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populations in early detection of colorectal cancer
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Associations between gut microbiota and colorectal cancer (CRC) have been widely inves-
tigated. However, the replicable markers for early-stage adenoma diagnosis across multiple
populations remain elusive. Here, we perform an integrated analysis on 1056 public fecal
samples, to identify adenoma-associated microbial markers for early detection of CRC. After
adjusting for potential confounders, Random Forest classifiers are constructed with 11 mar-
kers to discriminate adenoma from control (area under the ROC curve (AUC) = 0.80), and
26 markers to discriminate adenoma from CRC (AUC = 0.89), respectively. Moreover, we
validate the classifiers in two independent cohorts achieving AUCs of 0.78 and 0.84,
respectively. Functional analysis reveals that the altered microbiome is characterized with
increased ADP-L-glycero-beta-p-manno-heptose biosynthesis in adenoma and elevated
menaquinone-10 biosynthesis in CRC. These findings are validated in a newly-collected
cohort of 43 samples using quantitative real-time PCR. This work proves the validity of
adenoma-specific markers across multi-populations, which would contribute to the early
diagnosis and treatment of CRC.
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olorectal cancer (CRC) is one of the most common can-

cers with an overall high mortality rate. According to the

report of the International Agency for Research on Cancer
(IARC), there were over 1,800,000 new CRC cases and over
860,000 deaths in 2018!. And CRC accounted for approximately
10% of all new cancer cases globally?. It is estimated that the
national expenditures in the United States on cancer care, spe-
cifically colorectal cancer, were about 16.63 billion dollars in
20183, and the CRC burden is continuously growing over years.
Colorectal adenomas are recognized as precursors for the
majority of CRC2. The early detection of CRC at precancerous-
stage adenoma has brought the 5-year relative survival rate to
around 90%, significantly facilitating early decision making,
alleviating the incidence of CRC, and reducing economic
burden?4.

Gut microbiome is a stool-based non-invasive biomarker for
metabolic diseases and cancers». Many studies have reported
that the gut microbiome is an important etiological element in the
initiation and progression of CRC*” and have identified some
fecal microbial markers of CRC3-10. However, it is not clear
whether these biomarkers could precisely detect adenomas, early-
stage CRC. Furthermore, current knowledge of the associations
between the microbiome and colorectal adenoma is limited.
Only a few studies have investigated the microbial alterations
in colorectal adenoma*7-11-13, Besides, substantial variations on
microbial makers exist among these studies, which could be due
to various biological factors influencing gut microbiome com-
position and inconsistent processing of microbial sequencing
data.

Meta-analysis offers a set of tools that are powerful, informative,
and unbiased to reduce the noise of biological and technical
confounders so that consistent and robust alterations across
multiple studies could be identified. Recently, several meta-
analyses on multi-studies have identified universal microbial
markers across multiple diseases, such as CRC!L13-15, obesity!®,
inflammatory bowel disease (IBD)!7, via 16S rRNA sequencing or
whole metagenome shotgun sequencing (WMS) technique.
However, universal microbial markers specific for colorectal ade-
noma were less frequently reported or showed relatively lower
accuracies for diagnosis!}13. Thomas et alll identified a few
microbial markers of colorectal adenomas from a WMS-based
meta-analysis and their classifiers showed low accuracy in dis-
tinguishing adenomas from healthy controls (area under the ROC
curve (AUC) = 0.54) or CRC (AUC = 0.69)!1, probably due to the
limited coverage of taxonomy and high dependence on reference
genomes in WMS taxonomic profiling!$. A recent meta-analysis
study based on 16S rRNA mainly investigated colonic cancerous
tissues and identified some tissue-based microbial markers for
colorectal adenomal3. Tissue-based microbial markers were
invasive and less accessible than stool-based microbial markers.
Additionally, the commonly used non-invasive stool-based
screening test, fecal immunochemical test (FIT), has drawbacks
such as poor sensitivity to early and advanced adenoma (7.6% and
38%, respectively)!®. Therefore, it is urgent to explore and identify
stool-based microbial markers that could more precisely and
efficiently diagnose colorectal adenoma.

In this work, we perform an integrated analysis on a total of
1056 samples with published 16S rRNA data from multiple stu-
dies considering that 16S rRNA-based profiles are better repre-
sentations of the “real community”?’. Based on the discovery
dataset comprising 775 samples, we construct the Random Forest
(RF) model achieving a high accuracy (AUC=0.80) with 11
important features to distinguish colorectal adenoma from
non-tumor control. Similarly, the AUC of the RF model for
distinguishing colorectal adenoma from CRC with 26 important
features is 0.89. Through study-to-study transfer validation and

leave-one-dataset-out (LODO) validation across multiple data
sets, the important features can overcome technical and geo-
graphical discrepancies with an average AUC of 0.76 in the
adenoma-control model and 0.89 in the adenoma-cancer model.
These important features are validated with two additional
independent cohorts comprising 281 samples and are specific to
adenoma against other microbiome-linked diseases. Furthermore,
pooled functional analysis based on the Phylogenetic Investiga-
tion of Communities by Reconstruction of Unobserved States
(PICRUSt2) reveals that altered microbiome is characterized by
increased ADP-L-glycero-beta-p-manno-heptose (ADP-heptose)
biosynthesis in adenoma and elevated menaquinol-10 (MK-10)
biosynthesis (P < 0.05) in CRC. These findings are validated with
a newly collected cohort of 43 samples using quantitative real-
time PCR (qRT-PCR). The integrated analyses of heterogeneous
studies prove the validity of adenoma-specific markers across
multi-populations, which would contribute to the early diagnosis
and treatment of CRC.

Results

Characteristics of the data sets in meta-analysis. In this study,
we investigated 16S rRNA sequencing data from four studies to
evaluate the gut microbiome changes as CRC progresses (from
control to adenoma to cancer) and to identify the biomarkers
specific to adenoma. In total, we collected 306 samples from
colorectal adenoma patients, 217 from CRC subjects, and
252 samples from healthy controls. The demographic information
was listed in Table 1. All samples were sequenced at sufficient
depth except one sample in US1 (SRR5184891), which was
excluded for further analysis. The average count of sequencing
reads in each sample is 85,637. Consistent processing was per-
formed for all raw sequencing data on the Quantitative Insights
Into Microbial Ecology 2 (QIIME2) platform.

Identification of the potential confounder in meta-analysis.
Since differences existed among these studies in both technical
and biological aspects, we first investigated the potential con-
founders. The variances explained by disease status for each
amplicon sequence variants (ASVs) were calculated to quantify
the effects of potential confounders (see “Confounder analysis”
section, Fig. la and Supplementary Fig. 1, 2). The variance of
ASVs explained by “study” was greater than that by disease status
and by other potential confounders. Additionally, beta diversity
varied among different studies (P = 0.001, Fig. 1b). These results
revealed that the factor “study” had a predominant impact on
microbial composition at both the single taxon level and com-
munity level. Therefore, we treated “study” as a blocking factor in
the subsequent analysis and used a two-sided blocked Wilcoxon
rank-sum test to adjust the batch effect and identify differential
ASVs that were less affected by “study”.

