor, and hepatocyte growth factor.
Mesenchymal stem cells [8, 10-15] from different
sources including bone marrow [16, 17] adipose tissue
[18] and umbilical cord [19] are used to treat cerebral
ischemia in numerous investigations and their effective-
ness and mechanisms of action have been thoroughly
reviewed in recent years.

Although endogenous neurogenesis in the dentate gy-
rus and the subventricular zone increase following cere-
bral ischemia, this process is insufficient. Since neural
stem cells (NSCs) are able to differentiate into different
neural cells, such as oligodendrocytes, astrocytes, and
neurons, it has been proposed that transplanted NSCs
can be considered as unlimited source of newly formed
neural cells, which are able integrate into ischemic brain
tissue. Therefore, besides MSCs, neural stem cells are
used in a plethora of studies in the context of stroke
[20-26]. Furthermore, by graft-to-host communications
following NSCs transplantation, a series of interactions
will occur in order to ameliorate the devastating condi-
tions following stroke. These events include promoted
angiogenesis and neurogenesis, neuroinflammation re-
duction, and blood-brain barrier preservation.

Moreover, other types of stem cells, such as bone
marrow mononuclear cells [27, 28], induced pluripotent
stem cells [29-32], dental pulp stem cells [33, 34],
menstrual blood-derived stem cells [35, 36], and epider-
mal neural crest stem cells [37] have been evaluated as
a potential treatment of stroke. The release of growth
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factors by stem cells is considered as one of the most
important therapeutic aspects of cell-based therapy [38].
Therefore, the hypothesis has been proposed that the
combination of stem cell and gene therapy might poten-
tiate the efficiency. Consequently, stem cells that over-
express growth factors show a higher level of restor-
ative potential (Fig. 2).

In pre-clinical investigations during the last 15 years,
different types of mesenchymal and neural stem cells,
which are discussed in the current review (Table 1)
were genetically engineered to over-express various
genes in the context of stroke. Furthermore, since the
obtained results are highly time and method dependent,
we discussed them with a focus on the employed tech-
niques and time points.

Over-expression of Neurotrophins
Brain-derived Neurotrophic Factor (BDNF)

BDNF, one of the most well-studied members of the
neurotrophin family, is considered as the neurotrophin
with the highest expression level in the adult central
nervous system. BDNF plays fundamental roles in syn-
aptic remodeling and brain plasticity, neurite extension,
neuronal development and cell survival. Following
stroke, it has been reported that BDNF expression in
the infarct region is permanently reduced [79], and sin-
gle allele deficiency for BDNF (+/-) resulted in larger
infarct area [80]. Furthermore, it has been shown that
BDNF treatment led to a reduction in lesion size [81,
82] and improved functional motor performance
[82—84]; however, due to the short half-life of BDNF,
this therapeutic approach does not provide long-term
effects. Therefore, in order to provide long-lasting ef-
fects of BDNF post-ischemia, one possible strategy is
to transplant stem cells that stably over-express this
protein.

As the first published experiment using genetically
modified stem cells to treat stroke, Kurozumi et al. [39]
evaluated therapeutic effects of human bone marrow
mesenchymal stem cells (BM-MSCs), genetically
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modified to over-express BDNF (MSCs®°NF). The stem
cells were transplanted into the striatum of male rats,
one day after 90 min middle cerebral artery occlusion
(MCAO). Limb placement and treadmill tests showed
functional improvements at days 8 and 15 after stoke
in rats that received BM-MSCs®PNF' compared to the
non-transplanted (control) group. Also, T2-weighted im-
aging (T2WI, see Box 1) on days 7 and 14 post-MCAO
revealed a prominent infarct volume reduction in the
MSCsBPNE group, compared to controls. Wild-type
MSCs neither improved functional recovery, nor re-
duced infarct size at the evaluated time points.
MSCPPNF also decreased the number of terminal
deoxynucleotidyltransferase dUTP nick-end labeling
(TUNEL)-positive apoptotic cells in the ischemic
boundary zone one week after stroke compared to con-
trol. Again, wild-type MSCs did not show any therapeu-
tic effect. At this time point, some transplanted stem
cells expressed neuronal (NeuN) or glial (GFAP)
markers and MSCs®°NF showed features similar to
MSCs. Hence, curative potential of MSCsBPNF might
be independent of their differentiation potential.

Moreover, Nomura et al. [40] evaluated the efficacy
of systemic delivery of human MSCs transfected with
the BDNF gene in a male rat model of permanent
MCAO (pMCAO). In their study, stem cells were intra-
venously injected 6 h after induction of unilateral
pMCAO to evaluate if cellular delivery of BDNF by
hMSCs could affect functional recovery and infarct vol-
ume. The T2WI showed wild-type hMSCs decreased the
size of the lesion area on days 1, 3, and 7 after
pMCAO, compared to control group; BDNF overexpres-
sion enhanced the positive outcome compared to
hMSCs at day seven. In addition, 2,3,5-triphenyltetrazo-
lium chloride (TTC, see Box 1) staining showed similar
results one-week post-MCAO. Behavioral performance,
as assessed by treadmill stress test, revealed both MSCs
and MSCsPPNF elicited a functional improvement com-
pared to controls; however, the effect was greater in
MSCsBPNF group. Lastly, a small number of implanted
cells expressed FOX-3 (NeuN, ~8 %), neurofilament
(NF, ~7 %) or glial fibrillary acidic protein (GFAP,
7.5 %) proteins at day 7, revealing neuronal and glial
developmental lines.
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Box 1: Most frequently employed techniques to visualize infarct area.

Technique

Features

Sample figure

TTC staining

The 2,3,5-triphenyltetrazolium chloride (TTC)
staining is the most frequently used tool to
macroscopically differentiate viable tissue from
infarction. This technique is fast and cheap and the
results can be obtained in less than an hour. In the
viable tissue, the colorless TTC is enzymatically
reduiced to a red formazan product by
dehydrogenases, which are most abundant in
mitochondria. Hence, the injured area without viable
mitochondria remains unstained. However, transient
dehydrogenase activity impairment can lead to over-

estimation of the infarct area [85, 86].

Nissl staining

Cresyl violet staining is one of the commonly used

techniques to visualize experimental brain
infarctions. Cresyl violet stains Nissl substance in
neurons. TTC and Nissl staining are showing a high
degree of correlation in infarct areas; however Nissl

staining is rather time consuming [87].

HE staining

Hematoxylin / eosin (HE) staining has been used for
more than a century to recognize different cell types,
as well as morphological changes. Hematoxylin
stains nucleic acids, while eosin stains proteins
nonspecifically. Although HE stainings have been
employed to detect infarct areas in some studies, its
lack of specificity constitutes a disadvantage

compared to Nissl or TTC stainings.

MRI

Unlike all above mentioned techniques that are
executed at the end of each set of experiments,
magnetic resonance imaging (MRI) can be
performed during the experiments to assess the
infarct area. Diffusion-weighted imaging (DWI), a
form of MR imaging, is more useful for lesion
volume detection during the acute infarction phase
(usually 3 to 6 hours after stroke). T2 weighted
image (T2WI) is one of the basic pulse sequences in
MRI, and is usually used to detect infarct areas, days

to weeks after stroke [88].
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Fig. 2 Genetic modification of stem cells enhanced their therapeutic effects in animal models of stroke

Another approach by Lee et al. [41] made use of
stable BDNF overexpressing human neural stem cell
(hNSCs) line (HB1.F3), in a mouse model of intracere-
bral hemorrhage (ICH). ICH was induced by injection
of collagenase type IV into the striatum and seven days
later stem cells were administrated into the ipsilateral
striatum. Stem cells improved motor function, which
was assessed by rotarod and limb placement tests (See
Box 2), up to eight weeks post-transplantation.
NSCsPPNF enhanced motor outcome compared to
NSCs. Over-expression of BDNF increased survival of
transplanted cells in the striatum by 1.6-fold after two
weeks, and 3-fold after 8 weeks post administration
compared to NSCs. At 2- and 8-weeks post-transplanta-
tion, large portion of NSCs®PNF expressed the light and
heavy chain of neurofilament, MAP2 and GFAP in the
vicinity of the hemorrhagic core. Also, immunostaining
for von Willebrandt factor (VWF) revealed NSCsPPNF
increased number of microvessels by 2-3 fold compared
to NSCs and 6-8 fold compared to the control group.
Transplanted stem cells reduced the number of apoptotic
(TUNEL positive) cells in the hemorrhage core border
areas, and the number of apoptotic cells was decreased
in the group receiving BDNF over-expressing stem
cells. Although ICH increased proapoptotic protein
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expression of caspase 3, p21 and p53 in the ipsilateral
hemisphere, stem cells and more specifically NSCs®PNF
prevented over-expression of those mentioned
proapoptotic proteins, 2 and 8 weeks after transplanta-
tion. In line with that, the pro- survival signaling mol-
ecule Aktl as well as the antiapoptotic Bcl-2 protein
were elevated. Therefore, it seems that NSCs2PNF could
exert neoangiogenic and neuroprotective effects in ICH
injury sites.

