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Detecting and phasing minor single-nucleotide
variants from long-read sequencing data
Zhixing Feng 1,2✉, Jose C. Clemente 1,2, Brandon Wong 3 & Eric E. Schadt 1,2,4

Cellular genetic heterogeneity is common in many biological conditions including cancer,

microbiome, and co-infection of multiple pathogens. Detecting and phasing minor variants

play an instrumental role in deciphering cellular genetic heterogeneity, but they are still

difficult tasks because of technological limitations. Recently, long-read sequencing technol-

ogies, including those by Pacific Biosciences and Oxford Nanopore, provide an opportunity to

tackle these challenges. However, high error rates make it difficult to take full advantage of

these technologies. To fill this gap, we introduce iGDA, an open-source tool that can accu-

rately detect and phase minor single-nucleotide variants (SNVs), whose frequencies are as

low as 0.2%, from raw long-read sequencing data. We also demonstrate that iGDA can

accurately reconstruct haplotypes in closely related strains of the same species (divergence

≥0.011%) from long-read metagenomic data.
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Cellular genetic heterogeneity is prevalent in multiple bio-
logical conditions. For example, the microbiome contains
multiple bacterial species with distinct genomes, and

patients with infections may carry multiple bacterial strains.
Likewise, in cancer, tumors are typically characterized by multiple
cell types and cell lineages with different genomes. Deconvoluting
such complex cellular genetic heterogeneity is critical to basic
biology and precision medicine. Minor variants, which are
defined as the variants with frequencies lower than 10% in a cell
population, play a central role in deciphering cellular genetic
heterogeneity. Short-read genome sequencing can effectively
characterize a large number of cells simultaneously but cannot
phase minor variants directly due to the limitation of read length,
which is generally under 300 bp1. Long-read sequencing, on the
other hand, can be used to overcome this limitation. The latest
long-read sequencing technologies, including those by Pacific
Biosciences (PacBio) and Oxford Nanopore (ONT), enable
sequencing more than 100 billion bases in a single run and yield
reads with lengths that can exceed 10 kb2–4. These advantages
make it feasible to adopt long-read sequencing to study cellular
genetic heterogeneity in the microbiome, bacterial co-infection,
and cancer in finer details. Because of its long read length and
high throughput, long-read sequencing has the potential to be
applied to detect and phase minor variants at the single-molecule
level without amplification. However, the error rate of raw long-
read sequencing data is usually higher than 10%1,3, and makes it
difficult to detect variants whose frequency is lower than the
sequencing error rate.

Most of the existing methods to detect minor SNVs are based
on short-read sequencing data5–14. The vast majority of these
methods scan the reference genome and detect SNVs or other
variants locus-by-locus. These methods cannot be used for long-
read sequencing data because they are based on the error pattern
of short-read sequencing data, which is different from long-read
sequencing data. Researchers have also tried to leverage the
information of multiple SNVs to increase detection accuracy. V-
Phaser and V-Phaser215,16, which were designed for short-read
sequencing data, use the joint probability of SNV pairs to detect
SNVs. However, to avoid combinatorial explosion, they only use
the joint probability of two SNVs. We will discuss the limitations
of such a restriction for long-read sequencing and demonstrate
how it leads to false negatives in Results.

There are several methods designed specifically to detect variants
from long-read sequencing data. The GenomicConsensus module
(https://github.com/PacificBiosciences/GenomicConsensus) devel-
oped by PacBio generates a consensus sequence from the aligned
PacBio reads and compares it to the reference genome to identify
variants. Nanopolish17 is a variant caller designed specifically for
ONT data, and Clairvoyante18 is a deep-learning-based tool for
Illumina, PacBio, and ONT data. These methods assume that
samples only have one or two haplotypes and therefore cannot be
applied to detect minor variants. MinorSeq (https://github.com/
PacificBiosciences/minorseq), developed by PacBio, is designed to
detect minor variants but requires its input to be circular consensus
sequencing (CCS) reads19. CCS is a special protocol of PacBio
sequencing, which sequences each DNA molecule multiple times to
increase accuracy. Recently, several tools have been developed to
detect variants by leveraging haplotype information from long-read
sequencing data20–22, but they assume that the number of haplo-
types is known. Thus, they cannot be applied to detect and phase
minor variants.

There are several short-read-based methods available to phase
minor SNVs23–29. These methods cluster the reads locally and
phase distant SNVs, whose distances are longer than read length,
using statistical models with strong assumptions. The major

limitation of these methods is that they phase distant minor SNVs
only based on indirect evidence because the read length is too
short to span over the distant SNVs. This limitation can be
overcome by using long-read sequencing data. The existing
haplotyping methods for long-read sequencing data20–22 assume
there are only one or two haplotypes, and thus cannot be used to
phase minor SNVs because the number of haplotypes is
unknown.

In this work, we develop a tool named iGDA (in vivo Genome
Diversity Analyzer) to address the challenges of detecting and
phasing minor SNVs. iGDA can accurately detect and phase
minor SNVs, whose frequencies are as low as 0.2%, in our testing
data. To detect minor SNVs, iGDA leverages the information of
multiple loci without restricting the number of dependent loci,
and uses our proposed algorithm, Random Subspace Maximiza-
tion (RSM), to overcome the issue of combinatorial explosion. To
phase minor SNVs, iGDA uses our proposed algorithm,
Adaptive-Nearest Neighbor clustering (ANN), which makes no
assumption about a number of haplotypes. To evaluate the per-
formance of iGDA, we test it on four pooled long-read sequen-
cing datasets. The number of samples pooled in each dataset
ranges from 65 to 755. The results demonstrate that iGDA can
detect 85.8% to 96.7% of the real SNVs in these datasets at a false
discovery rate (FDR) lower than 1%. Finally, iGDA can phase
minor SNVs at average accuracies ranging from 90.7% to 98.7%.
We also test iGDA on a pooled long-read metagenomic dataset
consisting of 11 Borrelia burgdorferi strains and 744 other bac-
terial species, and discover that the accuracy of iGDA is sufficient
to reconstruct haplotypes in closely related conspecific strains
(strains belonging to the same species) only using one reference
genome. The divergences between the distinguishable conspecific
strains are as low as 0.011%. These results shed light on tackling a
number of challenges such as extracting strain-resolved genome
sequences from long-read metagenomic data and identifying
multiple strains in co-infection.