Alterations of gut microbial composition in colorectal ade-
noma. Gut microbiota highly varied among different disease
statuses (P=0.002, Fig. 1b). Moreover, the Shannon index
showed no significant differences between groups (Supplemen-
tary Fig. 3a), while the Simpson’s Index of Diversity was sig-
nificantly higher in the adenoma groups (P =0.043) and in the
control groups (P =0.020, Supplementary Fig. 3b) than that in
the cancer groups when blocking the “study” confounder.

At the phylum level, the gut microbiota was dominated by
members of Firmicutes and Bacteroidetes, followed by Proteo-
bacteria, Actinobacteria, Verrucomicrobia, Tenericutes, and
Fusobacteria in healthy controls, adenomas, and CRC (Fig. 1c).
These dominant phyla were similar to those reported in the
previous studies?!. Furthermore, the phylum Fusobacteria, the
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Table 1 Characteristics of the large-scale adenoma data sets included in this study.

Study Group (N?) Age (average +s.d®)  BMI (average*s.d®)  Sex F(%)/M(%)¢  No. of reads (average *s.d?)  Country

CA™2 Control (30) 55.27+9.22 26.73+£5.19 63.30/36.70 109,885 £ 55,194 USA Canada
Adenoma (30) 61.30 £11.15 27.40 £ 4.45 60.00/40.00
Cancer (30) 59.40 +£10.99 30.59+7.18 70.00/30.00

FR21 Control (50) 62.32+£898 24.66 +4.69 52.00/48.00 215,465 £119,217 France
Adenoma (38) 62.29 £ 8.51 27.40+4.45 28.90/71.10
Cancer (41) 65.51+10.51 30.59+7.18 41.50/58.50

Us140 Adenoma (40) 62.33+9.12 2622 +4.22 37.50/62.50 48,337 £ 25,069 USA
Cancer (26) 61.65+12.89 28.63+7.19 42.30/57.70

us227 Control (172) 54.29+£9.93 26.69£533 64.50/35.50 52,028 +36,596 USA
Adenoma (198) 63.35£11.47 26.27+4.73 40.40/59.60
Cancer (120) 63.78£12.89 28.89+7.25 43.30/56.70
Control (252) 56.00 £10.14 26.48 +5.25 61.90/38.10

Total Adenoma (306) 62.89£10.80 26.21+4.80 38.89/61.11 85,637 £ 85,460
Cancer (217) 63.25+12.28 2830+7.23 41.01/58.99

All data sets were sequencing data of the V4 region of the 16S rRNA gene.

aNumber of samples.

bStandard deviation.

CThe ratio of the percentage of female and male.

most CRC-associated bacteria as reported??, had significantly
decreased abundance (P < 0.05) in adenoma compared to that in
cancer, while showed no significant difference between adenoma
patients and controls (Fig. 1c and Supplementary Data 1).

At the ASV level, 43 ASV's were identified with distinguishable
differential abundances in the comparison of gut communities
between controls and patients with adenoma. Specifically, there
were six ASVs depleted in adenoma, which were assigned as
Bifidobacterium longum, Anaerostipes hadrus, Lactococcus taiwa-
nensis, Aminipila butyrica, etc. Besides, the abundances of 37
ASVs were increased in adenoma compared with control, and
they were assigned as Eubacterium coprostanoligenes, Methano-
brevibacter millerae, Christensenellaceae R-7 group sp., etc
(Supplementary Data 2). Moreover, we also identified 114
differentially abundant ASVs between adenoma and cancer.
Among these, 56 ASVs were in lower abundance in adenoma
compared with cancer, which were assigned as Lachnoclostridium
sp., [Ruminococcus] gnavus group sp., [Clostridium] scindens,
Escherichia-Shigella sp., etc. The ASVs in higher abundance in
adenoma than cancer were assigned as Blautia obeum, Butyr-
icicoccus faecihominis, Erysipelotrichaceae UCG-003 sp., Dorea
longicatena, etc (Supplementary Data 3).

Additionally, pathogenic bacteria with increased abundance
were detected in adenoma or cancer compared with control. For
instance, ASVs assigned as Parvimonas micra was enriched in
adenoma compared with control (Supplementary Data 2) while
ASVs assigned as Fusobacterium nucleatum, Porphyromonas sp.
HMSCO077F02, Porphyromonas asaccharolytica, Peptostreptococ-
cus stomatis, P. micra, and Escherichia-Shigella sp. were enriched
in cancer compared with adenoma (Supplementary Data 3).
Notably, between control versus adenoma and adenoma versus
cancer, there were only nine common differential ASVs, which
were assigned as Blautia faecis, A. hadrus, P. micra, Tyzzerella 3
sp., Eubacterium ruminantium, etc (Fig. 1d). The two sets of
differential ASVs with a Jaccard distance of 0.939 indicate that the
microbiota has a remarkable difference between adenoma and
control or cancer.

Microbial classification models for colorectal adenoma. Next,
we constructed stratified 10-fold cross-validation RF models, by
pooling all samples to distinguish adenoma from control and
cancer. Besides using differential ASVs as key metrics, alpha
diversity indices including Shannon Index, Simpson Index, and
Observed ASVs, and three patient metadata, age, sex, and body

mass index (BMI) were also included in model building. To
obtain the best performing models and important features, an
iterative feature elimination (IFE) step was further applied.

A robust RF model was eventually constructed with a core set of
important features, including eight differential ASVs (as biomarkers)
together with age, sex, and BMI, which achieved an AUC of 0.80 for
distinguishing control subjects from adenoma patients (accuracy:
0.73, sensitivity: 0.82, specificity: 0.62, precision: 0.73 and F1 score:
0.77, Fig. 2a, ¢, Supplementary Data 4, and Supplementary Table 1).
Among these, the ASV assigned as Christensenellaceae R-7 group sp.
was the highest-ranking biomarker (Fig. 2a). The biomarkers also
included ASVs assigned as E. coprostanoligenes, Ruminiclostridium 9
sp., Christensenellaceae R-7 group sp., Ruminococcaceae UCG-005
sp., and Veillonella parvula of increased abundance as well as Rothia
dentocariosa and A. butyrica of decreased abundance in adenoma
(Fig. 2a).