Zhu and colleagues [42] evaluated the effectiveness of rat
NSCs transfected with the human BDNF gene. Stem cells
were labelled with bromodeoxyuridine (BrdU) and
intrastriatally implanted three days after 120 min MCAO.
The neurological function deficit was assessed using the neu-
rological severity score (NSS) 2 to 12 weeks after transplan-
tation, with no significant differences being observed between
the experimental groups in the first 6 weeks. However,
NSCs®PNF improved functional recovery from week 8 on
compared to non-transplanted control, and improved function-
al recovery compared to non-transfected NSCs from week 10
on. To track the transplanted stem cells, doublestaining
against BrdU and BDNF was performed one week after trans-
plantation and obtained results revealed that around 25 % of
implanted cells survived in the ischemic areas and expressed
BDNF protein. Also, doublestaining against BrdU and
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neurofilament, 12 weeks after implantation, showed that 20—
38 % of transplanted NSCs®°NF were able to differentiate into
neurons. However, the authors did not provide any data re-
garding the differentiation ability of naive NSCs.

In another study, Tao et al. [43] employed human amniotic
membrane-derived mesenchymal stem cells (hAMSCs) that
were transfected with the BDNF gene. Stem cells implanted
into the dorsolateral striatum of female rats subjected to a
transient 40 min MCAO one day after stroke. On day 21 after
hAMSC:s therapy, some transplanted cells expressed nestin as
neuronal progenitor marker and MAP2 as neuronal marker. At
this time point, hAMSCs reduced infarct volume without sig-
nificant differences between modified and non-modified
hAMSCs, and decreased caspase-3 and iNOS protein expres-
sion. Based on beam-walking and rotarod tests (see box 2 for
more details) from days 6 to 21, stem cells improved the
functional recovery compared to controls and hAMSCs®P™
induced functional motor improvements at earlier time points
and/or with greater effects.

Box 2: Behavioral tests usually employed to evaluate neurological function

Behavioral test Description

Adhesive-removal test In this test, adhesive paper dots are used as
tactile stimuli on the wrist of each
forelimb and the time necessary for
animals to remove the tape is recorded.

Beam-walking test In this test, the animal is placed on a beam,
and beam walking is graded from easily
traversed the beam, to unable to walk
on the beam.

Bilateral grasp test In this test, the animal’s paws is placed on
the edge of a box and strength of the
hemiparetic paw is graded from grasp

well, to unable to grasp with forepaw.

Cylinder rearing test In this test, the animal is placed in a
transparent cylinder and the
weight-bearing forepaw(s) to contact

the wall during a full rear is recorded.

Foot-fault test In this test, the total number of steps
(movement of each forelimb) that an
animal uses to cross the grid and the
total numbers of foot faults for each

forelimb is recorded.
In this test, the hind limbs of each animal

are gently extended with a round-tipped
forceps and the flexor response is scored.

Hemiparesis score

Ipsilateral circling test In this test, the extent of circling to the side
of the infusion is graded from no
circling to always circling.

In this test, four limbs of animals are
evaluated by using the edges and top of
a counter top.

Limb placement test

Modified neurological
severity score (mNSS) test

NSS is a composite of balance, reflex,
sensory, and motor tests and the higher
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scores represent increased severity in
injury.

In this test, the animal is placed in a tank of
water with a hidden platform. During
training trials, the latency to find the
platform location is recorded. During
experimental trials, the platform is
removed, and the percentage of time
spent in the quadrant that normally
contains the platform is compared to the
time spent in other quadrants.

Morris Water Maze test

Posture score In this test, the animal is suspended by the
tail and forelimb flexion and body

twisting is scored.

Roger’s tests In this test, the movement of an animal is
scored from no deficit, to not

responding to stimulation.

Rotarod test In this test, the animal is placed on a
rotating rod and the speed of the
rotation is gradually increased. This test
usually uses to assess sensorimotor

coordination.

Stepping test In this test, a wooden ramp with a length
around 1 m connect a platform to the
animal’s home cage. Initiation time,
stepping time and step length is
recorded when the animals move from

the platform to their home cage.

Treadmill (stress) test In this test, animals are placed on an
accelerating treadmill and they should
run and maintain their median position
on the belt as its speed steadily
increases. In the treadmill stress test, to
avoid foot-shocks, animals have to

move forward.

Furthermore, Chang and co-workers [44] evaluated the thera-
peutic and neurogenic ability of human NSC line (HB1.F3) over-
expressing BDNF following transplantation into the contralateral
striatum on day 7 after stroke in a male rat model of 90 min
MCAO. In this study, just effects of BDNF-overexpressing
NSCs were compared to non-transplanted control. Up to eight
weeks post implantation, behavioral improvements from week 3
in the rotarod- as well as stepping-tests were obtained. From week
4 on, improvements in the modified neurological severity score
(mNSS) test were recorded. From day 5 after contralateral admin-
istration, transplanted stem cells were detected in the infarct area
and eight weeks after transplantation, a high portion of NSCs®>™*
migrated to the ipsilateral damaged area. At this time point, some
of the transplanted cells were nestin-, doublecortin (DCX, as mi-
grating neuroblasts)- or MAP2-positive, which shows that some
implanted stem cells preserved their stemness potential, while
others differentiated toward the neuronal lineage. In addition, some
transplanted stem cells co-stained with tyrosine hydroxylase or
glutamic acid decarboxylase 65/67 (GAD65/67), indicating differ-
entiation of the transplanted stem cells into dopaminergic and
GABAergic neurons, respectively. Also, some migrated cells
expressed dopamine- and cAMP-regulated neuronal
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phosphoprotein (DARPP-32) as striatal projection neurons mark-
er. Furthermore, some NSCs® ™ transplanted cells expressed
CXCR4 as chemokine receptor 4 marker that can response to
inflammatory signals, such as stromal derived factor-1, following
cerebral ischemia.

Jeong and colleagues [45] investigated the effects of intra-
striatal transplantation of BDNF modified human bone marrow
(BM)-MSCs, three days after 90 min MCAO. MSCs®”™F im-
proved the functional recovery from day 14 on up until day 28
after implantation, based on the adhesive-removal test. However,
rotarod stress test revealed functional improvements in the
MSCsBPNF group just on day 28. Transplanted stem cells de-
creased the infarct area, which was assessed by TTC staining 14
days after stroke, and BDNF over-expression led to more reduc-
tion in lesion size. Immunostaining 7 and 28 days after MCAO
showed that cell therapy increased the number of BrdU, BrdU/
DCX and BrdU/NeuN positive cells in the sub-ventricular zone
indicating enhanced endogenous neurogenesis. For all of these
parameters, MSCs®™™ had greater outcome. Stem cell trans-
plantation decreased the number of TUNEL positive cells in
the ischemic lesion, and the number of apoptotic cells was much
lower in the BDNF over-expressing group. Then, MSCs®PNF
could enhance endogenous neurogenesis and protect neural cells
from apoptotic death.

van Velthoven et al. [46] investigated the curative potential
of mouse MSCs that were genetically modified to over-
express BDNF, epidermal growth factor-like 7 (EGFL7),
persephin, and sonic hedgehog in the perinatal mouse model
of hypoxia-ischemia. Cerebral ischemia was induced by right
common carotid artery occlusion, followed by 45 min expo-
sure to 10 % oxygen and stem cells were administrated intra-
nasally 10 days later. Based on the cylinder rearing test,
MSCsPPNF and MSCs®F7 improved motor function com-
pared to control and MSCs groups at days 21 and 28 after
ischemia. Persephin over-expression just improved functional
recovery on day 21 compared to control. Mice treated with
MS(Cssonie hedgehog hgwed even decreased functional im-
provements compared to MSCs. In this study, infarct volume
was assessed at day 28 by immunostaining against
microtubule-associated protein and myelin basic protein to
visualize gray and white matters, respectively. Obtained data
revealed that MSCs, MSCs®PNF and MSCsPe*PPi decreased
infarct size compared to control, while MSCsF97 had no
effect. MSCs®*o™e hedeehoe oyen increased lesion size compared
to MSCs. At this time point, although MSCs®°™F elevated
number of BrdU-positive cells in the hippocampus, cell ther-
apy did not affect the number of Ki67 positive cells.

To evaluate the therapeutic effects of the BDNF or/and
noggin-modified BM-MSCs, Lu et al. [89] intravenously ad-
ministered stem cells one day after 60 min MCAO. One week
after transplantation, transplanted stem cells improved mNSS,
and genetically modified stem cells enhanced functional im-
provements. The recovery was even amplified in the group co-

transfected with BDNF and noggin. Western blot and immu-
nohistochemistry analysis in the ipsilateral cerebral cortex
showed that modified MSCs increased the expression of
VEGF, Bcl-2, p-GSK3f, and p-Akt, but decreased Bax,
TLR4, and MyD88 compared to non-transplanted control
and MSCs groups. Also, an ELISA assay revealed
transplanted stem cells reduced levels of matrix
metallopeptidase 9 as well as reactive oxygen species and
co-transfected MSCsPPNF 28 had the most powerful effect
to decrease these factors.