Results
Detecting minor SNVs by leveraging information of multiple
loci. The major challenge of detecting minor SNVs is to distin-
guish between real SNVs and sequencing errors. It is especially
difficult for raw data of long-read sequencing technologies,
including those by PacBio and ONT, because they have relatively
high error rates. However, we could leverage the fact that long
reads can cover multiple SNVs to substantially increase detection
accuracy. Intuitively, assuming that sequencing errors are inde-
pendent, the same combination of sequencing errors at multiple
loci is unlikely to repeatedly occur together on multiple reads. For
example, in a pooled PacBio sequencing dataset consisting of 186
Bordetella spp. samples (Fig. 1a), the substitutions from the five
marked loci occur together on 28 reads and there are 23,432 reads
covering these five loci. The observed joint probability that these
five substitutions occur together on the same read is 28/23,432=
0.00119, while the expected joint probability is less than 0.15=
0.00001 because the substitution error rate of raw PacBio reads is
less than 0.1 on this dataset (Fig. 1b). The observed joint prob-
ability is over 100 times higher than the expected joint prob-
ability, so it is very likely that some of the five substitutions are
real SNVs. However, the substitution rates of these five SNVs are
0.00569, 0.00845, 0.00748, 0.00960, and 0.00915 respectively and
it is difficult to distinguish them from sequencing errors only
based on the substitution rate (Fig. 1b). Based on these obser-
vations, we propose a framework that uses the conditional sub-
stitution rate instead of the substitution rate to detect SNVs. In
this framework, for each substitution, we adopt the maximal
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probability of observing the substitution conditional on observing
substitutions at p other loci, defined as maximal conditional
substitution rate, to detect whether the substitution is a real SNV.
We call these p loci “dependent loci”. However, as the p depen-
dent loci are unknown, it is infeasible to enumerate all combi-
nations of these p loci to calculate the maximal conditional
substitution rate due to the high computational cost. As p is
unknown, the number of combinations is about ∑2l

p¼1 C
p
2l ¼

22l � 1 for each locus if the average read length is l. We propose
an algorithm called RSM to estimate the maximal conditional
substitution rate efficiently (Fig. 2a–c) (details are in “Methods”).
As shown in Fig. 1c, on the Bordetella spp. data, the real SNVs
and the sequencing errors are highly distinguishable based on the
maximal conditional substitution rate calculated by the RSM
algorithm.

It is very important to note that the number of dependent loci
p should not be fixed. Supplementary Fig. 1 shows an example
that fixing p can induce false negatives. In this example, the
substitution at the locus 1 is independent with the substitutions at
locus 2 and locus 3, respectively, but highly dependent on the
combination of the substitutions at locus 2 and locus 3. Thus, the
SNV at locus 1 is difficult to be detected if p is fixed to 1, but is
easy to be detected if there is no restriction on p. The existing
algorithms V-Phaser and V-phaser215,16 were designed to
identify minor variants from short-read sequencing data and
only leveraged dependence between substitutions at two loci to
avoid combinatorial explosion. This is equivalent to fixing p to 1,
and making these algorithms unable to detect the SNVs in
Supplementary Fig. 1. The proposed RSM algorithm has no
restriction on p and can avoid combinatorial explosion.

Fig. 1 SNVs are dependent on each other. a An IGV (Integrative Genomics Viewer)34 snapshot demonstrating how to use the information of multiple loci
to increase the detection accuracy of SNVs. The number of reads containing the five SNVs marked by black boxes is 28 and the number of reads covering
the five SNVs is 23,432. The observed and expected joint probabilities of the five SNVs are shown to the left of the IGV snapshot. Some reads are not
shown in the figure due to the limit of figure size. b The distribution of substitution rate on the Bordetella spp. data. No outlier is removed in the Sina plot. c
The distribution of maximal conditional substitution rate estimated by the RSM algorithm on the Bordetella spp. data. No outlier is removed in the Sina plot.
Source data are provided as a Source Data file.
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If a SNV is the only SNV in the genome, we call it an orphan
SNV. The proposed framework that uses the conditional
substitution rate to detect SNVs cannot detect orphan SNVs
because its basic assumption is that there are multiple real SNVs
in the same genome. We propose a single-locus-based algorithm
to overcome this limitation (Fig. 2d). We discovered that the
substitution error rate is very different from locus to locus and it
is highly predictable by sequence context (Fig. 3). We trained a
gradient boosting model30 on independent public data and
predicted the substitution error rate for each locus. We then
adopted a likelihood ratio test to compare the observed
substitution rate to the predicted substitution error rate and
reported a SNV if they are significantly different (details are in
“Methods”).

Phasing minor SNVs. Intuitively, the reads of the same genome
should be clustered together and the consensus sequence of each

cluster can be used to phase minor SNVs. Herein, we propose an
algorithm called ANN to cluster the reads and the consensus
sequence of each cluster is called a draft contig (Fig. 2e, f) (details
are in “Methods”). To reduce noise, loci with no detected SNVs
are masked before applying ANN algorithm. A major advantage
of ANN algorithm is that it can estimate the number of clusters
automatically while clustering the reads. To reduce the false-
positive rate of the draft contigs, we adopted a two-step filter to
remove unreliable draft contigs (Fig. 2g). Intuitively, the SNVs in
the same draft contig should be dependent with each other and
the difference between two similar draft contigs should be sta-
tistically significant.

The lengths of the draft contigs are usually smaller than
genome size. To maximize the range where the minor SNVs can
be phased, we assemble the draft contigs using an algorithm
inspired by overlap graph31 (Fig. 2h) (details are in “Methods”").
The assembled draft contigs are called contigs.

Fig. 2 The main steps of iGDA. Details are in the “Methods” section. a Encoding reads by using a single integer to represent both locus and identity of each
substitution. b Generating subspaces by pairwise comparison of reads. c An illustrative example of the Random Subspace Maximization algorithm (RSM). d
Detecting orphan SNVs by correcting sequence-context effect learnt from independent data. e Realigning each read to reduce reference bias. f An
illustrative example of the Adaptive-Nearest Neighbor clustering algorithm (ANN). g Filtering contigs by frequencies and correlations of SNVs and
similarities between contigs. h Assembling filtered contigs by overlap graph.
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Evaluating performance on pooled PacBio sequencing data.
We constructed two datasets to test the accuracy of iGDA. The
first dataset is a mixture of PacBio sequencing data of 186 Bor-
detella spp. samples, and the second dataset is a mixture of 155
Escherichia coli samples. The datasets have been previously
published and their accession IDs in the SRA database (https://
www.ncbi.nlm.nih.gov/sra) are listed in Supplementary Data
file 1. The average sequencing depths of pooled data are 29,208×
for Bordetella spp. and 19,175× for E. coli. We downloaded the
raw data in HDF format from SRA, and filtered the reads by
requiring the estimated read quality (r.q.) greater than 0.75. The
estimated r.q. were extracted from the native HDF file. Bases with
quality value (QV) less than a threshold were masked. We tested
four thresholds, 0, 8, 10, and 12, respectively. We aligned the
filtered reads to the reference genomes of Bordetella pertussis
Tohama I (NCBI Reference Sequence ID is NC_002929.2) for the
Bordetella spp. data and Escherichia coli K12 MG1655 (NCBI
reference sequence ID is NC_000913.3) for the Escherichia coli
data by minimap232, respectively. To minimize the alignment
ambiguity caused by the aligner, we realigned the reads mapped
to the negative strand by aligning their reverse complementary
sequences. We only retained the reads aligned to the con-
catenated rpoB and rpoC region, which is highly conserved. The

1-based coordinates of the reference genomes is [11662, 20018]
for B. pertussis Tohama I and [4181245, 4189573] for E. coli K12
MG1655. We pooled the realigned reads aligned to the con-
catenated rpoB and rpoC region for Bordetella spp. and E. coli
respectively to construct the two datasets. To evaluate the accu-
racy of iGDA, we ran PacBio’s genome consensus module
(https://github.com/pacificbiosciences/genomicconsensus) on the
aligned reads of each sample with default parameters to obtain
the consensus genome sequences and SNVs. The union of the
SNVs was used as a benchmark to evaluate the accuracy of
detecting SNVs. The genome sequence of an individual sample is
defined as a real contig and was used to evaluate the accuracy of
contigs reported by iGDA. We merged samples (real contigs)
with identical SNV profiles and calculated the relative abundances
of the merged samples by the ratio between the number of reads
aligned to each sample and the total number of aligned reads. The
relative abundances of the samples distinct from the reference
genome range from 0.25% to 3.05% for the Bordetella spp. data,
and range from 0.30% to 1.92% for the E. coli data. The average
relative abundances are 0.82% and 0.74% for the Bordetella spp.
data and the E. coli data, respectively.