Similarly, the RF model in distinguishing adenoma from cancer
achieved an AUC of 0.89 (accuracy: 0.80, sensitivity: 0.66,
specificity: 0.90, precision: 0.83 and F1 score: 0.72, Fig. 2b, d
and Supplementary Table 1). The RF model was built with 24
ASVs together with age and BMI (Fig. 2b and Supplementary
Data 5). Among these, the ASV belonging to Streptococcus
thermophilus TH1435 was the top-ranking biomarker (Fig. 2b),
followed by ASVs assigned as P. micra, Bacteroides dorei, C.
scindens, Erysipelatoclostridium ramosum, Blautia sp., [Eubacter-
ium] coprostanoligenes group sp., and Lachnospira pectinoschiza
(Fig. 2b). The C. scindens was significantly (P <0.001) enriched
in cancer compared with adenoma. Additionally, the abundance
of ASVs assigned as C. scindens, Blautia sp., [Eubacterium]
coprostanoligenes group sp. and P. micra increased in CRC while
S. thermophilus TH1435, E. ruminantium, E. ramosum and L.
pectinoschiza increased in adenoma (Fig. 2b). In these two models,
age was ranked as the top and third predictor in the testing phase,
respectively. In the two sets of biomarkers, there was only one
common ASV classified as E. ruminantium.

Moreover, we also identified that a core set of 34 ASVs,
together with age, sex, and BMI, collectively had the highest
capability to distinguish control from cancer (AUC=0.93,
Supplementary Fig. 4). The ASVs ranked as the top important
markers assigned as F. nucleatum and P. asaccharolytica, which
were also ranked as top markers in two recent meta-analysis of
CRC based on WMS data (Supplementary Data 6). Moreover, we
found that there were six common biomarkers between CRC-vs-
control biomarker set and CRC-vs-adenoma biomarker set, while
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Fig. 1 Alterations of gut microbial composition in different disease status. a Variance explained by disease status (adenoma versus cancer) is plotted
against variance explained by study effects for individual ASVs. The significantly differential ASVs are colored in red and the dot size is proportional to the
abundance of each ASV. P values were from a two-sided blocked Wilcoxon rank-sum test. Source data and exact P values are provided as a Source Data
file. b Principal coordinate analysis of samples (control, n =252; adenoma, n = 306; cancer, n = 217) from all four studies based on Bray-Curtis distance,
which shows the fecal microbiota composition was different among studies (P = 0.001) and groups (P =0.002). P values of beta diversity based on
Bray-Curtis distance were calculated with PERMANOVA. The study is color-coded and the group (control, adenoma, and cancer) is indicated by different
shapes. The upper-right and the bottom-left boxplots illustrate that samples projected onto the first two principal coordinates broken down by study and
disease status, respectively. P values of the first and second principal components were calculated with a two-sided Kruskal-Wallis test for study and
group. All boxplots represent the 25th-75th percentile of the distribution; the median is shown in a thick line at the middle of the box; the whiskers extend
up to values within 1.5 times of IQR, and outliers are represented as dots. Source data are provided as a Source Data file. ¢ Relative proportions of bacterial
phyla in healthy controls, adenomas, and CRC across four different studies. d Venn diagram shows the overlap of differential ASVs assigned at species
level between adenomas and healthy controls or CRC.

there was no common ASV in the two sets of biomarkers between  Co-occurrence and clustering analysis of microbiota. We next
control-vs-adenoma and control-vs-CRC (Supplementary Fig. 5).  constructed the co-occurrence network of differential ASVs, using
These results highlighted that microbial markers aimed to detect the SparCC algorithm?3. In the co-occurrence network of dif-
CRC are specific and exclusive, not as applicable for diagnosing ferential ASVs between adenoma and control, we found wide-

adenoma.

spread negative correlations among these ASVs, indicating a
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a Biomarkers of Control versus Adenoma
Genera Species I Control enriched I Adenoma enriched Rank
[Eubacterium] coprostanoligenes group  Eubacterium coprostanoligenes 0.002 I 03
Christensenellaceae R-7 group Christensenellaceae R-7 group sp. 0.014 I 01
[Eubacterium] ruminantium group Eubacterium ruminantium 0.027 I—— 05
Ruminiclostridium 9 Ruminiclostridium 9 sp. 0.001 06
Ruminococcaceae UCG-005 Ruminococcaceae UCG-005 sp. 0.046 N 02
Veillonella Veillonella parvula 0.012 mmm 04
Rothia Rothia dentocariosa 1 0.031 08
Family XIll UCG-001 Aminipila butyrica M 0.049 07

| | | | |
-0.4 -0.2 0.0 0.2 0.4
b Generalized fold change
Biomarkers of Adenoma versus Cancer
Genera Species I Cancer enriched I Adenoma enriched Rank
Lachnoclostridium [Clostridium] scindens 0.000 . 04
Blautia (ASVd4) Blautia sp. 0.025 I 06
[Eubacterium] coprostanoligenes group [Eubacterium] coprostanoligenes group sp. 0.000 I 07
Parvimonas Parvimonas micra 0.000 I 02
Hungatella Hungatella hathewayi WAL-18680 0.006 I 15
Ruminococcaceae UCG-002 Ruminococcaceae UCG-002 sp. 0.041 I 09
Porphyromonas Porphyromonas sp. 2007b 0.000 N 12
Lachnospiraceae UCG-010 Lachnospiraceae UCG-010 sp. 0.002 18
Bacteroides (ASV7e) Bacteroides nordii 0.026 I 17
Streptococcus Streptococcus infantarius 0.016 20
Porphyromonas Porphyromonas sp. HMSCO077F02 0.000 11
[Ruminococcus] gnavus group [Ruminococcus] gnavus group sp. 0.013 . 23
Merdibacter Merdibacter massiliensis M 0.020 22
Roseburia (ASV49) Roseburia hominis A2-183 I 0.015 24
Roseburia (ASV96) Roseburia intestinalis I 0.002 21
Streptococcus Streptococcus thermophilus TH1435 I 0.002 01
Ruminiclostridium 5 Ruminococcus bromii I 0.001 10
Tyzzerella 3 Tyzzerella 3 sp. I 0.000 14
[Eubacterium] ventriosum group [Eubacterium] ventriosum group sp. I 0.001 19
Blautia (ASV2d) Blautia faecis I 0.006 16
Lachnospira Lachnospira pectinoschiza I 0.005 08
Erysipelatoclostridium Erysipelatoclostridium ramosum I 0.002 05
[Eubacterium] ruminantium group Eubacterium ruminantium I 0.006 13
Bacteroides (ASVfd) Bacteroides dorei I 0.001 03
| t t t t
-0.4 -0.2 0.0 0.2 0.4
Generalized fold change
c d
Control versus Adenoma Adenoma versus Cancer
Q [}
) ®
2 2
[o] [o]
o [e%
[0} [}
= 2
[ =
/, = Mean ROC(AUC=0.80 + 0.07) /, = Mean ROC(AUC=0.89 + 0.03)
0.0 + 1 std. dev. 0.0 =+ 1 std. dev.
OtO 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False positive rate