Altogether, these data suggest that the delivery of BDNF
by ex vivo gene transfer, using mesenchymal or neural stem
cells, potentiated therapeutic effects of naive stem cells in
mouse or rat models of cerebral ischemia. The obtained results
indicate that the combination of gene and cellular therapy by
over-expressing BDNF in the transplanted stem cells, led to
enhanced neurogenesis and promoted stem cell proliferation,
protected cells from apoptotic death as well as ameliorated
behavioral dysfunction more effectively and rapidly than
non-transfected stem cells.

Neurotrophin-3 (NT-3)

NT-3 is a member of the neurotrophin family that could pro-
mote survival of nearly all types of neurons and is involved in
differentiation promoting pathways [90]. It was reported that
NT-3 elevates the differentiation potential of stem cells toward
neurons [91-93], and NT-3 knockout mice showed impaired
neurogenesis [94]. In addition, NT-3 was able to stimulate
neovascularization in a limb model of ischemia, which was
induced by surgically excising the femoral artery [95].

Park and co-workers [47] evaluated the effects of mouse
NSCs over-expressing NT3 in hypoxic—ischemic brain injury.
Hypoxic—ischemic injury in 7-day old mice was induced by
right common carotid artery occlusion, followed by 2-3 h ex-
posure to 8 % O2 and 92 % N2. Stem cells were transplanted 3
days later in two sites at the ipsilateral infarcted hemisphere,
which were 1-1.5 mm apart, or the contralateral lateral ven-
tricle. Immunostainings of the brain slices 2—4 weeks after
implantation showed NSCsN™ differentiated into neu-
rons at a higher rate in infarct cavity (20 %) and pen-
umbra (81 %) than NSCs alone (5 %). Small portion of
NSCsNT? expressed oligodendroglial (0.4 %) and
astroglial markers (1 %). A subpopulation of NSCsN'?
derived neurons were either cholinergic (25-40 %), glu-
tamatergic (10-20 %) or GABAergic (40-50 %).

Furthermore, Zhang et al. [48] transplanted NSCs over-
expressing human NT3 into the striatum ipsilateral to the in-
jury of adult rats, 7 days after 2 h MCAO. The rats that re-
ceived stem cells exhibited enhanced functional recovery in
neurological and behavioral tests, 7 and 14 days after trans-
plantation. The neurological severity score of rats in both
modified and non-modified stem cells groups were similar
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within seven days after implantation. However, animals that
received NSCs™ T2 displayed a better functional performance
than animals transplanted with wild type NSCs, fourteen days
after transplantation.

Taken together, the evaluated studies revealed that NT-3
over-expressing exogenous neural stem cells are able to im-
prove functional recovery following brain ischemia. In addi-
tion, over-expressed NT-3 has a potential to promote neuronal
differentiation.

Over-expression of Glial-derived
Neurotrophic Factor (GDNF)

GDNEF belongs to the transforming growth factor beta family,
which is able to promote survival of several types of central
and peripheral neurons. Previous studies have shown that in-
tracerebroventricular and intracortical [96] or intrastriatal [97]
administration of GDNF resulted in protection of cerebral
hemispheres from damage and neuroregenerative responses.

Kurozumi and colleagues [49] compared therapeutic ef-
fects of human BM-MSCs over-expressing BDNF, GDNF,
NT3 and ciliary neurotrophic factor (CNTF) in a rat model
of cerebral ischemia, induced by 90 min MCAO. Stem cells
transplanted into ipsilateral striatum one day after stroke. At
day 8 and 15 after MCAO, rats that received MSCs9PNF
achieved higher limb placement scores compared to control.
Similarly, MSCs“PNF could reduce infarct area 7 and 14
days after ischemia. In addition, discosoma red fluores-
cent protein- positive MSCs were more numerous in the
injection site of animals treated with MSCs“°™F than
MSCs group, 14 days after MCAO.

Horita et al. [50] investigated whether hMSCs overexpress-
ing GDNF could contribute to functional recovery in a rat
pMCAO model. The pMCAO was induced by intraluminal
vascular occlusion and (3-galactosidase (LacZ) transfected
hMSCs®PNF were intravenously administered three hours lat-
er. The B-galactosidase positive hMSCs®P™F were detected
throughout the injured hemisphere mainly in the penumbra
lesion, one week after cell therapy. An estimate of infarct
volume was obtained using in vivo diffusion-weighted (see
Box 1) and T2-weighted magnetic resonance imaging.
Based on the diffusion-weighted imaging, stem cells curative
effects to reduce infarct size were detected only in the first
week after transplantation. However, on T2W imaging, infarct
size was decreased in stem cell transplanted groups in all
evaluated time points from day 1 up to day 28 after stroke
and hMSCs“°™F had better outcome at all time points to re-
duce infarct area. Also, intravenous delivery of hMSCsSPNF
led to reduction in lesion size, as estimated from TTC staining
1 week after MCAO. By using the treadmill stress test, stem
cell transplanted groups showed improvement in treadmill
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velocity up to 31 days. Again, hMSCs“PNF had better out-
come in all evaluated time points.

In addition, Chen and colleagues [51] transplanted rat
NSCs transfected with GDNF into the ipsilateral lateral
ventricle, three days after 120 min MCAO. Stem cell
transplantation led to decreased neurological severity
scores from week 1 to 7 compared to non-transplanted
control group. NSCs®PNF only at weeks 2 and 3
showed behavioral improvements, compared to naive
NSCs. Stem cells reduced infarct volume from week 1
up to week 7 compared to control; NSCs®PNF only at
week 1 had better results compared to NSCs. Also,
more GFP and BrdU positive stem cells were detected
in the NSCs“"™F group, compared to NSCs up to 7
weeks after stroke. Cell therapy and more specifically
NSCs“PNF enhanced synaptophysin and PSD-95 immu-
noreactivity whereas decreased number of caspase-3 and
TUNEL positive cells in all evaluated time points.
Elevated expression of synaptic proteins could suggest
the reconstruction of neural circuitries and/or enhanced
neuronal functioning following stem cell grafting.

Ou and co-workers [52] evaluated the therapeutic ef-
fects of human umbilical cord blood (HUCB) CD34 +
cells over-expressing GDNF, in spontaneous hyperten-
sive rats exposed to 120 min MCAO. At 6 h after
stroke, stem cells were administered into the tail vein.
Cell therapy reduced infarct size 7 days after transplan-
tation and UCBCs®PNF had greater outcome compared
to UCBCs. GDNF over-expression increased survival of
GFP positive stem cells compared to NSCs in the in-
jured hemisphere. Double immunostaining against GFP
and GFAP on day 28 showed more than 75 % of the
total cells were GFP-GFAP suggesting glial preferential
differentiation of transplanted cell. Stem cells improved
mNSS scores on days 7 and 28 and UCBCs“PNF en-
hanced behavioral improvements compared to UCBCs.

Wang et al. [53] evaluated the therapeutic effect of
transplanted GDNF modified rat BM-MSCs on an ex-
perimental ischemic brain injury. The stem cells were
injected three days after 120 min MCAO via the caudal
veins. The animals were evaluated at 3, 14, and 28 days
after transplantation. At all time points, animals that
underwent cell therapy showed behavioral improve-
ments, which was obtained from ipsilateral circling, bi-
lateral grasp and beam walking tests. At days 14 and
28, GDNF modified MSCs enhanced behavioral im-
provements compared to non-transfected MSCs. Also
stem cells reduced TUNEL positive apoptotic cells as
well as increased Bcl-2 positive cells around the ische-
mic region in evaluated time points and MSCs®PNF
group showed enhanced outcome compared to MSCs.

Overall, grafting bone-marrow mesenchymal or neural
stem cells with a modified GDNF gene can ameliorate
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devastating conditions following stroke. It has been pro-
posed that the cellular delivery of GDNF-secreting-stem
cells could promote survival and migration of
transplanted cells, improve the local microenvironment
and accelerate nervous function recovery.

Over-expression of Angiogenic Factors
Vascular Endothelial Growth Factor (VEGF)

VEGF has been involved in all aspects of vascular formation
including vasculogenesis, angiogenesis and arteriogenesis. In
addition, VEGF has neuroprotective effects; therefore it is
considered as one of the key elements in stroke [98]. It was
reported that intracerebroventricular administration of VEGF
peptide after cerebral ischemia in mice and rats led to angio-
genesis stimulation, neurological performance improvement,
infarct size reduction and enhanced newborn neurons survival
in the subventricular zone and dentate gyrus [99, 100].