For detecting minor SNVs, we tested three algorithms—a
single-locus method (SL), which simply uses the substitution rate

Fig. 3 Predicting substitution error rate by a sequence-context-effect model trained on independent data. a Prediction of substitution error rate on the
PacBio Bordetella spp. data. b Prediction of substitution error rate on the PacBio E. coli data. The axis range is set to [0,0.1], and the data points out of the
range are not shown. c Prediction of substitution error rate on the ONT K. pneumoniae data with DNA methylation masked. Source data are provided as a
Source Data file.
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of each locus to detect SNVs; a context-aware single-locus
method (SLC), which uses the substitution rate of each locus with
correcting sequence-context effect (details are in “Methods”); and
the proposed RSM algorithm—on these two test datasets. The
results indicate that RSM algorithm greatly outperforms the two
single-locus methods and achieves a high accuracy (Fig. 4a, b).
With masking bases with QV lower than 8, iGDA detected 96.7%
and 85.8% of the real SNVs at a FDR lower than 1% for the
Bordetella spp. data and E. coli data, respectively. Besides,
correcting the sequence-context effect substantially increases the
detection accuracy of the single-locus methods. The threshold of
base QV also has a minor impact on the accuracy. A non-zero
threshold increases the accuracy on the Bordetella spp. data
(Fig. 4a), but decreases the accuracy on the E. coli data (Fig. 4b).
This might be because masking bases with low QV removes some
sequencing errors but reduces effective sequencing depth. We also

evaluated the accuracy of RSM algorithm under different SNV
frequencies (Supplementary Fig. 2a, b) and different sequencing
depths (Supplementary Fig. 3a, b). The results show that RSM
algorithm can accurately detect minor SNVs even for those with
frequencies lower than 1%.

For phasing minor SNVs, we evaluated the ANN algorithm on
these two datasets, where the bases with QV less than 8 were
masked. The phasing accuracy is evaluated by the accuracy of
each assembled contig, which is defined as the Jaccard index33

with its closest real contig. The average accuracies of the
assembled contigs are 98.9% and 98.3% for the Bordetella spp.
data and E. coli data, respectively (Fig. 5a). Jaccard index between
an iGDA-inferred contig and a real contig is the ratio between the
number of shared SNVs and the total number of unique SNVs in
their overlapped region. The IGV (Integrative Genomics
Viewer)34 snapshot of the contigs obtained from the Bordetella
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Fig. 4 The accuracy of detecting minor SNVs on pooled sequencing data. a The accuracy on PacBio Bordetella spp. data. b The accuracy on PacBio E. coli
data. c The accuracy on ONT K. pneumoniae data. d The accuracy on ONT K. pneumoniae data with DNA methylation masked. e The legend of subfigures a–
d RSM Random Subspace Maximization algorithm, SL single-locus algorithm, SLC single-locus algorithm with correcting sequence-context effect, and QV
quality value. True positive rate = number of correctly detected SNVs/number of real SNVs. False discovery rate= 1− number of correctly detected
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23289-4

6 NATURE COMMUNICATIONS |         (2021) 12:3032 | https://doi.org/10.1038/s41467-021-23289-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


spp. data and the E. coli data are shown in Fig. 5b and
Supplementary Fig. 4. The results show that the iGDA-inferred
contigs match the real contigs very well, even for the real contigs
with frequencies lower than 1%. In Fig. 5b, there are five real
contigs that are not detected by our algorithm. One of them has
no SNV (the reference genome); two of them only have a single
orphan SNV with very low frequency, which is hard for the RSM
algorithm to detect; and two of them are highly similar to another
genome. The results indicate that the minor SNVs can be phased
effectively except for the genomes that have an orphan SNV or
are highly similar to another genome.

Evaluating performance on pooled ONT sequencing data. We
tested iGDA on a dataset consisting of a mixture of ONT
sequencing data of 65 Klebsiella pneumoniae samples. The SRA
IDs are listed in Supplementary Data file 2. We downloaded the
raw data in fastq format from the SRA database (https://www.
ncbi.nlm.nih.gov/sra), filtered, and trimmed the reads using
fastp35. The reads with average QV less than 8 were discarded,
and the first 50 bp and the last 200 bp were trimmed for each
read. Similar to the PacBio data, we used four thresholds, 0, 8, 10,
and 12, respectively, to mask bases with low QV. The reads were
then aligned to the reference genome of K. pneumoniae subsp.
pneumoniae HS11286 (NCBI reference sequence ID is
NC_016845.1). We realigned the reads mapped to the negative
strand by aligning their reverse complementary sequences. We
only retained the reads aligned to the concatenated rpoB and rpoC
region, whose one-based coordinate is [227354, 235682]. We then
pooled the aligned reads to construct the testing data. To evaluate
the accuracy of iGDA, we downloaded assembly for each sample
in the pooled data (Supplementary Data file 2) from NCBI
(https://www.ncbi.nlm.nih.gov/assembly) and aligned the assem-
bled genomes to the reference genome using MUMmer36. The
union of the SNVs reported by MUMmer was used as a bench-
mark to evaluate the accuracy of detecting SNVs. The genome
sequence of an individual sample is defined as a real contig and
was used to evaluate the accuracy of contigs reported by iGDA.
We used the same method in the previous section to merge
identical samples and obtain the relative abundance of each
sample. The relative abundances range from 0.20% to 9.30%, and
the average relative abundance is 3.20%.

Due to the unique sequencing mechanism of ONT, DNA
methylation can affect the raw sequencing signal and substantially
increase the base-calling error rate of methylated bases (Supple-
mentary Fig. 5). The base caller used in the public ONT data in
this study is Albacore (version 2.0) (https://github.com/Albacore/
albacore). To avoid the impact of DNA methylation, we
developed an algorithm to identify DNA methylation motifs in
bacteria without using raw signal of ONT data (details are in
Methods). We masked loci within five bases to the DNA
methylation motifs before applying iGDA to this dataset.

The result shows that the RSM algorithm substantially
outperforms the single-locus methods to detect minor SNVs,
and achieves a high accuracy (Fig. 4c). With DNA methylation
and bases with QV lower than 10 masked, iGDA detected 92.8%
of the real SNVs at FDR lower than 1%. With masking no DNA
methylation but masking bases with QV lower than 10, iGDA
detected 41.3% of the real SNVs at FDR lower than 1%. Thus,
masking DNA methylation increases the accuracy of the RSM
algorithm (Fig. 4d), which demonstrates the importance of
removing DNA methylation or applying a methylation-aware
base caller to detecting minor SNVs from ONT data. Masking
bases with low QV can substantially increase the accuracy and
different thresholds have similar accuracies (Fig. 4c, d). In
contrast to PacBio data, correcting sequence context does not
significantly increase the detection accuracy of the single-locus
methods. We speculate that this is because the prediction power
of sequence context on the ONT data is weaker than that on the
PacBio data (Fig. 3). We also evaluated the accuracy of RSM
algorithm under different SNV frequencies (Supplementary
Fig. 2c, d) and different sequencing depths (Supplementary
Fig. 3c, d). The results show that RSM algorithm can accurately
detect minor SNVs even for those with frequencies lower
than 1%.