False positive rate

Fig. 2 Performance of discriminating adenoma from control or cancer using important features. a, b, The biomarkers were identified to construct RF
models for discriminating adenoma from control (a) and CRC (b). Each biomarker represented a single ASV, and the genera and species columns displayed
the taxonomy information for the ASVs at the genus and species level. The rank in a and b indicates the order of feature importance in the RF model;
P values were computed using a two-sided blocked Wilcoxon rank-sum test and the exact P values were presented beside the barplots. Generalized fold
change (see Methods meta-analysis of differentially abundant ASVs) was indicated by color gradients. Source data are provided as a Source Data file.
¢, d The AUC of the optimized models constructed with biomarkers and patient metadata of control versus adenoma (c¢) and adenoma versus cancer (d).
Mean AUC and standard deviation of stratified 10-fold cross-validation were shown in ¢ and d.
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status of many competitions among community members in an
unstable community (Supplementary Fig. 6a and Supplementary
Data 7). Notably, most of the negative correlations were asso-
ciated with the ASV assigned as A. hadrus (the 2nd ASV), which
may protect against colon cancer in humans by producing butyric
acid?®. The first and second ranking biomarkers between ade-
noma and control, assigned as Christensenellaceae R-7 group sp.
and Ruminococcaceae UCG-005 sp., were highly correlated to
other ASVs, indicating important roles in the microbial com-
munity. Moreover, a module containing 8 nodes and 15 inter-
actions was identified by MCODE?®> with the highest score
(Supplementary Fig. 6b). In this module, the biomarker assigned
as Ruminococcaceae UCG-005 sp. acted as the hub node, and
associated with a wide range of ASVs assigned as R. dentocariosa,
A. hadrus (the 2nd ASV), Ruminococcaceae UCG-002 sp. (the
15th ASV), and B. longum (the 1st ASV).

Additionally, we constructed the co-occurrence network of
differential ASVs between adenoma and CRC (Supplementary
Fig. 6¢c and Supplementary Data 8). Positive correlations among
the adenoma- and CRC-enriched ASVs were observed in general
while negative correlations were also observed. Two modules
were identified by the MCODE from this network (Supplemen-
tary Fig. 6d). One module comprised 14 nodes and 72 edges with
a score of 11.08. In this module, the top-ranking biomarker, S.
thermophilus TH1435 was correlated with multiple nodes, such as
[Ruminococcus] gnavus group sp., [Eubacterium] nodatum group
sp. (the 62nd ASV), and Faecalibacterium prausnitzii A2-165 (the
24th ASV). The other module contained five nodes and 10 edges,
in which the biomarker assigned as C. scindens was capable of
converting primary bile acids to toxic secondary bile acids
inducing cancer?®. In summary, our results suggested that most of
the identified biomarkers have a broad and large impact on the
members of the microbial networks.

To gain further insight, we analyzed and compared the pattern
of biomarkers in adenoma and control groups, which were
further assembled into four clusters with distinct taxonomic
compositions (Supplementary Fig. 7a). These clusters are not
tightly associated with patient characteristics such as age, sex, and
BMI (Supplementary Fig. 8a). Moreover, we also explored the
CRC patient gut microbiota for co-occurrences among a panel of
24 biomarkers and yielded three clusters (Supplementary Fig. 7b).
Cluster 1 had the fewest ASVs that were assigned as species from
Lachnospiraceae family, and cluster 2 was heterogeneous in
taxonomy with a relatively high prevalence in CRC individuals.
Notably, cluster 3 demonstrated strong taxonomic consistency,
primarily belonging to Clostridiales. We then investigated
associations of these clusters with various tumor characteristics.
These biomarker clusters were not biased by patients” age, BMI or
cancer stage, but cluster 1 was significantly enriched in female
CRC patients. (Supplementary Fig. 8b). Considering the impact of
different studies, all of these tests were adjusted by blocking
“study” (see “Co-occurrence and clustering analysis” section).

Validation of the colorectal adenoma classifiers. To test whether
the identified important features are universal and robust across
multiple studies, we performed study-to-study transfer validation
and LODO validation on the entire samples.

In the control versus adenoma models, the AUC values of
study-to-study transfer validation ranged from 0.52 to 0.81, with
an average of 0.64 (Fig. 3a). Notably, the US2 study served as a
better training set than other studies achieving relatively higher
testing AUCs (average AUC = 0.70). This may be explained by
the larger size of the dataset. Moreover, to compare the diagnostic
performance of the important features with the FIT, the most
widely used non-invasive stool test, we collected the publicly

available FIT samples (including 172 control individuals and 198
adenoma patients) from a published study?’. The performance of
the RF model constructed with FIT being the only feature for
distinguishing adenoma from control is 0.60 (AUC). The model
constructed with important features tested on the cohorts in this
study was proved to be superior to that of the FIT, with an AUC
of 0.78. Moreover, the combination of FIT with the important
features further improved the diagnostic accuracy for adenoma
(about 3%) and achieved the best performance of 0.81 (AUC)
(Supplementary Fig. 10). Altogether, our results demonstrate that
the microbial-derived biomarker panel is superior to FIT for
detecting colorectal adenoma and their combination can improve
the accuracy of non-invasive diagnosis of adenoma. Additionally,
the AUC values of LODO analysis ranged from 0.63 to 0.93
(average AUC = 0.76), which was better than those achieved in
study-to-study transfer validation owing to using a larger amount
of training data (Fig. 3a). Furthermore, with the increase of
training samples, the AUC values of LODO analysis increased in
parallel (Supplementary Fig. 11), predicting a trend of improved
diagnostic accuracy as more public adenoma data sets become
available.

Similar results were observed in the adenoma versus cancer
models (Fig. 3b). The AUC values of study-to-study transfer
validation ranged from 0.59 to 0.93 (average AUC=0.76).
Moreover, the AUC values were also elevated in the LODO
analysis, ranging from 0.86 to 0.95 with an average of 0.89
(Fig. 3b). Additionally, control versus cancer models showed
robustness through study-to-study transfer validation (average
AUC=0.83) and LODO validation (average AUC = 0.90)
(Supplementary Fig. 12). We noticed that the classifiers
performed better in adenoma versus cancer and control versus
cancer than that in control versus adenoma, likely because the
adenoma-associated stool microbiome closely resembles that of
the healthy status”-11:21,

Furthermore, we tested the diagnostic capability of several sets
of features including all ASVs, differential ASV's and all important
features (Supplementary Fig. 13). In both study-to-study transfer
validation (Fig. 3c, d) and LODO validation (Supplementary
Fig. 14a, b), the set of all important features performed better
than the other two sets of ASVs, except for the CA study. This
may be due to the small sample size and geographic heterogeneity
in the CA study. When the number of top-ranking features
decreased, the accuracy of classifiers decreased conformably
(Fig. 3¢, d). Therefore, these results supported the use of all
important features as the main feature set for adenoma diagnosis.