Considering evidence of functional recovery in stroke ani-
mal models following stem cell transplantation as well as
VEGEF treatment, Miki et al. [54] prepared gene-modified rat
BM-MSCs that strongly expressed human VEGF. Stem cells
were transplanted intracerebrally 24 h after 120 min MCAO.
Between 14 and 28 days after stroke, the rats treated with
MSCs or MSCs Y SF showed mNSS improvement compared
to control. In addition, the MSCsVESF showed remarkable
functional recovery compared to the non-transfected MSCs.
On day 14 after ischemia, the infarct size assessed by TTC
staining decreased in the stem cell transplanted groups and
rats receiving MSCsYF9" showed more reduction than
native MSCs group. Brain water content was also mea-
sured 2 and 7 days after stroke and no significant dif-
ference was detected among the experimental groups at
either analysis point.

In another study, Lee and co-workers [55] induced intrace-
rebral hemorrhage by the administration of collagenase type
IV into the striatum of mice (gender was not defined). Seven
days later, immortalized cell lines of human neural stem cells
(HB1.F3), over-expressing VEGF were transplanted into the
ipsilateral striatum. Stem cell transplantations led to a func-
tional improvement in rotarod and modified limb placement
tests from eight days post-implantation and the curative effects
lasted for up to eight weeks. Enhanced behavioral recovery in
NSCsVEF vs. NSCs groups were observed 3 to 9 weeks after
grafting. VEGF over-expression led to a two-fold increase in
cell survival of implanted NSCs at two weeks post-
administration and a three-fold increase at eight weeks after
implantation. The majority of grafted NSCs""F cells differ-
entiated into either astrocytes (55—65 %) or neurons (35—
45 %). NSCs" " promoted proliferation of host endothelial
cells/microvessels compared to the non-transfected NSCs at

two- and eight-weeks post-grafting. The number of TUNEL-
positive apoptotic cells in the hemorrhage core border areas,
was lower in the stem cell transplanted groups eight weeks
after implantation. Western blot analysis revealed increased
expression of proapoptotic proteins Bax and caspase 3 in the
control group; however, marked reduction of these proteins
was detected in the stem cell transplanted groups. On the other
hand, the levels of survival signal molecules Aktl, p110 and
p58 as well as anti-apoptotic proteins Bcl-XL and Bcl-2 were
higher in the stem cell grafted groups.

In summary, stem cells that over-express VEGF exert neu-
roprotective effects in the ischemic brain, by promoting anti-
apoptotic and/or inhibiting pro-apoptotic elements. Also, stem
cells transfected with VEGF rejuvenated angiogenesis of host
brain tissue and enhanced its functional recovery.

Angiopoietin

Angiopoietin belongs to the vascular growth factors family that
plays a role in remodeling, stabilization and maturation of vessels.
Angiopoietin-1 (Angl) is the well-known member of this family
and binds to Tie2, a receptor tyrosine kinase. Tie2 is expressed in
the choroid plexus as well as on endothelial cells lining blood
vessels which induces neovascularization in the brain [101].

In a study conducted by Onda and co-workers [56], human
BM-MSCs had been transfected with the Ang-1 gene and
were intravenously administered 6 h after induction of unilat-
eral permanent cerebral ischemia in rats. At 1, 3, and 7 days
after pMCAO, MRI-estimated infarct size was less in both
MSC and MSCs""¢ groups without any significant differ-
ences between them. Similar results were obtained by TTC
staining 7 days after pMCAO. Stem cell therapy increased
capillary vascular volume ratio (ipsilateral/contralateral) at 7
and 28 days after pMCAO. The vascular volume ratio of
MSCs™" treated group was higher than MSCs group in both
time points. In addition, stem cell transplantation led to in-
creased regional cerebral blood flow in some regions up to 7
days post-MCAO. From 1 to 7 days after transplantation,
both MSCs and MSCs*"¢ groups had greater maximum
velocity on a motor-driven treadmill than control, but
the MSCs”"¢ group attained a higher velocity than the
non-transfected MSCs.

Toyama and colleagues [57] investigated whether the com-
bination of Angl and VEGF gene-modified human BM-
MSCs contribute to functional recovery in a rat model of
pMCAO. Stem cells were intravenously administered 6 h after
occlusion. To evaluate the relative efficacy of MSCs,
MSCs*", MSCs V9 and MSCs*"¢VESF transplantation, in-
farct volume was estimated using in vivo MRI analysis. At 1,
3, 7 and 14 days, infarct size reduced in the MSCs, MSCsAne
and MS(Cs"re VEGF groups; however, infarct area tended to
increase in the MSCs""" group. The reduction was not sig-
nificant between MSCs and MSCs""¢, but it was statistically
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significant between MSCs"¢"VESF and other groups. Similar

results were obtained by TTC staining at day 7. Based on the
three-dimensional capillary imaging obtained from systemi-
cally perfused fluorescein isothiocyanate —dextran 7 days after
MCADO, stem cells led to higher capillary vascular volume
ratio and MSCs”"¢VESF treated group showed higher ratios
than others. Also, stem cells except MSCsVESF Ied to in-
creased regional cerebral blood flow in some regions 7 days
post transplantation. The treadmill stress test showed that the
maximum speed at which the rats could run on a motor driven
treadmill was faster in MSCs, MSCs*"® and MSCs""¢
“VEGE treated rats from 1 up to 14 days post-MCAO.
The MSCs"°F even reduced maximum velocity com-
pared to the control at day 14.

Together, although human bone-marrow mesenchymal
stem cells over-expressing angiopoietin modestly improved
angiogenesis and functional recovery, co-transfection of an-
giogenic factors e.g. angiopoietin and VEGF are likely to
improve cerebral ischemia therapies.

Placental Growth Factor (PIGF)

The angiogenic factor, PIGF, belongs to the VEGFs gene
family, and has a 53 % homology to VEGF. PIGF has a crucial
role in the placental chorion angiopoiesis and maintenance of
the placenta development and normal growth. PIGF is also
expressed in the CNS and plays a role in cerebral ischemic
injury [98]. In this regard, the neuroprotective properties of
PIGF have been reported in an in vitro model of ischemic
condition [102], and PIGF-knockout mice showed a deficit
in hypoxia-induced cerebral angiogenesis [103].

In the Liu et al. [58] study, PIGF modified human BM-MSCs
were intravenously administered 3 h after induction of unilateral
pMCAQO in a rat. An estimated infarct size obtained by in vivo
MRI revealed that, although lesion volumes 3 h after occlusion
were the same among the experimental groups, infarct size was
smaller 6 h after MCAO in the MSCs"™“" group. At 1, 3,4 and 7
days, infarct size was smaller in both MSCs and MSCs™“*
groups compared to control. The reduction in infarct volume
was greater in MSCs"6F compared to MSCs at 3, 4, and 7 days
post-occlusion. Similar results were also obtained by TTC stain-
ing at day 7. Three-dimensional analysis of capillary vessels in
the lesion site 7 days after MCAO showed the capillary vascular
volume ratio was higher in stem cells treated group and the
angiogenesis was greater in the MSCs™“". This trend was also
observed in the number of apoptotic cells; fewer TUNEL-
positive cells were found in rats receiving MSCs"'“F than those
in MSC and control groups. Based on the limb placement and
treadmill stress behavioral tests, MSCs™'“" and MSCs improved
functional recovery from day 1 and day 3 respectively up to day
7 after transplantation. Therefore, over-expression of PIGF
might enhance angiogenesis and neuroprotection properties of
mesenchymal stem cells in cerebral ischemia.
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Hypoxia-inducible Factor 1 (HIF-1)

HIF-1 is a master regulator of hypoxia-responsive genes. The
expression of a wide variety of genes that facilitate adaptation
to low O2 levels is regulated by HIF-1. It targets different
molecules with vast range of functions, including energy me-
tabolism, cell proliferation, erythropoiesis, angiogenesis and
vasomotor control. All of these genes may potentially contrib-
ute to the recovery of neuronal cells following cerebral ische-
mia and reperfusion. Due to potential key roles of genes mod-
ulated by ischemia-activated HIF-1, it has been proposed that
modulating induction and accumulation of HIF-1 is a curative
strategy for cerebral ischemia. HIF-1 as a heterodimeric tran-
scription factor contains two subunits of HIF-1« and HIF-13.
HIF-1« protein synthesizes and degrades continuously, there-
fore it is almost absent in normoxic cells. On the other hand,
HIF-1 does not response to O2 levels and is constitutively
expressed in cells; however it is necessary for hypoxia-
induced transcriptional changes mediated by HIF-1. Hence,
activation of HIF-1 mainly depends on the HIF-1c protein
level [104, 105].

In this regard, Wu and colleagues [59] investigated the
efficacy of HIF-1x modified NSCs in a rat model of stroke
induced by a 90 min MCAO. BrdU-labelled stem cells were
transplanted one day after MCAO into the lateral ventricle.
From day 7 up to day 28 post ischemia, animals receiving
NSCs™12 scored better in mNSS than other groups. At days
21 and 28, NSCs group also showed greater functional recov-
ery compared to control. The numbers of BrdU-positive cells
in the infarct area were greater in NSCs"™'* than NSCs that
could differentiate into both neuronal and glial cells. Also,
NSCs™ 14 increased factor VIII-positive endothelial cells at
the lesion sites at day 35 after MCAO.