DNA methylation has a large impact on the accuracy of
phasing minor SNVs. With masking loci affected by methylation
and bases with QV lower than 10, the average accuracy of
assembled contigs is 91.0% (Fig. 5a). However, without masking
loci affected by methylation, the average accuracy of assembled
contigs is only 54.5% (Fig. 5a). An IGV snapshot of methylation-
masked contigs is shown in Supplementary Fig. 6. The result
shows that the iGDA-inferred contigs match the real contigs very
well with DNA methylation masked. It is critical to reduce the

Fig. 5 The accuracy of phasing minor SNVs. a The sina plot of accuracy of phasing minor SNVs on the four testing datasets. b The IGV snapshot of the
contigs inferred by iGDA on the PacBio Bordetella spp. data. An inferred contig is grouped with its most similar real contig (measured by Jaccard index).
Relative abundance is shown to the left of each contig. Source data are provided as a Source Data file.
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impact of DNA methylation by whole-genome amplification
(WGA) or by adopting a methylation-aware base caller.

De novo identification of multiple Borrelia burgdorferi strains
from long-read metagenomic data. To test whether iGDA can be
applied to identify multiple strains of the same species from
metagenomic data, we constructed a metagenomic dataset by
mixing PacBio sequencing data of 11 B. burgdorferi strains, the
causal agent of Lyme disease37, and 744 other bacterial samples.
The SRA IDs, species, and strains are in Supplementary Data
file 3. We filtered the reads by requiring r.q. value greater than
0.75. r.q. was extracted from the native HDF files. Bases with QV
less than 8 were masked. We then aligned the reads to the
reference genome of B. burgdorferi B31 (NCBI reference sequence
ID is NC_001318.1), and realigned the reverse complementary of
the reads mapped to the negative strand. To evaluate the accuracy
of iGDA, we assembled genome of each B. burgdorferi strain
using flye38 and aligned the assembly to the reference genome
using MUMmer36 to obtain benchmark SNVs.

We ran iGDA on the realigned data and constructed 753
contigs. The average accuracy of the contigs is 93.5% (Fig. 5a) and
contig length is up to 139 kb. The IGV snapshots of the contigs
reported by iGDA show that multiple strains of B. burgdorferi can
be clearly identified by iGDA (Fig. 6a, Supplementary Figs. 7 and
8). The minimal divergence of a region where the B. burgdorferi
strains can be distinguished is 0.011% (details are in “Methods”").
To further evaluate the accuracy of iGDA, we performed MLST
(Multilocus Sequence Typing)39 on the contigs and the genome
sequence of each strain using the database at https://pubmlst.org/
borrelia (details are in “Methods”). In MLST, we aligned iGDA-
inferred contigs and the genome sequence of each strain to the
MLST database, consisting of known alleles of the eight house-
keeping genes in Borrelia spp., to find the best matches. The result
shows that most of the alleles that present in the genome
sequence of each strain can be found in the iGDA-inferred
contigs, and there is no false positive alleles (Fig. 6b). The alleles
of the adjacent house-keeping genes, pyrG, recG, clpX, and pepX,
can be phased by the contigs reported by iGDA (Fig. 6b).

It is worth to note that some genome regions in Fig. 6a are not
covered by any contig. We call these regions missed regions and
call the SNVs not covered by any contig missed SNVs. We found
that there are usually multiple strains that are highly similar to
each other in the missed region. In the example shown in
Supplementary Fig. 7, at least four samples have highly similar
sequences in the missed region. Some missed regions have no
SNV compared to the reference genome because iGDA does not
report contigs with no SNV. In the example in Supplementary
Fig. 8, samples SRR7967871 and SRR7967873 have several large
missed regions, which have no SNV compared to the reference
genome. To further assess the impact of highly similar strains on
the performance of iGDA, we calculated Jaccard index of SNVs
for each pair of the B. burgdorferi samples, and found that some
samples are highly similar to each other. The result in
Supplementary Fig. 10a indicates that samples SRR7967879,
SRR7967880, SRR7967872, SRR7968340, and SRR7968341 are
highly similar to each other, and sample SRR7967869 is highly
similar to sample SRR7968342. We constructed a new dataset
where only one sample is retained out of the highly similar
strains. Specifically, we excluded samples SRR7967879,
SRR7967880, SRR7967872, SRR7968340, and SRR7968342 from
the samples listed in Supplementary Data file 3, and reran iGDA
on the new data. The result shows that the accuracy of each
contig is not significantly changed by excluding highly similar
strains (Supplementary Fig. 10b). However, the length of contigs
and proportion of SNVs covered by contigs are substantially

increased (Supplementary Figs. 10c, d, and 9). The species other
than B. burgdorferi have limited impact on the results because
most of the reads from these species (Supplementary Data file 3)
cannot be aligned to the reference genome of B. burgdorferi, and
99.93% of the aligned reads are aligned to 16S ribosomal RNA or
23S ribosomal RNA.

We tested iGDA on the mimic metagenomic data using a
CentOS Linux machine with 96-core 2.70 GHz Intel 8168 CPU
and 1 Tb RAM. It took 51 min using 32 threads (3.6 CPU hours)
to detect SNVs and took 1.5 h using 32 threads (5.5 CPU hours)
to phase SNVs. The peak memory was 5.3 Gb.

Discussion
We here present iGDA, an open-source tool implementing sev-
eral innovative algorithms that can achieve a high accuracy for
detecting and phasing minor SNVs. iGDA makes it feasible to
study a number of previously challenging problems, such as
constructing strain-level genome sequence in microbiome sam-
ples and identifying genome sequence of pathogens in samples
with co-infection. The RSM and ANN algorithms proposed in
this work are generic methods and can be extended to apply to
single-cell genome sequencing data or 10X genomics linked-
read40 data. In addition to genome sequencing, these algorithms
have the potential to be applied in RNA sequencing data as well.
For example, with an alternative prepossessing procedure, these
algorithms can be used to decipher the heterogeneity of A-to-I
RNA editing using long-read sequencing.

A major limitation of iGDA is that its high accuracy relies on the
presence of multiple SNVs. Therefore, iGDA has reduced accuracy
to detect orphan SNVs with very low frequency. Besides, the pre-
sence of highly similar genomes will reduce the accuracy of iGDA.

DNA methylation can induce correlated substitution errors on
ONT data and reduce the accuracy of iGDA. Masking DNA
methylation can increase the accuracy of iGDA on ONT data.
Using WGA to remove DNA methylation is a solution to this
issue. Another solution is to use a base caller that can correct
methylation-induced error, but there is no such tool currently
available according to our best knowledge.

In this work, we only detect minor SNVs because they are less
affected by alignment ambiguity compared to insertions and
deletions (Indel). Alignment ambiguity means an Indel might be
located to multiple loci in the genome but the corresponding
alignment scores are equal. To extend our RSM and ANN algo-
rithms to detect minor Indels or other more complicated variants,
an alternative way to represent variants and alignments is needed.