Validation of colorectal adenoma markers in independent
cohorts. To further validate our meta-analysis results, two addi-
tional independent cohorts from America (validation cohortl) and
China (validation cohort2) were incorporated into this study. The
validation cohortl is comprised of 70 controls and 102 adenoma
patients, while there are 57 adenoma patients and 52 CRC patients
in the validation cohort2 (Supplementary Table 2). The recon-
structed RF models in the two independent cohorts achieved AUCs
of 0.78 (accuracy: 0.70, sensitivity: 0.76, specificity: 0.59, precision:
0.71 and F1 score: 0.77) and 0.84 (accuracy: 0.79, sensitivity: 0.79,
specificity: 0.80, precision: 0.78 and F1 score: 0.72) for distin-
guishing adenoma from controls or cancer, respectively (Supple-
mentary Fig. 15a, b). Notably, only microbial biomarkers and sex
information were used in the validation cohort2 due to the una-
vailability of age and BMI information, which achieved a relatively
higher AUC. Additionally, the features’ ranks were consistent with
that in the discovery RF models, for instance, ASVs assigned
as Ruminococcaceae UCG-005 sp. and Christensenellaceae R-7
group sp. were confirmed as the top-ranking biomarkers between
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Fig. 3 Prediction performance of important features across studies and identification of minimal features for detecting adenoma. a, b, Cross-prediction
matrix detailing prediction values for differentiating adenoma from control using bagging K-Nearest Neighbors classifiers (a) and CRC using RF models
(b) as AUC obtained using important features. Values on the diagonal refer to the results of cross-validation within each study. Off-diagonal values refer to
the AUC values obtained from cross-cohort validation, which training the classifier on the study of the corresponding row and applying it to the study of the
corresponding column. The LODO values refer to the performances obtained by training the classifier using all but the study of the corresponding column
and applying it to the study of the corresponding column (see “Model evaluation” section). The study-to-study and LODO validation values for
differentiating adenoma from control using RF models can be found at Supplementary Fig. 9. ¢, d Average AUC of study-to-study transfer validation
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controls and adenoma patients in validation cohortl (Supple-
mentary Data 9). Furthermore, ASVs assigned as P. micra, and B.
dorei were also confirmed as the top-ranking biomarkers for dis-
tinguishing between adenoma and CRC patients in validation
cohort2 (Supplementary Data 10).

The specificity of colorectal adenoma predictive models. Since
improving the specificity of markers could reduce false positives
in clinical diagnosis!'’, it is necessary to further evaluate the
specificity of our identified adenoma markers, such as in the
context of other microbiome-linked diseases!!. In this analysis,
five non-CRC diseases including Crohn’s disease (CD), ulcerative

colitis (UC), irritable bowel syndrome (IBS), non-alcoholic fatty
liver disease (NAFLD), and type 2 diabetes (T2D) were con-
sidered (Supplementary Table 2). The AUC values of non-CRC
disease models were significantly lower than that of an
independent adenoma model (Supplementary Fig. 16), which
indicated that our markers have high specificity for adenoma.

Microbial functional changes in colorectal adenoma. We
examined the microbiome-based functional alterations on multiple
different disease status. There were 27 differential pathways between
control and adenoma (Supplementary Data 11) and 41 differential
pathways between adenoma and cancer (Supplementary Data 12)
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consistently detected across studies. A total of 64 differential
pathways (4 pathways were overlapped) were clustered based on
their generalized fold change scores (Fig. 4). In detail, in compar-
ison between adenoma and control, pathways of carbohydrate
biosynthesis (e.g., ADP-heptose biosynthesis), inorganic nutrient
metabolism, and nucleoside and nucleotide biosynthesis were
enriched in adenoma, whereas, pathways of aromatic compound
degradation, and secondary metabolite biosynthesis were decreased
in adenoma samples. In comparison between adenoma and CRC,
pathways of cofactor, prosthetic group, electron carrier, vitamin
biosynthesis (e.g., MK-10 biosynthesis), and amino acid degrada-
tion and fermentation were enriched in cancer. On the other hand,
cell structure biosynthesis and fatty acid and lipid biosynthesis/
degradation pathways were decreased in adenoma.

Notably, the abundance of biosynthesis of ADP-heptose, a key
metabolic intermediate in the biosynthesis of lipopolysaccharide
(LPS) was significantly enriched in adenoma compared with
control. It was associated with the activation of the nuclear factor-
kB (NF-kB) and a strong pro-inflammatory response?8, which led
to colorectal adenoma. The ASV assigned as V. parvula, one of the
biomarkers differentiating healthy controls from adenoma
samples (Fig. 2a), was a major contributor to the ADP-heptose
biosynthesis (ranked 9 out of 624 in adenoma patients and ranked
16 in controls, Supplementary Data 13). There are four rate-
limiting enzymes encoded by hIdE, rfaD, gmhA, and gmhB in the
biosynthesis of ADP-heptose. These four genes were consistently
enriched in adenoma compared with control (Supplementary
Table 3). Further, we validated the abundance of these key genes
based on qRT-PCR using newly collected samples. Consistent with
the PICRUSt2 results, hldE and rfaD genes were enriched in
adenoma compared with control (Fig. 5a), especially that the
abundance of hidE gene was significantly increased in adenoma.

Moreover, it was worth noting that menaquinone (vitamin K2)
biosynthesis was significantly enriched in cancer compared with
adenoma, especially the MK-10 biosynthesis. MK-10 was mainly
produced by the ASV assigned as B. dorei, one of the biomarkers
between adenoma and cancer (Fig. 2b), and was the 3rd and 4th
contributor to MK-10 biosynthesis in adenoma and cancer
among all ASVs (Supplementary Data 14). Collectively, the
elevated production of vitamin K2 by microbiota may serve as a
response to compensate for the induction of feedback inhibition
in colorectal cancer cells?®. Furthermore, we found a significantly
increased abundance of menH, menF, and menC in CRC samples
compared with that of adenoma in pooled data sets by a two-
sided blocked Wilcoxon rank-sum test (Supplementary Table 4).
These results were also confirmed by qRT-PCR with our newly-
collected samples (Fig. 5b), showing that menH and menF genes
were significantly increased in the CRC samples than those in the
adenoma samples.

Discussion

This study comprehensively assessed the alterations of CRC-
associated gut microbiome and the capability of microbial
markers for early detection of CRC at precancerous-stage ade-
noma. The best performing model achieved a high accuracy
(AUC = 0.80) with 11 important features to distinguish colorectal
adenoma from non-tumor control (Fig. 2¢). Similarly, the AUC of
the best model for detecting colorectal adenoma from CRC with
26 important features was 0.89 (Fig. 2d). Through study-to-study
transfer validation and LODO validation across multiple data
sets, the important features could overcome technical and geo-
graphical discrepancies with an average AUC of 0.76 in the
adenoma-control model (Fig. 3a) and 0.89 in the adenoma-cancer
model (Fig. 3b). These important features were validated with two
additional independent cohorts (Supplementary Fig. 15a, b) and

were specific to adenoma against other microbiome-linked dis-
eases (Supplementary Fig. 16).