Ye et al. [60] injected HIF 1 & over-expressing BM-MSCs
into rat tail vein 3 h after permanent MCAOQO. Rats treated with
MSCs"1? had functional improvement on mNSS from day 7
post-MCAO compared to control. MSCs showed neurological
functional recovery compared to control from 14 days after
ischemia. MSCs"™!? Jed to better outcome on days 14 and 28.
Based on the Morris Water Maze test (see Box 2), stem cells
transplantations decreased latency periods and travel distances
compared to control at both days 14 and 28 post MCAO
without significant difference between transfected and non-
transfected MSCs. Just MSCs"™™' had a potential to reduce
infarct volume at day 7. Tracking of GFP-labelled
transplanted MSCs showed the presence of stem cells in the
olfactory area at day 1, in the boundary area of the injured
cortex, mainly including hypothalamus, thalamus, internal
ventricle at day 7 and in the striatum and motor cortex fields
adjacent to the infarct region at day 14. Although stem cell
administration did not affect the number of apoptotic cells in
the cortex, MSCs"™!? reduced apoptosis in the hippocampus
compared to control at day 7 after MCAO. Double
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immunofluorescent staining in the hippocampus region at day
7 and cortex at day 14 post MACO revealed increased number
of pax6/DCX cells in the MSCs"™'* group, indicating en-
hanced neuronal proliferation.

Yang and co-workers [61] injected BM-MSCs over-ex-
pressing HIF1 o into the rat tail vein 6 h after 120 min
MCAO. Only MSCs"™ '™ improved the mNSS score from
days 14 to 28 and reduced infarct size at days 14 and 28.
Western blot analysis showed that MSCs™'™ elevated
VEGF protein expression in the injured hemisphere.
Angiogenesis detected by CD105 staining in the MSCs
group showed a small amount of scattered
microvascularization at day 7 after stroke; the revasculari-
zation reached a maximum on day 14 and decreased gradu-
ally afterward. In the MSCs"" !'® group, density of
neomicrovascular vessels was denser at day 7, reached its
maximum on day 14 and kept at a relatively high level until
day 28.

Ye et al. [62] evaluated the therapeutic effects of NSCs
over-expressing HIF 1o in a rat model of stroke induced by
90 min MCAO. Stem cells were injected into cortical peri-
infarct regions of the rat brain at 24 h after MCAO. NSCs"""'*
treatment showed an improvement in NSS scores compared to
control on days 7, 14, 21 and 28 post ischemia. NSCs treat-
ment had a significant functional recovery compared to con-
trol on days 21 and 28; however, NSCs"1* had better out-
come at these time points. Nissl staining (see Box 1) 5 weeks
after ischemia showed that cortical and hemispheric atrophy
of the lesion sites was reduced in the NSCs"™™'* group. Also,
the number of BrdU labelled transplanted stem cells in the
peri-ischemic area was higher in the genetically modified
group, 35 days after MCAO. Double staining against BrdU/
NF-200 and BrdU/GFAP showed that transplanted NSCs
could differentiate into neuronal and glial cells at day 35.
Number of VEGF and vWF positive cells were also increased
in the peri-ischemic area in the NSCs"™'* compared to con-
trol, 7 and 35 days after ischemia, respectively.

Lin et al. [63] aimed to evaluate therapeutic efficiency of
rat BM-MSCs over-expressing HIF-1cc in hypoxic—ischemic
brain damage. Hypoxic—ischemic injury in rats was induced
by left common carotid artery occlusion followed by 2 h ex-
posure to 8 % O2 and 92 % N2. chloromethylbenzamido
dialkylcarbocyanine (CM-Dil) labelled stem cells intrave-
nously injected into the tail 24 h after ischemia. Tracking of
CM-Dil labelled stem cells showed the presence of positive
cells in the hippocampus on day 7 after ischemia. From day 7
to day 21 after ischemia, the number of CM-Dil positive cells in
the hippocampus elevated gradually in a time-dependent manner.
Over-expression of HIF-1a enhanced the migration potential of
MSCs toward the injury sites. The spatial performance was
assessed by Morris Water Maze on day 14 after ischemia.
There was an increase of time in the target quadrant in stem cell
transplanted groups compared to control, however, a higher

increase in the amount of time have been found in MSCsF!2

group. Furthermore, hematoxylin and eosin staining (see Box 1)
of the hippocampus showed that stem cells were able to amelio-
rate pathological changes that occurred after ischemia, whereas
MSCs™ 1™ enhanced therapeutic efficiency.

Collectively, these data support the hypothesis that trans-
fection of bone-marrow mesenchymal stem cells or neural
stem cells that over-express hypoxia-inducible factor 1, could
protect the vascular system and grafted stem cell survival,
increase migration of stem cells to the infarct area, stimulate
angiogenesis as well as neurogenesis, and enhance motor
function in cerebral ischemia models.

Over-expression of Trophic Factors
Fibroblast Growth Factor (FGF)

The fibroblast growth factors (FGFs) are a family of cell sig-
naling proteins that participate in a broad range of processes,
especially as pivotal factors for normal development. FGFs
are also crucial for the adult brain maintenance. Hence,
FGFs are one of the main elements involved in neuronal sur-
vival and synaptic plasticity during both development and
adulthood [106]. Previous studies reported that exogenous
FGF can reduce infarct size area in acute stroke (3-6 h after
stroke) and enhance neurological recovery in chronic stroke
(72-168 h after stroke) [107].

Ikeda and colleagues [64] evaluated the effect of FGF-2
modified BM-MSC in a rat ischemic stroke model. Stem cells
administered stereotaxically in the striatum 24 h after 2 h
MCAO. Seven days post MCAO, the rats treated with
MSCF™2 showed improvements in the mNSS score, com-
pared to control. At 14 and 21 days after cerebral ischemia,
functional improvements were also found in the MSC group
compared to control; however, MSCF2 had a better outcome
at both time points. Just MSCFF2 decreased infarct volume,
14 days after MCAO.

Ghazavi et al. [65] evaluated the effect of an acute intrave-
nous injection of adipose-derived mesenchymal stem cells
transfected with the Fgf7 gene, 30 min after 30 min MCAO.
The main outcomes of this study were assessed 24 h post
MCAO. Stem cell transplanted groups showed a functional
improvement, as assessed by rotarod and Roger’s tests and
reduced apoptotic cells stained by TUNEL. For both parame-
ters, MSCY GF1 had better outcome than MSC. Also, based on
TTC data, stem cells reduced lesion volume and there was no
significant difference between stem cell transplanted groups.

Zhang et al. [66] evaluated the effects of intravenous ad-
ministration of FGF2 modified NSCs (C17.2 cell line) in a rat
model of stroke. Stem cells were transplanted 24 h after 2 h
MCAO. To determine the proliferation potential of adminis-
tered NSCs in the injured area, animals received BrdU after
anesthesia via tail vein on the day of implantation and every
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day, for 28 days. Behavioral performance showed a remark-
able advance in neurological severity scores from 7 days post-
MCAO in NSCs" 2 and 14 days post-MCAO in NSCs groups
up to 28 days after transplantation. However, no significant dif-
ferences were observed in the infarct size among experimental
groups compared to control. Using pre-labeled cells with CM-
Dil, red fluorescent dye, it has been found that FGF2 promoted
the migration of NSCs into the injured brain and increased the
survival of cells in the infarcted area at day 28. Also, at this time
point, around 45 % of the transplanted NSCs"“" and 30 % of
the NSCs overlapped with BrdU staining. Furthermore,
NSCs " elevated the NeuN-positive cells co-localization with
CM-Dil, in comparison to the NSCs. The number of GFAP
immunoreactive cells co-localized with CM-Dil cells was not
significantly different between the two groups. Nestin co-
localization with CM-Dil cells was reduced in the NSCs"
group, compared to the NSCs group. Hence, it seems that
FGF?2 accelerated differentiation of NSCs into mature neurons.

Taken together, over-expression of the fibroblast growth
factor might be one approach to improve the restorative po-
tential of stem cells, in order to accelerate functional recovery
after stroke.

Hepatocyte Growth Factor (HGF)

HGEF is a potent pleiotropic cytokine that is involved in angio-
genesis, morphogenesis, mitogenesis, tissue regeneration, and
anti-apoptosis in various cell types. Exogenous HGF has been
reported to improve the neurological sequelae by decreasing
the infarct area size after stroke [108].