Methods
Leveraging multiple loci to detect SNVs. For the ith aligned read, we encode its
substitution at locus k of the reference genome by the following formula:

sik ¼

4k rik ≠ tk; rik ¼ A

4kþ 1 rik ≠ tk; rik ¼ C

4kþ 2 rik ≠ tk; rik ¼ G

4kþ 3 rik ≠ tk; rik ¼ T

ϵ rik ¼ tk

8>>>>>><>>>>>>:
; ð1Þ

where rik is the base (short for nitrogenous base) of the ith aligned read at locus k,
tk is the base at locus k of the reference genome and ϵ is an empty element, which is
formally defined by fϵg ¼ ;. The first locus of the reference genome is 0
throughout this paper unless otherwise stated. The ith read is represented as a set of
substitutions and its covering range (Fig. 2a) and is denoted by

Ri ¼ ðSi; ½bi; ei�Þ: ð2Þ
bi and ei are the start and end loci of the region covered by the read, respectively,
and Si is

Si ¼ fsibi ; sibiþ1; :::; siei g: ð3Þ
The most intuitive way to detect SNVs is to use the substitution rate of each

locus. Formally, we denote the encoded substitution at locus k as a random variable

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23289-4

8 NATURE COMMUNICATIONS |         (2021) 12:3032 | https://doi.org/10.1038/s41467-021-23289-4 | www.nature.com/naturecommunications

https://pubmlst.org/borrelia
https://pubmlst.org/borrelia
www.nature.com/naturecommunications


Xk, and denote probability of the event {Xk= xk} as Pr(Xk= xk), where xk∈ {4k, 4k
+ 1, 4k+ 2, 4k+ 3}. Substitution rate is defined as the estimated Pr(Xk= xk),
which is

P̂rðXk ¼ xkÞ ¼
jfi j xk 2 Sigj

jfi j k 2 ½bi; ei�gj
; ð4Þ

where {⋅} is a set and ∣⋅∣ is the number of elements in a set. Intuitively, in Eq. (4),
the numerator is the number of reads with substitution xk at locus k, and the
denominator is the number of reads covering locus k. Due to the high error rate of
long-read sequencing data, it is inaccurate to detect minor variants using
substitution rate alone (Fig. 1b). Herein, we leverage the information of multiple
loci to increase the detection accuracy. Assuming sequencing errors are
independent with each other, real SNVs are likely to be present if there are multiple
reads containing the same set of substitutions (Fig. 1a). The conditional probability
of {Xk= xk} given other real SNVs of the same genome is therefore much larger
than the marginal probability of {Xk= xk} if xk is a real SNV, because these real
SNVs are positively dependent (Fig. 1a, c). Formally, the conditional probability of
event {Xk= xk} given p other substitutions is defined as

PrðXk ¼ xkjXg1
¼ xg1 ;Xg2

¼ xg2 ; :::;Xgp
¼ xgp Þ, which is estimated by

P̂rðXk ¼ xkjXg1
¼ xg1 ;Xg2

¼ xg2 ; :::;Xgp
¼ xgp Þ ¼

jfi j fxk; xg1 ; xg2 ; :::; xgp g � Sigj
jfi j fxg1 ; xg2 ; :::; xgp g � Si; k 2 ½bi; ei�gj

:

ð5Þ
Intuitively, in Eq. (5), the numerator is the number of reads containing

substitution xk and the p other substitutions, and the denominator is the number of
reads that contain the p other substitutions and cover locus k. The p loci, g1, g2, ...,
and gp are called dependent loci. As xg1 , xg2 , ..., xgp , and p in Eq. (5) are unknown,

the estimated maximal conditional probability of event {Xk= xk} given p other
substitutions is used to detect SNVs and is formally defined by

HðxkÞ ¼ max
p;xg1 ;xg2 ;:::;xgp

fP̂rðXk ¼ xkjXg1
¼ xg1 ;Xg2

¼ xg2 ; :::;Xgp
¼ xgp Þg: ð6Þ

The substitution xk is detected as a real SNV if H(xk) is larger than a threshold
(0.65 in this study). H(xk) is also called maximal conditional substitution rate. To
avoid high variance of the estimated PrðXk ¼ xkjXg1

¼ xg1 ;Xg2
¼ xg2 ; :::;Xgp

¼
xgp Þ (Eq. 5), we require that jfi j fxg1 ; xg2 ; :::; xgp g � Si; k 2 ½bi; ei�gj>¼ vmin, and

vmin= 25 in this study. Sequencing errors at multiple loci that are very close to each

Fig. 6 De novo identification of multiple Borrelia burgdorferi strains from PacBio metagenomic data. a The IGV snapshot of the contigs inferred by iGDA
from the metagenomic data. Each contig is grouped with its closest real contig (B. burgdorferi strain). bMultilocus Sequence Typing (MLST) of B. burgdorferi
in the metagenomic data. The columns are the alleles of the eight house-keeping genes used in MLST. Each row is the alleles of the genome of each sample
(strain). The row names are the accession numbers of each sample in Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra). An allele is
detected if it matches a contig inferred by iGDA. There are two alleles that have no 100% match in the MLST database, and their similarities to the closest
alleles in the database are shown in the brackets. All the other alleles have a 100% match in the database. Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23289-4 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3032 | https://doi.org/10.1038/s41467-021-23289-4 | www.nature.com/naturecommunications 9

https://www.ncbi.nlm.nih.gov/sra
www.nature.com/naturecommunications
www.nature.com/naturecommunications


other might induce slightly dependent substitutions. To avoid the impact of
dependent substitutions induced by sequencing errors, we require that locus k and
loci g1, g2, ..., gp are not too close. Specifically, we require HD(k, gs) ≥ 15 for any
gs∈ {g1, g2, ..., gp}. HD(k, gs) is the homopolymer distance between locus k and
locus gs, and is defined as the number of homopolymers between the two loci. A
homopolymer is a set of consecutive identical bases, and a base with no identical
adjacent bases is also defined as a special homopolymer with size equal to 1.

It is computationally infeasible to enumerate all combinations of p loci to
estimate H(xk) in Eq. (6). It is important to note that it is insufficient to detect
SNVs accurately by restricting the number of dependent loci p to a certain number.
In the example shown in Supplementary Fig. 1, H(xk) fails to detect the real SNVs if
p is restricted to 1. Likewise, we can also have similar examples if p is restricted to
another number greater than 1. In this work, we developed an algorithm called
RSM that can estimate H(xk) efficiently without restricting p.

Detecting SNVs by RSM algorithm
The greedy algorithm and its theoretical accuracy. We introduce a fast but inac-
curate greedy algorithm to estimate H(xk) (Eq. 6), and then improve its accuracy by
RSM in the next section. To estimate H(xk) for substitution xk at locus k, we only
need to consider dependent loci in range [k− tl, k+ tr], where

tl ¼ max
t
f jfi j ½k� t; k� � ½bi; ei�gj> 0 g

tr ¼ max
t
f jfi j ½k; kþ t� � ½bi; ei�gj> 0 g:

[bi, ei] is the covering range of read Ri (equation (2)), and ∣{⋅}∣ is the number of
elements in set {⋅}. Intuitive, [k− tl, k+ tr] is the largest range where [k− tl, k] and [k,
k+ tr] are fully covered by at least one read. We estimate Pr(Xk= xk∣Xg= xg) by Eq.
(5) for each locus g∈ [k− tl, k+ tr] ∩ {k}c ({⋅}c is complement of a set), and sort the
loci according to Pr(Xk= xk∣Xg= xg) in descending order. The sorted loci are denoted
as fs1; s2; :::; stlþtr

g, and PrðXk ¼ xkjXst�1
¼ xst�1

Þ≥ PrðXk ¼ xkjXst
¼ xst Þ. We keep

adding locus st to {s1, s2, ..., st−1} if P̂rðXk ¼ xkjXs1
¼ xs1 ;Xs2

¼ xs2 ; :::;Xst
¼ xst Þ>

P̂rðXk ¼ xkjXs1
¼ xs1 ;Xs2

¼ xs2 ; :::;Xst�1
¼ xst�1

Þand stop if otherwise. P̂rðXk ¼
xkjXs1

¼ xs1 ;Xs2
¼ xs2 ; :::;Xsv

¼ xsv Þ based on the final v selected loci {s1, s2, ..., sv} is
used to estimate H(xk).