It has long been reported that fecal bacteria could serve
as biomarkers for non-invasive diagnosis of CRC, such as
F. nucleatum, Escherichia coli, and Bacteroides fragilis3-30-32,
However, large variations existed among studies for these
microbial markers!’, indicating the necessity of multi-cohort
integration analysis. Two pioneering studies!!"14 have performed
cross-cohort analyses focusing on distinguishing CRC patients
from controls based on WMS data. In contrast, our study aimed
at identifying adenoma-specific microbial markers, because early
screening of CRC is of the paramount value for the patients. In
Thomas’s work, adenoma-related classifiers showed lower
accuracies in distinguishing adenomas from healthy controls
(AUC = 0.54) or CRC (AUC = 0.69)!1. One explanation is that
the adenoma-associated stool microbiome closely resembles that
of the health status”11:21, Besides, it is probably also influenced by
the limited coverage of taxonomy and the high dependence on
reference genomes in WMS taxonomic profiling2?33, WMS data
is well-recognized to possess the advantage of species- and even
strain-level resolution. However, the current strategies for char-
acterizing microbial community compositions with WMS are
“closed annotation” that strongly rely on the known reference
genome database!®3435 which is likely missing some species
without known genomes or marker genes. It will thus result in
biases in relative abundance estimation. Consequently, in this
study, we included fecal 16S rRNA sequencing studies consider-
ing that 16S rRNA gene-based profiles are better representations
of the “real community”?°. Moreover, considering inconsistent
abundance changes among ASVs assigned as the same species, we
constructed classifiers at the ASV level to capture the most
informative ASVs that could effectively distinguish patients from
controls. The control-CRC model built in this study with 16S
rRNA profiling achieved an AUC of 0.93, whose accuracy was
significantly higher than that based on WMS (AUC = 0.84)11:14,
Similarly and more importantly, we constructed models using sets
of microbial markers that distinguish colorectal adenoma from
controls (AUC = 0.80) and CRC (AUC = 0.89) with high accu-
racy. These markers were validated for effectiveness via study-to-
study transfer validation and LODO validation as well as with
independent cohorts. Furthermore, we confirmed that the iden-
tified panel of markers was colorectal adenoma-specific rather
than other microbiome-associated diseases, such as IBD and
NAFLD (Supplementary Fig. 16). Overall, all these validations
strongly support the robustness of the classifiers and provided
evidence that stool-based microbial markers could serve as an
effective non-invasive clinical indicator for colorectal adenoma.

Microbial communities varied in both colorectal adenoma and
cancer during the progression of CRC. A large-cohort CRC study
revealed distinct stage-specific shifts of microbiome and metabo-
lome and found elevated Afopobium parvulum in adenoma com-
pared to controls!®. Notably, we also found that both differential
ASVs and markers for distinguishing adenoma and cancers from
healthy controls varied greatly. The ASV assigned as E. rumi-
nantium was the only common adenoma-associated marker while
Porphyromonas sp. HMSCO077F02, L. pectinoschiza, Hungatella
hathewayi WAL-18680, etc were common cancer-associated bio-
markers. F. nucleatum, one of the universal biomarkers in our
cancer-control model and the two recent CRC meta-analysis! >4,
was neither a differential bacterium nor a biomarker between con-
trols and adenomas. In addition, prior work indicated that the
diagnostic capability of Fusobacterium sp. for colorectal adenoma
was inferior to that of strain “m3” of the Lachnoclostridium sp.*.
These results indicated that the CRC-associated biomarkers were
not effective for the detection of colorectal adenoma and highlighted
the importance of adenoma-specific signatures. Additionally, the
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Source data are provided as a Source Data file.

adenoma-specific markers may contribute to the early screening and
consequently reduce the risk of CRC. What’s more, the combination
of the important adenoma-specific markers and FIT improved the
classifier’s accuracy (AUC = 0.81) compared to microbial makers
(AUC =0.78) or FIT (AUC = 0.60) alone (Supplementary Fig. 10),
indicating that the non-invasive FIT test could be used as com-
plementary tool to gut microbiota analysis for early screening of
adenoma. Recently, a 16S rRNA analysis investigated microbiome
dysbiosis in adjacent tissues of colonic cancerous tissue and the
identified signatures could discriminate colorectal adenomas from
healthy controls effectively!3, though tissue-based markers are
invasive and less accessible than stool-based markers.

The functional analysis sheds light on the convoluted underlying
mechanisms and would greatly enhance our understanding and
interpretation of CRC carcinogenesis (Supplementary Fig. 17). In
particular, we found that the biosynthesis of ADP-heptose and the
key gene hldE were significantly enriched in adenoma compared
with control. ADP-heptose has been identified as a bacteria-linked
carcinogen® and the key metabolic intermediate in the biosynth-
esis of LPS. It is a potent trigger for the activation of NF-«B sig-
naling, which has been shown to promote tumorigenesis®’ and
may be critical in perpetuating inflammation38. The increased
abundance pattern of ADP-heptose biosynthesis pathway from
control to adenoma and to CRC suggests that the elevated activity
of this pathway may be one important factor that induced the
sustained aggravation of NF-kB signaling during the development
of CRC. Notably, the pathway abundance of ADP-heptose bio-
synthesis was significantly increased in adenoma compared to
control, while showed no significant enrichment in CRC compared

to adenoma. This may suggest that ADP-heptose played a critical
role in adenoma and maintained such a role in CRC progression3®.
Moreover, a series of vitamin K2 biosynthesis genes, such as menH
and menF were also significantly different between adenoma and
cancer. Previous studies indicated that vitamin K2 played impor-
tant roles in the antitumor effect via cell-cycle arrest, cell differ-
entiation, and cell apoptosis?®. Therefore, the increased production
of vitamin K2 may be a compensatory effect of the dysregulated
microbiota to survive the tumor microenvironment, which also
suggests a potential CRC intervention strategy targeting vitamin
K2 biosynthesis bacteria. Though the main pathways differed
between the control-adenoma and the adenoma-CRC models, all
these differential microbial pathways could offer promising per-
spectives and evidence for intervention and treatment in CRC
carcinogenesis.