Zhao and co-workers [67] evaluated the effects of BM-
MSCs overexpressing HGF, which were intrastriatally im-
planted in the superacute (2 h) and acute (24 h) phase of rat
MCAO model. Superacute MSCs"“" transplantation led to
better mNSS from day 4 post-ischemia; however, MSCs im-
proved the behavioral function from day 14 and these effects
continued until day 35. Beneficial effects of stem cells that
improved neurological deficits after acute transplantation
were observed at day 7 and 14 in MSCs"“" transplanted rats,
and at day 14 in MSCs group. Three days after superacute
transplantation of stem cells, the infarct volume was reduced
just in the MSCs"F transplanted rats compared to control;
acute administration did not affect infarct area size at this time
point. Superacute transplantation of stem cells led to reduced
infarct size on day 14; however, by acute administration, in-
farct volume was reduced in the MSCs"“F compared to MSCs
or control groups. On day 7, the ischemic boundary zone
showed a significantly reduced percentage of apoptotic cells
in the MSCs"" treated group compared to other groups. The
result was the same when the MSC group was compared to
non-transplanted control. Hence, MSCs""“ therapy in the
superacute phase of stroke might be more therapeutically ef-
ficient than MSC alone.
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Pigment Epithelium-derived Factor (PEDF)

PEDF is a broadly expressed multifunctional member of the
serine proteinase inhibitor (serpin) family. This broadly inves-
tigated protein plays key roles in a variety of pathophysiolog-
ical and physiological processes such as inflammation,
fibrogenesis, angiogenesis and neuroprotection.

Huang et al. [68] investigated the protective effect of
exosomes isolated from PEDF over-expressing adipose de-
rived stem cells in the rat cerebral ischemia-reperfusion injury
model. Daily administration of exosomes through the lateral
cerebral ventricle was started 3 days before MCAO. Three
days after reperfusion, PEDF-exosome reduced the infarct
volume, decreased relative apoptosis rate and prevented
MCAO-induced apoptotic pathway activation through reduc-
ing cleaved/total caspase-3 as well as cleaved/total caspase-9.
Thus, pre-treatment with exosomes obtained from PEDF-
modified adipose stem cells, could ameliorate cerebral ische-
mia by modulating apoptosis and autophagy.

Over-expression of Genes Involved in Cell
Survival and/or Migration

AKt1

A serine/threonine kinase, Akt, plays a crucial role in the regula-
tion of cell survival, growth and proliferation. Aktl protein is
known as a general mediator of cell survival signals in the
NSCs. Lee and colleagues reported that grafted human NSCs
had low survival rates in ischemia and ICH mice; with less than
50 % of transplanted NSCs survived in ICH at 2-weeks post
grafting and 30 % at 8-weeks [55, 109]. Therefore, it was hy-
pothesized that implanting NSCs that overexpress Aktl into the
damaged area could improve the viability of hNSCs.

Lee et al. [69] induced ICH by intrastriatal administration
of bacterial collagenase type IV and seven days later, human
NSCs (HB1.F3), overexpressing Aktl were transplanted into
ipsilateral striatum of mice. Stem cell transplantation resulted
in an improved behavioral performance based on the rotarod
and limb placement test from 2 up to 8 weeks post transplan-
tation without significant difference between NSCs and
NSCs**!'. Eight weeks after cell therapy, around 35-54 %
transplanted NSCs™*"! differentiated to NF-H positive neu-
rons; however just around 4 % of them were GFAP positive
astrocytes. Immunostaining against human nuclear matrix an-
tigen (hNuMA) showed that Aktl overexpression resulted in a
40 % increase in cell survival of transplanted NSCs at 2 weeks
post-transplantation and 100 % increase at 8 weeks post-
transplantation in the hemorrhage core border areas. Also,
NSCs**! were able to migrate to the hippocampus at week
8. Transplanted NSCs or NSCs**"! were immuno-negative for
the cell proliferation marker Ki-67, indicating that grafted
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stem cells did not continue to proliferate following transplan-
tation. Furthermore, hematoxylin and eosin-stained sections
of mouse brains transplanted with NSCs or NSCs™*'! six
months post-transplantation showed no sign of tissue
distortion or tumor formation. Accordingly, over-
expression of Aktl might enhance the survival of

grafted neural stem cells in the ischemic brain.
B-cell Lymphoma 2 (Bcl2)

Bcl-2 is the founding member of the Bcl-2 family of regulator
proteins that regulate cell death by either inducing or
inhibiting apoptosis. Wei et al. [70] evaluated the therapeutic
effects of mouse embryonic stem cells (ESCs) over-
expressing Bcl2 in a rat stroke model induced by 120 min
MCAO. BrdU-labelled stem cells were transplanted seven
days after MCAO into 4 cerebral regions (Fig. 3).

TUNEL staining 3 days after transplantation revealed few-
er cell death in ESCs™"? compared to ESCs group in the
ischemic core region. Fourteen days after cell therapy, the
number of neuron-like NeuN positive transplanted ESCs or
ESCs®*” were 34+ 11 % and 58 +7 %, respectively. Also,
some transplanted cells in the post-ischemic cortex and stria-
tum stained positively for GFAP (astrocyte marker), neural/
glial antigen-2 (NG-2, oligodendrocyte precursor marker) and
adenomatous polyposis coli (APC, mature oligodendrocyte
marker). Seven weeks after transplantation, the formation of
neural structures was detected by NF staining and possible
neovascularization was detected by Glut-1, a marker for dif-
ferentiated endothelial cells. Stem cell transplantations led to
better neurological severity scores from day 7 to 35. After 21
days of transplantation, animals transplanted with ESCs®*?
showed an enhanced neurological recovery rate than animals
transplanted with ESCs.

In another study, Korshunova et al. [71] compared surviv-
al, differentiation potential, as well as therapeutic effects of
transplanted human NSCs (H9 cells) over-expressing Bcl2,
Bcl-xl, Aktl, HIF-1x and Bcl2 + Bel-x1+ Aktl in a mouse
model of permanent focal cerebral ischemia. Stem cells im-
planted two days after permanent MCAO and their survival
was evaluated one week as well as 1, 2 and 3 months after
transplantation. Although more than 93 % of naive implanted
stem cells died in the first week, around 30 % of NSCs**! and
20 % of NSCs®", NSCs® ™ and NSCs"""'* survived at this
time point. The number of survived naive transplanted NSCs
declined to 1.8 % of initial implantation after three months;
however, over-expression of Aktl, Bcl2 or Bel-xl, preserved
the number of survived stem cells to around 20 % at month
three. NSCs"K!+Bel2+Belxl a4 survival effects similar to
NSCs**! indicating a similar signaling pathway for all three
factors. For further confirmation, the authors showed that five
days after implantation many naive stem cells expressed the
apoptotic marker activated caspase-3; however, there was no
activated caspase-3 and EGFP co-expressing cells in
engineered cells. Three months after transplantation, all
engineered stem cells, except NSCs™™ ' expressed nestin
as indicator for neural precursor cells. At this time point,
around 15 % of transplanted NSCsP? ™! expressed NeuN as
mature neuron marker, and none of the engineered stem cells
differentiated into GFAP positive astrocytes. Eventually, the
authors evaluated the motor function of treated mice, seven
days after implantation. NSCs®" ™! transplantation led to a
significant functional improvement, compared to non-
transplanted and NSCs groups, based on the latency-to-move,
sticky-tape-removal, and Collins tests.

Therefore, over-expression of Bcl-2/Bcl-xI is able to
promote the survival of transplanted embryonic/neural
stem cells, increase neuronal differentiation, and im-
prove functional outcome.

Fig.3 Weietal. [70] transplanted
embryonic stem cells into 4
different coordinates
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C-X-C Chemokine Receptor Type 4 (CXCR-4)

SDF1 (stromal cell-derived factor 1), also known as CXCL12
(C-X-C motif chemokine 12), belongs to the CXC subfamily
of chemokines. SDF1 is considered to preserve adult and em-
bryonic NSCs and being involved in the recruitment of NSCs
to damaged regions to enhance recovery [110]. Furthermore,
it has been reported that SDF-1 is expressed in the ischemic
brain and facilitates the migration of transplanted cells into the
ischemic zone [111, 112]. However, due to the low levels of
endogenous SDF-1 receptor (CXCR4), stem cells migrate
slowly toward the injury. Therefore, it was hypothesized that
overexpression of CXCR4 might accelerate the mobilization
of stem cells toward the ischemic area.

In this regard, Yu and co-workers [72] intravenously
injected rat BM-MSCs over-expressing CXCR4, one day after
120 min MCAO and the target parameters were evaluated 7
days post-ischemia. Analysis of eGFP-laballed stem cells
showed that the percentage of migrating MSCs in the ische-
mic brain, especially within the ischemic boundary zone, was
higher in the MSCs“*“®* group. Total neurological scores
and infarct volume decreased in stem cell transplanted groups
with better outcome in the CXCR4 over-expressing group.
Also, co-staining of eGFP/neuron specific enolase (NSE),
eGFP/GFAP and eGFP/vWF revealed that transplanted
MSCs“XCR* could differentiate into neurons, astrocytes and
vascular-endothelial cells. An increased capillary vascular
volume ratio was observed in the stem cell groups with a
higher ratio in MSCs“*“®4,

In a very similar experiment, Bang and colleagues [73] just
used human BM-MSCs over-expressing CXCR4. At days 3
and 7 post-ischemia, stem cell treated groups showed better
mNSS compared to control. At a later time point (days 14), the
degree of improvement was more pronounced in MSCs“*“R4
than MSCs. However, MRI estimations of the lesion size
showed no significant difference between the groups at day
14. Immunohistochemical stainings for human nuclear and
also polymerase chain reaction for human chromosome 7
alphoid repeats were performed to evaluate the migration of
stem cells. The obtained results showed that the migration of
stem cells to the brain and in the ischemic boundary zone was
improved in the genetically modified MSCs compared to na-
ive ones, 3 days after injection.