The naive greedy algorithm described above avoids combinatorial explosion
but might have low accuracy. We assume xk; xg 01 ; xg 02 ; :::; xg 0p are p+ 1 real SNVs

of the same genome, and xg 01 ; xg 02 ; :::; xg 0p are the only p substitutions that can

maximize P̂rðXk ¼ xkjXg1
¼ xg1 ;Xg2

¼ xg2 ; :::;Xgp
¼ xgp Þ. Formally,

HðxkÞ ¼ P̂rðXk ¼ xkjXg 01
¼ xg 01 ;Xg 02

¼ xg 02 ; :::;Xg 0p
¼ xg 0p Þ, and P̂rðXk ¼ xkjXg1

¼
xg1 ;Xg2

¼ xg2 ; :::;Xgp
¼ xgp Þ< P̂rðXk ¼ xkjXg 01

¼ xg 01 ;Xg 02
¼ xg 02 ; :::;Xg 0p

¼ xg 0p Þ if
fg1; g2; ::; gpg≠ fg 01; g 02; ::; g 0pg. Assuming k; g 01, g

0
2, ..., g

0
p are the only loci with real

SNVs in [k− tl, k+ tr], we define signal-to-noise ratio by

ρ0 ¼ Prð P̂rðXk ¼ xkjXgs
¼ xgs Þ> max

xgt
fP̂rðXk ¼ xkjXgt

¼ xgt Þg Þ;

where xgs 2 fxg 01 ; xg 02 ; ::; xg 0p g and gt =2 fg 01; g 02; ::; g 0pg. gt =2 fg 01; g 02; ::; g 0pg is equivalent
to gt 2 ½k� tl ; kþ tr � \ fk; g 01; g 02; ::; g 0pgc. For any locus gs 2 fg 01; g 02; ::; g 0pg, the
probability that it is selected by the greedy algorithm is denoted as Pr(gs ∈ {s1, s2,
..., sv}), where {s1, s2, ..., sv}) is the v loci selected by the greedy algorithm.
Without loss of generality, assuming v ≤ p and sequencing errors are
independent,

Prðgs 2 fs1; s2; :::; svgÞ≤ Prðgs 2 fs1; s2; :::; spgÞ
¼

Y
gt=2fg 01 ;g 02 ;::;g 0pg

Prð P̂rðXk ¼ xkjXgs
¼ xgs Þ> max

xgt
fP̂rðXk ¼ xkjXgt

¼ xgt Þg Þ

¼ ρ
ðtlþtr�pÞ
0 :

The probability that the greedy algorithm correctly estimates H(xk) is

PrðHðxkÞ ¼ P̂rðXk ¼ xkjXs1
¼ xs1 ;Xs2

¼ xs2 ; :::;Xsv
¼ xsv ÞÞ ¼Prðfg 01; g 02; :::; g 0pg � fs1; s2; :::; svgÞ

≤ Prðgs 2 fs1; s2; :::; svgÞ
¼ ρ

ðtlþtr�pÞ
0 :

ð7Þ
According to inequation (7), assuming tl ≥ 2000, tr ≥2000, and p= 1, which is a

typical setting for long-read sequencing data, the probability that the greedy
algorithm correctly estimates H(xk) is less than 3.5 × 10−18 even if ρ0= 0.99. The
key factor leading to the failure of the greedy algorithm is selecting from too many
loci (tl+ tr loci). We propose an algorithm called RSM to reduce the number of loci
to be considered in the next section.

Improving accuracy of the greedy algorithm by RSM. First, we measure the similarity
between two reads, Ri and Rj, by a modified Jaccard index33, which is defined by

JaccardðRi;RjÞ ¼
j Si \ Sj j

j ðSi ∪ SjÞ \ ½4maxðbi; bjÞ; 4minðei; ejÞ þ 3� j ð8Þ

where Jaccard(Ri, Rj)= 0 if the denominator is 0. We require

j ½maxðbi; bjÞ;minðei; ejÞ� j≥ lmin

where lmin is the minimal length of the overlap region between the two compared
reads. We used lmin= 0.5(ei− bi) in this work. Intuitively, the Jaccard index
between two reads is the ratio between number of common substitutions shared by
the two reads and the total number of substitutions of the two reads in their
overlapped region. Then, for a read Ri, we select w most similar reads according to
the Jaccard index. For each read Rj in these w selected reads, we generate a set of
substitutions shared by Ri and Rj. Formally, Cij= Si ∩ Sj. Cij is called a subspace
(Fig. 2b), and we can generate w ×m subspaces if there are m reads. We used w=
100 in this work. For a substitution Xk∈ Cij, we estimate its maximal conditional
probability of {Xk= xk} in subspace Cij, which is defined by

HCij
ðxkÞ ¼ max

fxg1 ;xg2 ;:::;xgp g�Cij

P̂rðXk ¼ xkjXg1
¼ xg1 ;Xg2

¼ xg2 ; :::;Xgp
¼ xgp Þ

n o
¼ max

xg1 ;xg2 ;:::;xgp

j ft j fxk; xg1 ; xg2 ; :::; xgp g � ðSt \ CijÞg j
j ft j fxg1 ; xg2 ; :::; xgp g � ðSt \ CijÞ; k 2 ½bt ; et �g j

( )
;

ð9Þ
using the greedy algorithm described in the previous section by only considering
the substitutions in Cij. Thus, compared to the original greedy algorithm, the
number of loci to be considered is substantially reduced. We then use

ĤðxkÞ ¼ max
Cij

ðĤCij
ðxkÞÞ ð10Þ

to estimate the maximal conditional probability of {Xk= xk} defined by Eq. (6).
ĤCij

ðxkÞ is the maximal conditional probability of {Xk= xk} in subspace Cij esti-

mated by the greedy algorithm. The whole procedure of estimating H(xk) in the
w ×m subspaces is called RSM (Fig. 2c).