Being mainly a bioinformatics paper, we recognize the weak-
ness of the study in validation, that is, no intervention study was
designed to prove the thesis. To compensate for this weakness, we
strived to strengthen the evidence from other perspectives of the
study design and provided different types of validations of the
identified microbial biomarkers for adenoma, for the purpose of
early detection of CRC. Taken together, through extensive and
statistically rigorous validation, we identified microbial-derived
markers for distinguishing adenoma from healthy control and
CRC across multiple studies. Independent validation confirmed
that the microbial-derived markers exhibited high accuracy
and specificity in detecting adenoma. These microbial-derived
markers may contribute to the non-invasive diagnosis of
colorectal adenoma and could be targeted to suppress the CRC
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carcinogenesis. Furthermore, we proposed that the alteration of
microbiome-mediated the ADP-heptose biosynthesis activated
inflammation in adenoma while the disordered microbiome
played a compensatory effect via elevated vitamin K2 production
in CRC carcinogenesis.

Methods

Public data collection. We collected data from published studies in PubMed.gov
containing 16S rRNA sequencing data on patients with CRC, adenomas, and
healthy controls. Only four studies with accessible metadata of samples and per-
formance of high-throughput sequencing targeting the V4 region of the 16S rRNA
gene were included in this work. Raw sequencing data of these studies were
downloaded using SRA toolkit (V.2.9.1) from Sequence Read Archive (SRA) and
European Nucleotide Archive (ENA) using identifiers: PRINA389927 for Zeckular
et al.12, PRJEB6070 for Zeller et al.2l, PRINA290926 for Baxter et al.2” and
PRJNA362366 for Sze et al.40. Besides, two additional cohorts (Supplementary
Table 2) were used as independent cohorts with accession numbers
PRJNA5345114! and PRINA28002642. Sequencing data of four non-CRC studies
were utilized to evaluate the specificity of adenoma features. These four data sets
were generated from patients who suffered from diseases other than CRC:
PRJNAS211143, PRINA54472144, PRJEB28350%%, and PRJNA54133246 (Supple-
mentary Table 2).

Patient recruitment and sample collection. Stool samples were collected from
patients with adenoma, CRC, and healthy controls at Fudan University Shanghai
Tumor Center with informed consent. Patient recruitment and sample collection
were approved by the Medical Ethics Committee of Fudan University Shanghai
Tumor Center. Written informed consent was obtained from each participant. This
study protocol is in agreement with the world medical association declaration of
Helsinki (2008) and the Belmont Report.

Patients were recruited for initial diagnosis and had never received any
treatment before fecal sample collection. Patients with hereditary CRC syndromes,
and patients with a previous history of CRC were excluded from the study. Based
on pathology and colonoscopy results, recruited subjects were classified into three
groups: (1) healthy subjects, namely controls: individuals with colonoscopy
negative for tumor, adenoma, or other diseases; (2) patients with adenoma:
individuals with colorectal adenoma(s); and (3) patients with CRC: individuals
with newly diagnosed CRC. A total of 94 subjects were initially recruited. Based on
inclusion criteria in addition to similar sex, age, and BMI, 43 samples were
enrolled: 30 patients with CRC, 6 adenomas, and 7 controls. The stool was collected
in fecal collection tubes and was stored at —80 °C. DNA was extracted from fecal
samples using Stool Genomic DNA Kit (CW20925, CWBIO, China) following the
manufacturer’s instructions. The patient characteristics for QRT-PCR were
summarized in Supplementary Table 5.

Data preprocessing. The 16S rRNA sequencing data were analyzed using QIIME2
(V.2018.11), a plugin-based platform for microbiome analysis*’. DADA2
(V.2018.11) software, wrapped in QIIME2, was used to filter out sequencing reads
with quality score Q >25 and denoise reads into ASVs (i.e., 100% exact sequence
match), resulting in feature tables and representative sequences. Taxonomy clas-
sification was assigned based on the naive Bayes classifier using the classify-sklearn
package*® against the Silva-132-99 reference sequences. ASVs that could not be
precisely annotated to species were reassigned to ones having the most similar
sequences in the same genus (or family) using NCBI Blast. Subsequently, repre-
sentative sequences were aligned using Fast Fourier Transform (MAFFT,
V.2018.11) in Multiple Alignment and a phylogenetic tree was generated with the
Fast-Tree (V.2018.11) plugin. Then, the feature tables were converted to relative
abundance tables. A set of ASVs that were confidently detectable in at least three
studies and were present in at least 20% of samples was selected for further analysis.
One sample (SRR5184891 in PRJNA362366) sequenced at insufficient depth was
excluded from the analysis.

Confounder analysis. We used ANOVA-like analysis!# to quantify the effect of
potential confounding factors and disease status. The total variance of a given ASV
was compared to the variance explained by disease status (control, adenoma, and
cancer) and the variance by confounding factors (age, BMI, diabetes, nonsteroidal
anti-inflammatory drug (NSAID), platform, race, sex, and study) akin to a linear
model. Variance calculations were performed on ranks to account for non-
Gaussian distribution of microbiome abundance data!. Potential confounding
factors with continuous values were transformed into discrete variables either as
quartiles or in the case of BMI as groups of lean (>25), overweight (25-30), and
obese (>30) based on conventional cutoffs.

Meta-analysis of differentially abundant ASVs. The significance of differential
abundance was tested on a single ASV using a two-sided blocked Wilcoxon rank-
sum test implemented in the R (V.3.5.2) “coin” package (P values < 0.05 were

deemed as significant in all differential analysis). Confounder with high variance

explanation was defined as a block to adjust the batch effects in the differential
analysis. Significance was tested against a conditional null distribution derived
from permutations of the observed data. Permutations were performed within
“study” to control variations in block size and composition!. For further analysis,
we evaluated a generalization of the (logarithmic) fold change for each ASV. This
quantity is widely applied to genomic sequencing data such as RNA sequencing
(RNA-seq) and Global run-on sequencing (GRO-seq) and further improved for
better resolution of sparse microbiome profiles*”. The generalized fold change was
calculated as the averaged difference between predefined quantiles (ranging from
0.1 to 0.9 in increments of 0.1 in this study) of the logarithmic control and ade-
noma, and between adenoma and cancer distributions.

Model construction and features extraction. Following the differentially abun-
dant ASVs analysis, we built RF models in the scikit-learn (V.0.19.2) package with
stratified 10-fold cross-validation to distinguish adenoma from cancer or control.
The features used for model building consist of patient metadata as well as dif-
ferential ASVs and alpha diversity indices. The alpha diversity indices consisted of
Shannon Index, Simpson Index, and Observed ASVs, while the patient metadata
features consisted of age, sex, and BMI. The RF models were built with 501 esti-
mator trees and each tree had 10% of the total features. And the stratified 10-fold
cross-validation was used to configure training and testing data sets. Then an IFE
step was used to optimize the performance of subsequent RF models. The top
features from the top-performing model were selected as “important features” and
the top microbial features as “biomarkers” (Supplementary Fig. 13). Finally, the
AUG, accuracy, sensitivity, specificity, precision, and F1 score were used to evaluate
the performance of the optimized models.