Overall, transplantation of bone-marrow mesenchymal
stem cells over-expressing CXCR4 might be a considerable
approach in the treatment of cerebral infarction.

Copper/zinc-superoxide Dismutase (SOD1)
Copper/zinc-SOD is an oxidoreductase enzyme responsible
for the very rapid two-step dismutation of the toxic superoxide

radical to molecular oxygen and hydrogen peroxide, through
alternate reduction and oxidation of the active-site copper.
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Sakata et al. [74], isolated NSCs from postnatal day 1 wild-
type, heterozygous SOD1 over-expressing and SOD1 knock-
out mice. Stem cells were injected into the cortex at 3 coordi-
nates, two days after ischemia. NSCs-SOD1 reduced number
of TUNEL-positive cells by 42 % compared to NSCs in the
peri-infarct cortex, 2 days after transplantation. Twenty-eight
days after MCAO, the number of surviving GFP positive im-
planted cells in the injured brains was higher in the NSCs>°P!
group compared to NSCs group. In contrast, transplanted cell
survival was lower in the knockout group than in the NSCs. At
this time point, the percentage of beta III tubulin® neurons
(8.9+1.0, 8.8+1.1, 9.3+1.4) and GFAP" astrocytes (40.1

+4.3, 37.1+5.9, 38.3 £8.0) differentiating from the im-
planted NSCs, was similar among the wild-type, SOD over-
expressing and SOD knockout stem cells. To assess blood
vessel density, 14 days after ischemia, DyLight 594-labeled
Lycopersicon esculentum lectin were injected into the jugular
vein and 30 min later animals were killed. Higher blood vessel
density was observed in the NSCs>°P! group than in the non-
transplanted and NSCs groups. However, enhanced angiogen-
esis was not observed in the wild-type and knockout groups.
Similar results were also obtained by ELISA analysis of
VEGEF in the cortex, 4 days after stroke. Hematoxylin and
eosin staining 28 days after ischemia showed that NSCs>°""
decreased the cortical infarct size by 19.8 and 13.1 % com-
pared to non-transplanted and NSCs groups. No changes were
observed in striatal infarct size among the experimental
groups. According to the Rotarod test, functional improve-
ments were observed in NSCs>°P!' compared to the non-
transplanted and NSCs groups from day 7 and 21, respective-
ly. However, statistical significance was not reached by the
modified neurological severity scores. Significant behavioral
improvement was not observed in the wild-type and knockout
NSCs. Hence, SODI neural stem cells might represent a po-
tential approach for improving the effectiveness of stem cell
grafting in cerebral ischemia.

Interleukin-10 (IL-10)

IL-10 is a pleiotropic anti-inflammatory cytokine that regu-
lates inflammatory responses. IL-10 is mainly synthesized
by type-2 helper T cells and inhibits pro-inflammatory cyto-
kine release, T cell proliferation and macrophage activation
[113]. It has been reported that intracerebroventricular injec-
tion of IL-10 [114] or using transgenic mice over-expressing
murine IL-10 [115] ameliorated devastating conditions of
stroke by upregulating anti-apoptotic proteins and attenuating
pro-inflammatory signals.

In line with these studies, Nakajima et al. [75] intravenous-
ly injected human BM-MSCs over-expressing IL-10, at 0 or
3 h after 90 min MCAO. Quantitative analysis of infarct vol-
ume by TTC staining showed that the transplantation of stem
cells immediately after MCAO led to reduction of infarct size
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3 and 7 days after stroke, with better results in MSCs™°,

However, when stem cells were injected 3 h after MCAO,
MSCs™° reduced the infarct area, when compared to MSCs
and control groups. Stem cell therapy immediately after
MCADO led to improvements in neurological scores and motor
function 7 days after stroke. However, when stem cells were
injected 3 h after MCAO, MSCs™'® improved posture score,
hemiparesis score and rotarod performance (see Box 2).
Immunostaining against ionized calcium binding adaptor mole-
cule 1 (marker of microglial activation), TNFa (pro-
inflammatory cytokine) and Fluoro-Jade C (marker of neurode-
generation) in the cortical ischemic boundary zone showed fewer
numbers of positive cells in the stem cell-transplanted groups
compared to control at 24 and 72 h after ischemia; the reduction
was markedly lower in MSCs™'° group. Similar results were
obtained by ELISA in the levels of IL-6, IL-13 and TNF«x in
the ischemic hemisphere extracts at 72 h post-ischemia. Finally,
quantification of engrafted MSCs using real-time polymerase
chain reaction with human-specific Alu sequences showed
higher expression in MSCs"™'° than MSCs at 3 and 7 days after
ischemia in the ipsilateral hemisphere. Thus, obtained results
suggest that MSCs"™'° enhance neuroprotective effects of naive
MSCs by anti-inflammatory modulation.

Survivin (SVV)

SVV is one of the members of the apoptosis inhibitor family. The
SVV protein functions to inhibit caspase activation, therefore
causing negative regulation of programmed cell death or apopto-
sis. It has been reported that SVV-modified MSCs can further
improve the cardiac performance of rats after myocardial infarc-
tion by enhancing survival of the transplanted cells [116].
Therefore, Liu et al. [76] evaluated therapeutic potential of rat
BM-MSCs over-expressing SVV in the rat model of stroke in-
duced by 120 min MCAO. Stem cells were transplanted into tail
vein 24 h after ischemia. Number of the GFP-positive MSCs in
the SVV group elevated by about 1.3-fold at 4 days after admin-
istration, and by 3.4-fold at 14 days after administration in MSC
group. There were very few GFP-positive cells co-expressing
NeuN in the stem cell transplantation groups. Stem cell admin-
istration resulted in higher protein expression levels of VEGF
and FGF-2 in the injured cerebral tissue, 4 days after cell therapy;
however, just MSCs®"" could elevate the target protein levels at
day 14. TTC staining, fourteen days after transplantation, showed
reduced infarct size in the stem cell treated groups compared to
non-transplanted control with higher reduction in the MSCs®¥"
group. Similar patterns were also observed in the behavioral
improvements at this time point. Accordingly, over-expression
of survivin might be able to enhance therapeutic effects of mes-
enchymal stem cells in the ischemic brain, possibly through in-
creasing the survival capacity of grafted stem cells and regulating
of protective cytokines expression.

Over-expression of microRNAs
microRNA 133b (miR-133b)

miRNAs are 18-25 nucleotide, non-protein coding, evolu-
tionarily conserved, transcripts that control gene expression
via translational repression or mRNA degradation or both.
miRNAs exert key roles in variety of regulatory mechanisms
including host-pathogen interactions and developmental
timing as well as tumorigenesis, apoptosis, proliferation and
differentiation in different organisms [117].

In this regard, Xin et a. [77] used rat BM-MSCs, genetically
modified for miR-133b in a rat model of cerebral ischemia. Stem
cells were injected via the tail vein one day after 120 min
MCAO. Although, MSCs improved adhesive-removal and
foot-fault functional scores (see Box 2) compared to non-
transplanted control 14 days after stroke, functional improve-
ments in the MSCs™R'*3® group were seen from day 7 on with
a better outcome at day 14. Intracortical axonal density was
increased in the MSCs compared to control group at day 14 after
MCAO. MSCs™R"'3? treatment further increased cortical axonal
density at this time point compared to MSC. Compared to con-
trol, the positive areas of synaptophysin (marker for synapses),
NF-200 (marker for apical dendrites of large cortical pyramidal
neurons) and Bielshowsky silver (marker of neuronal fibers)
staining increased at day 14 following ischemia along the ische-
mic boundary zone in the MSC treated group. MSCs™R'3 en-
hanced the positive areas compared to MSC.

In another study, Huang and co-workers [78] intravenously
transplanted rat BM-MSCs genetically modified for miR-
133b, three days after 90 min MCAO. Only MSCs™R!33
could improve the modified neurological severity score, 14
days after treatment. Also, immunostaining against NeuN
showed that exogenous stem cells survived and differentiated
to neurons; however, the differentiation potential of MSCs is
unaffected by miR-133b modification.

Altogether, manipulation of bone-marrow mesenchymal
stem cells to over-express microRNAs e.g. miR-133b, might
be a remarkable therapeutic strategy to improve cell homing
and motor recovery.