Theoretical accuracy of RSM algorithm. Without the loss of generality, we denote
fx0g1 ; x

0
g2
; :::; x0gp g as the only set of substitutions that maximizes

P̂rðXk ¼ xkjXg1
¼ xg1 ;Xg2

¼ xg2 ; :::;Xgp
¼ xgp Þ, and Ω as the set of subspaces

containing fxk; x0g1 ; x
0
g2
; :::; x0gp g. For a subspace Ct∈Ω, the probability that the

greedy algorithm finds fx0g1 ; x
0
g2
; :::; x0gp g is denoted as PrðĤCt

ðxkÞ ¼ HðxkÞÞ, where
Hk is defined by Eq. (6). The probability that RSM algorithm finds fx0g1 ; x

0
g2
; :::; x0gp g

is

PrðĤðxkÞ ¼ HðxkÞÞ ¼ Prð ∪ Ct2ΩfĤCt
ðxkÞ ¼ HðxkÞg Þ

¼ 1� Prð \Ct2ΩfĤCt
ðxkÞ≠HðxkÞgÞ:

ð11Þ

Assuming PrðĤCt
ðxkÞ ¼ HðxkÞÞ> 0, and according to the chain rule of joint

probability,

Prð\Ct2ΩfĤCt
ðxkÞ≠HðxkÞgÞ ¼

PrðĤC1
ðxkÞ≠HðxkÞÞ

YjΩj
t¼2

PrðĤCt
ðxkÞ≠HðxkÞjĤCt�1

ðxkÞ≠HðxkÞ; :::; ĤC1
ðxkÞ≠HðxkÞÞ;

where PrðĤCt
ðxkÞ≠HðxkÞjĤCt�1

ðxkÞ≠HðxkÞ; :::; ĤC1
ðxkÞ≠HðxkÞÞ< 1 if Ct∉ {Ct−1,

Ct−2, ..., C1}. As sequencing depth increases, ∣Ω∣ increases, and
Prð\Ct2ΩfĤCt

ðxkÞ≠HðxkÞgÞ converges to 0. Thus, PrðĤðxkÞ ¼ HðxkÞÞ (Eq. (11))
converges to 1 as sequencing depth increases. Intuitively, with infinite sequencing depth,
RSM algorithm is guaranteed to detect real SNVs correctly if these SNVs have larger
maximal conditional probabilities than sequencing errors.

Detecting orphan SNVs by correcting sequence-context effect. As RSM algorithm
requires multiple real SNVs, it cannot detect orphan SNVs. An orphan SNV is the
only SNV of the genome. We have to rely on the single-locus algorithm described
in Eq. (4) to detect orphan SNVs. However, the substitution rate of a locus is not
only affected by real SNVs but also affected by the sequence context of the locus.
We built a gradient boosting30 model to learn the sequence-context effect and
corrected it by the following likelihood ratio method (Fig. 2d). For a substitution xk
at locus k, its likelihood ratio is

LRðxkÞ ¼
Binomialðtk; nk; p1Þ
Binomialðtk; nk; p0Þ

; ð12Þ

where Binomial(x; n, p) is the probability mass function of binomial distribution
with parameters n and p, and

tk ¼ jfi j xk 2 Sigj
nk ¼ jfi j k 2 ½bi; ei�gj
p1 ¼

tk
nk

p0 ¼Predicted sequencing error rate by sequence context:

The substitution xk is detected as a SNV if LR(xk) is larger than a threshold. We
used a threshold of 50 in this work. Calculation of p0 is introduced in the next
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section. To reduce FDR, we also required a detected SNV has a substitution rate
higher than 0.1 for PacBio data and 0.2 for ONT data respectively.

Modeling sequence-context effect on sequencing error rate. Error rate of long-read
sequencing is strongly affected by sequence context (Fig. 3). For locus i, we define
its one upstream homopolymer and one downstream homopolymer as its sequence
context (Supplementary Fig. 11). We adopted the gradient boosting model
implemented by xgboost (version 0.90)30 to predict substitution rate of each locus
by its sequence context. For PacBio, we trained the model on a dataset consisting of
79 PacBio RS II runs with P6-C4 chemistry and a dataset consisting of 24 PacBio
RS II runs with P4-C2 chemistry, respectively (SRA IDs of the data are listed in
Supplementary Data file 4). As the sequence-context effects on these two datasets
are highly similar, we only used the model trained on the P6-C4 data for the
analysis. For ONT, we trained the model on a dataset consisting of eight MinION
runs with R9.4 chemistry (SRA IDs of the data are listed in Supplementary Data
file 4). We tuned three parameters in gradient boosting, step size (eta in xgboost),
number of trees (num_round in xgboost) and maximal depth of trees (max_depth
in xgboost) and used the parameters with the highest fivefold cross-validation
accuracy (Supplementary Data file 5). We used R2 as the measurement of accuracy,
which is defined by

R2 ¼ ∑n
i¼1 ðyi � ŷiÞ2

∑n
i¼1 ðyi � �yÞ2

where yi is the substitution rate of a sequence context, ŷi is the predicted sub-
stitution rate, �y is the average substitution rate, and n is the number of unique
sequence contexts. For PacBio, step size, number of trees and maximal depth of
trees with the highest accuracy are 0.01, 2000, and 10, respectively. For ONT, step
size, number of trees, and maximal depth of trees with the highest accuracy are 0.1,
2000, and 10, respectively.

We also masked bases with QV thresholds 8, 10, and 12, and trained three
different models on the masked data. Each model is used in the detection algorithm
which masks bases with the same QV threshold. In the case of not masking any
base, we predicted substitution rate using the trained model on the three pooled
sequencing datasets (Fig. 3). The results show that the substitution error rate is
strongly affected by sequence context and can be well predicted by our model.

Phasing minor SNVs. To detect whether multiple minor SNVs are from the same
DNA molecule, we proposed an algorithm called ANN. As the reads inevitably
have errors, an intuitive way to phase minor SNVs is to cluster the reads and use
the consensus sequences of each cluster to phase the minor SNVs. However, an
intrinsic difficulty of clustering algorithms is to determine the number of clusters,
which is unknown. The ANN algorithm can directly estimate the number of
clusters from data.

Adaptive-Nearest-Neighbors clustering. First, we realigned each read to reduce
reference bias (details are in the next section) and only retained detected SNVs for
each read. Formally, for read Ri (Eq. 2), we useeSi ¼ Si \ fDetected SNVsg; ð13Þ
where Si is defined in Eq. (3).

The intuitive idea of ANN algorithm is that all loci should be homogeneous by
piling up the reads in each cluster (Supplementary Fig. 12). A locus is
homogeneous if it satisfies the following condition. For locus k, its substitution rate
satisfies

ePrðXk ¼ xkÞ ¼
jfi j xk 2 eSigj

∑3
d¼0 jfi j 4kþ d 2 eSigj þ jfi j rik ¼ tkgj

2 ½0; plim�∪ ½1� plim; 1�;

ð14Þ
where xk∈ {4k, 4k+ 1, 4k+ 2, 4k+ 3}, rik is the base of read i at locus k, and tk is
the base of the reference genome at locus k. In this work, We set plim= 0.2 for the
PacBio data and plim= 0.3 for the ONT data. Intuitively, the numerator is the
number of substitutions with alternative base equals to xk at locus k, the first term
of the denominator is the total number of substitutions, and second term of the
denominator is the number of bases equal to the reference genome at locus k. Locus
k is homogeneous if ePrðXk ¼ xkÞ≤ plim or ePrðXk ¼ xkÞ≥ 1� plim for any xk∈ {4k,
4k+ 1, 4k+ 2, 4k+ 3}.