Model evaluation. To assess the generalizability of microbial-based adenoma
classifiers across contexts, such as geographic variation and technical differences in
microbial data generation and processing over multiple patient populations, both
study-to-study transfer validation and LODO validation were performed. In study-
to-study transfer validation, classifiers were trained in one single study and
externally assessed on all other studies (off-diagonal cells in Fig. 3a, b). Meanwhile,
we applied a nested cross-validation procedure on the training study to calculate
within-study accuracy (diagonal cells in Fig. 3a, b). In LODO validation, data from
one study was set as the testing set, while data from the remaining three studies
were pooled as the training set. We applied RF models in study-to-study transfer
validation and LODO validation, the input features were the “important features”.
Since multiple studies were involved, variations or batch effects are commonly
observed®’. To further improve the model’s ability to process batch effects among
studies, fine-tuning model with bagging K-Nearest Neighbors (KNN) was per-
formed in certain cases. KNN is measured by a distance metric of multiple features
to reduce the dependence on the specific value of a feature, which can effectively
avoid overfitting®!>2,

To evaluate whether the important features would achieve the best
performances in study-to-study transfer validation and LODO validation, we
constructed models with three different sets of input features, including (1) all
ASVs, (2) differential ASVs and (3) all important features. Then we sought to
identify if there was a minimal set of important features that could achieve higher
accuracy. A few of the top-ranking important features were always included in the
minimal set as prior. We used the same methods as the study-to-study transfer
validation and LODO validation and then calculated the average AUC of each
testing study as each point in Fig. 3¢, d. Finally, we compared the predictive values
in the testing set across models with different sets of input features.

Co-occurrence and clustering analysis. To construct co-occurrence networks of
bacterial communities, network analysis was performed with the relative abun-
dance of differential ASVs using the SparCC algorithm, which is known for its
robustness for compositional data that are often characterized by diversity and
sparsity of the members of the community?3. Correlation coefficients were esti-
mated as the average of 50 inference iterations with the default strength threshold.
P values were calculated from 1000 bootstrap correlations. Correlation coefficients
with P values < 0.05 (defined as significant) and with a magnitude above 0.1
(control versus adenoma) or above 0.3 (adenoma versus cancer) were selected for
further visualization in Cytoscape (V.3.8.0). Modular structure and groups of
highly interconnected nodes were analyzed using the MCODE application with
standard parameters2°.

To further analyze the co-occurrence of biomarkers, the relative abundances of
biomarkers were discretized into binary values “positive” or “negative”. A sample
was labeled “positive” when the relative abundance of biomarker ASV was above
0'4. Based on the binarized markers-by-sample matrix, biomarkers were then
clustered using the Jaccard index. Associations between clusters and metadata were
calculated in a Cochran-Mantel-Haenszel test, using “study” as a blocking factor.

The diagnostic ability of FIT for colorectal adenoma. To evaluate the diagnostic
ability of traditional non-invasive test, FIT, we collected the publicly available FIT
samples (including 172 control individuals and 198 adenoma patients) from a

published study?”. We constructed the RF models using important features, FIT or
their combination for differentiating adenoma from control. The parameters of the
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RF models were the same as described in “Model construction and features
extraction” section.

Additional validation with independent studies and non-CRC diseases. As an
external test, we used additional independent data to validate the performance of
the important features to differentiate adenoma from cancer or control. Since the
sequencing data of independent cohorts were not targeting the V4 region (details in
Supplementary Table 2), ASVs from this dataset do not match with those of the
discovery dataset. Consequently, we reconstructed RF models with the same
hyperparameters as the discovery RF models. Considering the limited resolution of
the 16S rRNA gene and incomplete reference database, not all ASVs could be
assigned at the species level. Thus all ASVs with the same taxonomy assignments
(at genus level), as well as patient metadata (only used ASVs for validation cohort2
for lack of the patient metadata), were used as the input features.

To assess the specificity of the important features for colorectal adenoma, we
examined the performances of these features in five non-CRC diseases (CD, UC,
IBS, NAFLD, T2D)#3-46, For each disease, RF models were constructed to
discriminate the non-CRC diseases from controls. Similar to the validation with
independent studies above, the input features were the ASVs with the same
taxonomy assignments (at genus level) as the input features as well as patient
metadata (only used ASVs, age, and sex as input features for CD and UC samples
as BMI is not available) (Supplementary Data 15).

Functional profile analysis. The functions of the gut microbiome were inferred
from 16S rRNA sequences with PICRUSt2 (V.2.0.3-b) as previously published.
Functional profiles that have more than 80% samples with relative abundance < 1 x
10> and show up in less than three of the studies were removed. The differential
analysis and generalized fold change calculations were performed on pathway
profiles in the same way as on ASVs profiles (see Methods data preprocessing).
Then, we evaluated the contribution of each ASV to overall differential pathways.
The contribution was defined as the ratio of one ASV functional abundance to the
total functional abundance of all ASVs in a given pathway.

qRT-PCR validation. To quantify the abundance and expression of genes from two
selected biosynthesis, QRT-PCR analysis was performed in triplicates on 7 healthy
controls, 6 adenoma, and 30 CRC samples. For these samples, the gDNA was
extracted with the FecalGen DNA Kit (Cat# €9604) according to the manu-
facturer’s instructions. We used the primes in Supplementary Table 6 for candidate
genes; standard primers F515 and R806 for 16S rRNA. To perform the qRT-PCR
reaction, the final primer concentration was diluted to 0.5 uM including 5 ng of
gDNA in a 20 pl final reaction volume with the SYBR Green qPCR Mix (Thermo
Fisher Scientific). The adopted QRT-PCR program was as follows: pre-denaturation
at 95 °C for 10 min; denaturation at 95 °C for 15 s for 40 cycles; annealing at 60 °C
for 60 s followed by melt curve analysis!4. The QRT-PCR analysis was to calculate
278ACt yalues between candidate genes and 16S Ct values. The significance of the
comparison between adenoma and control or CRC samples was tested by a two-
sided Wilcoxon rank-sum test (P < 0.05).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The raw 16S rRNA gene sequencing data are available from the Sequence Read Archive
(SRA) (https://www.ncbi.nlm.nih.gov/sra) and European Nucleotide Archive (ENA)
(https://www.ncbi.nlm.nih.gov/), with project ID: PRINA389927, PRJEB6070,
PRJNA290926, PRINA362366, PRINA534511, PRINA280026, PRJEB28350,
PRJNA544721, PRINA541332, and PRJNA82111. The remaining data are available
within the Article, Supplementary Information, or available from the authors upon
request. Source data are provided with this paper.

Code availability

The codes and scripts are available at https://github.com/Yuanqiwu/CRC (https://doi.
org/10.5281/zen0do.4739990)>%. The customized code was written in Python 3.7.1 and
R 3.52.
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