Gene Delivery Systems, Pros and Cons

In order to over-express desired gene(s) in stem cells to en-
hance their therapeutic potential in the context of cerebral
ischemia, various viral and non-viral gene delivery systems
have been used to transfect stem cells (Table 2). Viral gene
transferring systems are designed based on the ability of vi-
ruses to insert their genetic material into the host cell. For this
purpose, several viral vectors such as herpes simplex viruses,
adeno-associated viruses, adenoviruses, retroviruses and len-
tiviruses have been widely employed. Due to the permanent
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Table 2 Gene delivery vectors that have been used to over-express

target gene(s) in stem cells to treat animal models of stroke

Delivered gene

Gene delivery vector(s) [Ref.]

BDNF

NT-3

GDNF

VEGF

CNTF

EGFL-7

PIGF

HIF1o

FGF

HGF

Bcl2/ Bel-xl

CXCR4

IL-10

Survivin
Persephin

Sonic hedgehog

MiR-133

* Adenovirus

PWEAXCAKBDNE-F/RGD [39, 40, 49]

pShuttleCMV-BDNF [45]
pAd-HM41-K7-BDNF-IE [46]
* Retrovirus

pBABE-BDNF [41, 44]
pLXSN-BDNF-GFP [42]

* Lentivirus [43]

* Retrovirus

pLIA-NT3 [47]

« Lentivirus

pGC-E1-hNT3 [48]

* Adenovirus
AxCAhNT3-F/RGD [49]

* Adenovirus
AxCAhGDNEF-F/RGD [49, 50]

pAdEasy-1-pAdTrack CMV-GDNF [51]

* Non-viral plasmid [52, 53]

* Herpes Simplex Virus
1764/4-/pR19/hVEGF 165 [54]

* Retrovirus

pLPCX.VEGF [55]

* Adenovirus
pWEAXCAhVEGF-F/RGD [57]

* Adenovirus
AXCARCNTE-F/RGD [49]

* Adenovirus
pAd-HM41-K7-EGFL7-IE [46]

* Adenovirus
pWAxCAhAngl1-F/RGD [56, 57]

* Adenovirus
pWEAxCAPIGF-F/RGD [58]

* Adenovirus [59, 61, 62]

* Lentivirus

Lv-mHIF-1a-EGFP [60]
pCDH-CMV-HIF1-T2A-EGFP [71]
* Herpes Simplex Virus
1764/-4/pR19/ssIL2-FGF-2 [64]

* Lentivirus [66]

* Non-viral plasmid [65]

* Herpes Simplex Virus
pR19ratHGFKT3WPRE [67]

* Retrovirus

pLHCX-Akt] [69]

* Lentivirus
pCDH-CMV-Akt1-T2A-EGFP [71]
* Non-viral plasmid [70]

* Lentivirus
pCDH-CMV-Bcl2-T2A-EGFP [71]
pCDH-CMV-Bcl-xI-T2A-EGFP [71]
* Lentivirus
PNL-CXCR4-IRES2-¢GFP [72]

* Adenovirus
Ad5/35EF1a-CXCR4 [73]

» Adeno-associated virus
dsAAV1-CAG-IL-10 [75]

* Lentivirus [76]

* Adenovirus
pAd-HM41-K7-PSP-IE [46]

* Adenovirus
pAd-HM41-K7-SHH-IE [46]

* Lentivirus
LentimiRa-GFP-hsa-miR-133b [77]
* Non-viral plasmid [78]
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integration of exogenous genes into the host genome (retrovi-
ruses and lentiviruses) or as persistent extrachromosomal epi-
somes (herpes viruses, adeno-associated viruses and adenovi-
ruses), these strategies are usually more effective than the
transient transfection of plasmids. However, their clinical ap-
plication is limited by their inherent potential oncogenicity,
toxicity, and immunogenicity. Non-viral vectors are devel-
oped to prevent adverse side effects; however, the transfection
efficiency of non-viral plasmids is significantly lower than of
viral carriers. Benefits and limitations of each individual gene
delivery system for clinical applications are thoroughly
reviewed elsewhere [118, 119].

Epidermal Neural Crest Stem Cells
as a Promising Candidate in Stroke

Based on the above presented studies, BM-MSCs and neural
stem cells are the most abundantly used cell-types that can be
genetically modified to enhance their potential when
transplanted in animal models of stroke. However, our inves-
tigations revealed that epidermal neural crest stem cells (EPI-
NCSCs) can also benefit the inhospitable context of rat model
of ischemic stroke [37] as well as ex vivo [120] and in vivo
[121] models of spinal cord injury. EPI-NCSCs are located in
the bulge area of the hair follicle, and retain the differentiation
potential of their neural crest origin, so that they can differen-
tiate into neural lineages [122]. Unlike BM-MSCs [123], that
their proliferation and differentiation capacity dramatically
decline with aging, recent reports revealed that EPI-NCSCs
of aged donors can maintain their multipotency both in vitro
and in vivo [124]. This advantage over BM-MSCs supports
the application of these stem cells to elderly individuals, who
have an increased incidence of stroke. According to accumu-
lating evidence, EPI-NCSCs express several trophic factors,
which their rate of expression can be manipulated through the
use of different preconditioning strategies [125-129] to
achieve optimum efficiency after transplantation. In addition,
administration of EPI-NCSCs via intra-arterial or intra venous
routes following reperfusion, created a comparable outcome
to intra-arterial grafted BM-MSCs, 7 days after cerebral ische-
mia [37]. It has been implicated that grafted EPI-NCSCs are
mostly acting through the secretion of various trophic factors
such as BDNF, GDNF, NT3, NGF and VEGF that can impose
different modulatory functions [130]. Interestingly, according
to unpublished data from our group, the expression level of all
aforementioned trophic factors, except NT3, is higher than
cultured astrocytes. This striking data supports the beneficial
function of these grafted stem cells in damaged tissues.
Furthermore, EPI-NCSCs showed superior
immunomodulation properties in animal models of nerve in-
jury and stroke, as they upregulated the anti-inflammatory
cytokines, whilst reducing the expression of pro-
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inflammatory cytokines [37, 131, 132]. Since EPI-NCSCs can
easily be transduced to overexpress GFP [133], genetic ma-
nipulations to elevate neurotrophic factor expression seems
feasible, and with this review we hope to prompt further stud-
ies investigating the beneficial characteristics of those cells.
Taken together, owing to neuromodulatory properties of EPI-
NCSCs and their ability to release trophic factors, these stem
cells can be considered as a promising cell type to treat various
conditions such as stroke or even the newly widespread
COVID-19 infections [134, 135].

Clinical Application of Genetically Engineered
Stem Cells for Stroke

Based on the US National Library of Medicine
(ClinicalTrials.gov) as well as the International Clinical
Trials Registry Platform, around 100 cell-therapy based clin-
ical trials have been performed for stroke [136]. Nevertheless,
very few clinical trials have been conducted by using geneti-
cally modified stem cells to treat stroke patients [137]. For
instance, Steinberg et al. [138] employed modified BM-
MSCs called SB623 cells that were transiently transfected

Fig. 4 Unsolved issues for
clinical application of genetically
engineered stem cells

)/ Bone marrow?
Dental pulp?
Endometrium?
Hair follicle?
Adipose?
)

Stem cell type
Mesenchymal?
Neural?
Neural crest?

with a plasmid coding for the intracellular domain of human
Notch-1. A total of 18 patients received 2.5, 5 or 10 million
cells stereotactically (into the infarct area), six to sixty months
after the onset of stroke. The authors reported that the SB623
therapy significantly improved functional recovery in the
National Institutes of Health Stroke Scale, Fugl-Meyer motor
function total score, Fugl-Meyer total score and European
Stroke Scale.

Although genetically engineered stem cells are widely
used in pre-clinical investigations, there are lots of limitations
and unsolved issues for their clinical application: what are the
best types of stem cells and which sources should have been
used for genetic engineering? What are the best gene delivery
systems regarding the safety and efficiency? What are the
adequate target genes that should be modified in stem cells?
How many modified stem cells should be administered, and
through which route? What is the best treatment window after
stroke, and what kind of patient should receive the treatment
(Fig. 4)? In addition, safety and quality control aspects of
overexpressing genes should be carefully considered as well.
For example, the overexpression of one gene might also affect
other related pathways, resulting in unwanted side effects.
Moreover, chemical reagents using for transfection, vector
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backbone sequences, reporter and antibiotic resistance genes,
as well as antibiotic treatment may evoke off-target effects
and/or artifacts [139].

Conclusions

Up until now, therapeutic benefits of a wide variety of stem
cells have been demonstrated in the context of stroke.
Furthermore, as reviewed here, genetically modified stem
cells over-expressing specific proteins, could elevate the re-
storative potential of naive stem cells, by the enhanced
survival/differentiation potential of transplanted cells, apopto-
sis inhibition, infarct volume reduction or neovascularization
which eventually may lead to functional improvements.
Among the different cell types that were discussed here, epi-
dermal neural crest stem cells are attractive candidate that can
be considered for genetic modifications in the context of
stroke, due to their expression profile of neurotrophic factors
and neuromodulatory cytokines. In addition, since the major-
ity of investigations have focused on the short-term curative
effects of genetically engineered stem cells, further studies are
required to clarify their long-term impacts.
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