For a read i (called seed read), we sorted its q most similar reads according to
the Jaccard index (Eq. 8), and kept discarding the most dissimilar one until all loci
covered by the seed read are homogeneous or maximal coverage of the loci is
smaller than a threshold (10 in this work) (Fig. 2f). We recorded the consensus
sequence as a draft contig if all the loci are homogeneous (Supplementary Fig. 12).
We calculated the Jaccard index of each read with all the draft contigs, and assigned
the read to the contig with the largest Jaccard index. A read is assigned to the
reference genome if its largest Jaccard index is smaller than 0.5. The abundance of a
contig is defined as the number of reads assigned to it.

A problem of the algorithm described above is that the alignment is affected by
reference bias and homogeneous loci could be mistaken for heterogeneous loci.
Reference bias is the phenomenon that the substitution rate of a real SNV at a

homogeneous locus is significantly lower than 1− substitution error rate
(Supplementary Fig. 13a).

Reference bias and local realignment. For each detected SNV, we adopted standard
Smith–Waterman algorithm implemented by SeqAn (version 2.4) (https://www.
seqan.de) to realign reads to four modified reference sequences with A, C, G, or T
at each locus with a detected SNV. The scores of match, mismatch, gap open, and
gap extension are 2, −4, −4, and −2, respectively, and the score of a base aligned to
base N or a masked low-QV base is 0. To avoid the high computational cost, we
only realigned 21 homopolymers whose center is the locus with detected SNV. For
each read, the modified base in the reference sequence with the highest alignment
score is recorded as a substitution of the read (Fig. 2e and Supplementary Fig. 14).
We tested the realignment method on a single E. coli dataset (SRA ID is
ERS718594), which is presumably homogeneous. The result shows that local rea-
lignment can substantially reduce reference bias (Supplementary Fig. 13b). The
average substitution rate of loci with real SNVs is 84.8% before realignment, and
the average substitution rate of loci with real SNV is 95.9% after realignment. We
performed local realignment before ANN algorithm in our analysis.

Filtering draft contigs. To reduce false-positive rate of the inferred draft contigs by
ANN algorithm, we adopted a two-step algorithm to filter the draft contigs
(Fig. 2g). In the first step, we tested whether the frequency of each individual SNV
in each contig is significantly higher than the sequencing error rate and whether
SNVs in each contig are independent using the Bayes factor. The contig is filtered if
the frequency of any of its SNVs is not significant and its SNVs are independent
(Supplementary Fig. 15a). In the second step, we compared the contigs pairwise,
and the contig with lower abundance in each pair is filtered if the contigs are not
significantly different according to the Bayes factor (Supplementary Fig. 15b).

Assembling draft contigs. The length of the draft contigs obtained by ANN algo-
rithm is usually smaller than genome size, except in a few cases like a virus genome.
Therefore, we have to assemble the draft contigs to obtain the whole picture of the
underlined genomes in the sequenced sample. We borrowed the idea of overlap
graph31 from de novo genome assembly to assemble the draft contigs. We denoted
each draft contig as a vertex in a graph and compared the contigs pairwise. For a
draft contig i, we linked it to another draft contig j by adding an edge from vertex i
to vertex j if all the three criteria are met: (1) the two draft contigs are identical in
their overlapped region; (2) the number of overlapped SNVs is more than 50% of
the number of SNVs in contig i or that in contig j, or the length of overlapped
region is more than 50% of the length of contig i or that of contig j; (3) the genome
coordinate of the end locus of contig i is smaller than that of contig j. We then
removed redundant edges by transitive reduction41 (Supplementary Fig. 16a, b). A
contig is constructed by concatenating draft contigs, which are in an unambiguous
path. A path is an unambiguous path if the three criteria are met: (1) in-degree of
the start vertex is not 1; (2) out-degree of the end vertex is not 1 or a daughter
vertex of the end vertex has more than one parental vertices; (3) in-degrees and
out-degrees of the vertices other than the start vertex and the end vertex are 1
(Fig. 2h and Supplementary Fig. 16c). We then filtered the contigs using the two-
step filter introduced in the previous section. We calculated the Jaccard index of
each read to all the contigs, and assigned the read to the contig with the largest
Jaccard index. A read is assigned to the reference genome if its largest Jaccard index
is smaller than 0.5.

Errors in contigs might make the contigs from the same strain disconnected in
the overlap graph. To overcome this limitation, we firstly removed contained
contig if its Jaccard index is higher than 0.9 with the overlapped region of a longer
contig fully covering it, and then connected contigs if the Jaccard index in their
overlapped region is higher than 0.9.

Detecting bacterial methylation motifs from ONT data without raw signal. As
the raw-signal files of ONT data are usually huge and not publicly available, we
developed an algorithm to detect DNA methylation motifs without raw signal. For
each individual ONT data file before pooling, we extracted the flanking sequences
(40 bp long) of loci whose substitution rates are greater than 0.15, and detected
motifs in the flanking sequences using the motif caller developed by PacBio
(https://github.com/PacificBiosciences/MotifMaker)42. We only retained the motifs
that match the known bacterial methylation motifs in REBASE (http://rebase.neb.
com/rebase/rebase_methylase_recseqs.txt)43. Thus, our methylation-motif detec-
tion algorithm is conservative and only detects known motifs. We only discovered
two known motifs, CCWGG and CGCATC, on the ONT data. W represents
A or T.

Borrelia MLST. We downloaded the allele sequences of the eight house-keeping
genes from https://pubmlst.org/bigsdb?db=pubmlst_borrelia_seqdef&page=
downloadAlleles, and aligned them to the iGDA-inferred contigs and the genome
sequence of each Borrelia burgdorferi strain using MUMmer36. If a contig or
genome sequence has no 100% match in the allele database, we reported the allele
with the highest percent identity in the MUMmer output.
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Evaluating the minimal divergence that two conspecific strains can be dis-
tinguished. We only retained the iGDA-reported contigs that is 100% identical to
a true genome sequence and only has an unique closest true genome sequence.
These retained contigs can be used to distinguish conspecific strains. We calculated
the divergence between two contigs by

Divergenceðcontig1; contig 2Þ ¼ number of different SNVs
length of overlapped region

Software version and parameter setting
Flye (version 2.6-release). In the PacBio metagenomic data, we used “flye -t 16
–pacbio-raw -g 2m”.

MUMmer (version 3.1). We used “nucmer -c 150 -g 500 -l 12 –maxmatch” for
alignment, and “show-snps -l -T -H” to obtain SNVs. To avoid the impact of
repeats we used “mummerplot −−filter” before “show-snps -l -T -H” for the
metagenomic data.

minimap2 (version 2.17-r968-dirty). We used “minimap2 –secondary=no -ax map-
pb” for PacBio data, and “minimap2 –secondary=no -ax map-ont” for ONT data.

iGDA (version 1.02). We used “igda_pipe_detect -s 0 -a 0” to detect minor SNVs
and “igda_pipe_phase” with default parameters to phase minor SNVs for the
PacBio metagenomic data. We used “igda_pipe_detect -f 0 -s 0 -a 0” and
“igda_pipe_phase” for the other PacBio data. We used “igda_pipe_detect -f 0 -m
ont -s 0 -a 0” to detect minor SNVs and “igda_pipe_phase -m ont” to phase minor
SNVs for the ONT data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data used in this work are publicly available at SRA (https://www.ncbi.nlm.nih.
gov/sra). The accession IDs are listed in Supplementary Data files 1-4. Source data are
provided with this paper.

Code availability
The source code of iGDA and example data are available at https://github.com/
zhixingfeng/iGDA. The DOI of this repository is 10.5281/zenodo.4637922.
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